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§College of Computer Science and Networking Security, Dongguan University of Technology

Emails: bru@mechyd.ac.in, alexliu@cse.msu.edu, xjliang2007@gmail.com, ruili@dgut.edu.cn

Abstract—The ubiquitous wireless communication medium
poses serious threats to the confidentiality and integrity of
communication in constrained networks like Internet-of-Things
(IoT), sensor nodes or ad-hoc groups of soldiers on a battlefield.
Data encryption is essential for ensuring the confidentiality and
integrity of the wireless network communication. We focus on the
problem of group key distribution in dynamically formed groups
of network nodes. One major challenge is that the neighborhood
of a node is not known prior to deployment and therefore, the
group key establishment protocol needs to be independent of the
physical network topology. In this paper, we describe an efficient
template based approach for group key establishment using only
shared symmetric secrets. Our template is a logical shared secret
distribution built on the network nodes prior to deployment,
which ensures that any node shares a distinct set of secrets with
any dynamic group of nodes and thus, is able to establish a secure
group key. We illustrate our template using two secret distribution
protocols: sub-set and dual one-way hash chain distributions.
Compared to existing algorithms, our template approach gives
flexibility to the network administrator to choose from different
secret distribution protocols for fine-grained control over the
security levels and performance.

I. INTRODUCTION

A. Motivation
Rapid advances in technology and hardware have led to the

development of versatile portable computing devices, which
don’t need robust communication infrastructure for networking
and can establish ad-hoc node to node communication to
remain connected to the network. Examples of such networks
are: (a) Soldiers in a battlefield who communicate with their
colleagues regarding battlefield updates and (b) Internet-of-
Things (IoT), where any device can connect to the Internet
with the assistance of other devices. These networks operate in
an hostile environment using an open wireless communication
medium with negligible centralized monitoring, which makes
them vulnerable to attacks [11] from malicious entities. Hence,
the security of such ad-hoc network communication is critical
for the reliability of network applications.
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In this work, we focus on the problem of securing dynamic
group communication among ad-hoc nodes where the nodes
need not be within the transmission range of each other. The
term dynamic group means that the group is not predefined,
either by logical association or by physical location, but is de-
cided by a sending node “on-the-fly”. A shared session secret,
in short, group key, is used to encrypt all the communication
exchanged within the dynamic group. Most importantly, the
sending node needs to be able to exchange the group key
securely using confidential channels shared with the group
members. Therefore, there is a need to instantiate efficient
key distribution protocols, which enable any node to form a
dynamic secure group consisting of any chosen set of nodes,
regardless of the underlying network conditions.

B. Problem Overview
We focus on the problem of group key establishment in

wireless ad-hoc networks using shared secret distribution pro-
tocols. Shared secret distribution [9] offers several advantages,
such as computational efficiency in session key establishment
and ability to operate without an on-line controller. In these
protocols, prior to deployment, the network administrator loads
each node with a random set of secrets drawn from a common
pool in such a way that each secret is likely to be shared by
two or more nodes. We use the generic term “secret” to avoid
placing any restrictions on the length or format of the secrets,
but assume that it is a sufficiently long random string.

Now, to demonstrate the technical challenges in this prob-
lem, we consider two simple shared secret distributions. For
a network of n nodes, the total number of possible groups is,
O(2n), and each node is part of O(2

n
2 ) groups. A naı̈ve secret

distribution protocol is to store O(2
n
2 ) distinct secrets at each

node, i.e., one secret for each group to which the node belongs
to. This solution allows any sending node to establish a group
key using only one encrypted message, regardless of the size
of the group. However, this communication efficiency is offset
by the unreasonable storage at each node and furthermore,
several of these secrets may never be utilized. Another solution
is to deploy a pair-wise [2], [9] symmetric secret protocol
where every distinct pair of nodes share a distinct secret.
But this solution requires a sender to individually encrypt
and send the group key to each group member, i.e., O(|G|)
computational and communication complexity, which is high
even for moderately large groups. Furthermore, adding a new
network node incurs a costly O(n) pair-wise key distribution.ISBN 978-3-901882-94-4 c© 2017 IFIP



From these two examples, we note that, it is possible to
balance storage and communication if a sender pre-shared a
small set of auxiliary secrets with some group members. These
additional secrets not only reduce the cost of establishing
the group key, but also keep the storage cost at the nodes
manageable. But, a major hurdle in this approach is that, in
dynamically formed groups, it is difficult to predict the group
member identities with non-negligible probability. Therefore,
the design of shared secret distribution protocols, which
achieve an ideal balance of storage and communication for
dynamic group key establishment, is a challenging problem.

C. Limitation of Prior Art
Previous works in this domain have considered this prob-

lem under two different system and network models. In the first
model [7], [14], [17]–[20], [25], a centralized group controller
is assumed to be in charge of establishing the necessary
group key and for distributing the group key securely to the
group members. However, this model is unrealistic for ad-hoc
networks due to two important concerns. First, the centralized
group controller needs to be on-line at all times to perform
the group keying, which is a central point of failure for the
protocol. Second, the span of the ad-hoc group is assumed
to be limited to a geographic region, which is not always
possible, especially for ad-hoc networks distributed across a
wide region.

In the second model, solutions in [3], [5], [6], [10] describe
collaborative group key agreement protocols to enable multiple
parties to agree upon a common group key. While group
key agreement protocols are distributed in nature and avoid
the issues of centralized key management, they suffer from
other drawbacks. First, the group members need to exchange
several messages before agreeing upon the group key, which
is a considerable burden on the ad-hoc nodes operating in
unreliable network conditions. Second, each group member
performs computationally expensive exponentiation operations
proportional to the size of the group, which makes these
solutions impractical for large groups.

D. Proposed Approach
Our approach is based on two important building blocks:

a logical template –which creates full logical connectivity
among the ad-hoc nodes, and shared secret distribution –
which ensures that a sender can establish secure channels for
group key establishment. The template is a logical hierarchical
shared secret structure overlaying the ad-hoc network nodes
independent of their physical deployment. A logical channel
corresponds to the ability of two nodes to communicate
securely even if they are not in each other’s vicinity.

At the highest level, the network administrator arranges
the nodes into two mutually exclusive partitions and performs
shared secret distribution by treating each partition as a single
logical entity. To secure the communication for a given two
sibling partitions, the network administrator loads each node
with two types of secrets: a group shared secret, to exchange
group keys among a group of nodes, typically, belonging to the
same partition and a pair-wise secret, to exchange group keys
between two nodes, typically, belonging to different partitions.
At system initialization, the administrator associates a distinct
master secret for each partition and distributes this secret to
all nodes in that partition. Furthermore, for each node in a

partition, the administrator computes a blinded secret using
the node’s unique identifier and the master secret of the sibling
partition, and gives this value to the node. Therefore, any two
nodes, where each belongs to a different partition, can use this
common secret information to establish a pair-wise session
key. Next, to distribute group shared secret in a partition, the
administrator computes a blinded secret from the master secret
of the other partition and gives this value to all nodes in the
partition. This group shared secret can be used by a node in
one partition to broadcast a message securely to nodes in the
sibling partition. Proceeding thus, the basic template can be
recursively applied, by splitting each higher level partition
into two lower level mutually distinct sibling partitions, to
achieve efficient group key establishment among any group
of nodes in the network. By construction, the template can
effectively reduce the cost of group key establishment by
logically securing groups of nodes in a structured manner and
still keep the storage at nodes small.

E. Technical Challenges and Solutions

The first challenge is if the group of receivers are sparsely
distributed in the template, then the sender may need to
perform O(N) encryptions to establish the group key. To
address this, we distribute additional shared secrets within a
partition so that the nodes share additional secrets. But, at the
same time, distributing additional secrets can increase node
storage and it is desirable to keep the key storage as low as
possible.

Towards this, we describe two storage efficient key distribu-
tion protocols to enable a high level of secret sharing among
the keys while keeping the storage cost poly-logarithmic in
network size. In the first protocol, called the sub-set keying
scheme, the administrator distributes a pool of secrets to each
partition instead of one single group shared secret. For each
distinct node in the other partition, the administrator distributes
a unique sub-set of keys from this pool of keys. This key
distribution has all the properties of our original template with
the advantage that the nodes within a single partition share
additional common secrets. In the second protocol, called the
one-way hash chain scheme, the administrator instantiates two
one-way hash chains for each partition. The nodes in a partition
are ordered in a logical or numerical sequence. Based on the
node position in the ordering, each distinct node in a partition
receives one unique hash value from each of the one-way
hash chains belonging to the other partition. The distribution
is performed in such a way that combination of these two hash
chain values is known only to one node in the partition.

The second challenge is due to collusion among nodes, i.e.,
two or more nodes can share their secret information and try to
compromise the communication of other nodes in the network.
This is due to the deterministic sharing patterns of the secrets
among nodes, which can help a colluding node in determining
an ideal set of colluding nodes. To address this, we instantiate
another template on the nodes, which is a randomized version
of the original template and diffuses the secret sharing patterns
among the nodes. For secure communication, a combination
of secrets from both templates are used and provide higher
collusion resistance. We show that our collusion resistance
solution does not increase the storage at the nodes substantially
and provides higher collusion resistance as well.



Our Contributions. (a) We describe an efficient template
based approach to secure dynamic group communication in
ad-hoc networks, which does not require the presence of
a dynamic group controller. Our protocols achieve the dual
goals of confidentiality and integrity of communication without
additional storage. Our template approach provides a useful
place-holder for secure key distributions that exist in literature
as well as those that might be proposed in future. Any such
key distribution protocol can be easily “plugged-in” depending
on the network administrator’s choice, system storage and
computational trade-offs that can be tolerated. (b) We describe
two instantiations of our template: sub-set keying and dual
one-way hash chain schemes, which offer varying trade-offs
in storage and computation. These instantiations validate the
utility of our template based approach and show the feasibility
of further viable instantiations. (c) We describe an algorithmic
approach to strengthen the collusion resistance of our key
distribution protocols. Our collusion resistance algorithm is
simple to implement and improves the collusion resistance
of the network without increasing the associated overheads
substantially.

II. PRELIMINARIES
We describe the system model and threat model in this

section. Without loss of generality, we use the terms “nodes”
and “users” interchangeably.

A. System Model
We consider that the ad hoc nodes are deployed in an

open wireless environment without no or limited networking
infrastructure in place and the nodes are not constrained
with respect to mobility or region. All the nodes have equal
computational ability and have the capability to perform cryp-
tographic operations. Any node can communicate with one
or more nodes where the network communication is single
hop or multi-hop and each ad-hoc node acts as a receiver of
the message or as a router forwarding the data. A network
administrator is responsible for the initial configuration of
the shared secret distribution protocol and deployment of the
nodes, but has a limited role after the network is deployed.

B. Threat Model
The ad-hoc node communication is vulnerable to eaves-

dropping and tampering by external adversaries. We differenti-
ate between two kinds of attacks: compromise and collusion. A
compromise attack happens when a node is captured by exter-
nal adversaries. In such attacks, the secrets held by the mobile
device might be protected by a tamper proof mechanism or
by other stronger authentication approaches and these devices
may not be useful to the adversary. A collusion attack is when
some internal malicious nodes pool their secrets and try to gain
information from other nodes’ communication. This internal
attack is difficult to detect and the network administrator can
only try preventive measures or limit the damage due to such
attacks. Also, in the absence of collusion, the ad-hoc nodes
assumed to be semi-honest in nature, i.e., the nodes follow
proper network operation but try to gain additional information
by using whatever information at their disposal.

C. Related Work
There has been a significant amount of research in the area

of secure group communication in ad-hoc networks, which can
be broadly categorized into three types: conference key agree-
ment, centralized and distributed group key establishment.

In conference key agreement protocols [3], [5], [6], all the
nodes of the group contribute some secret values to generate
the group key. These protocols are perfectly secure and allow
for arbitrary dynamic groups. However, since all the nodes of
the group need to participate in the group key generation, these
protocols cannot scale well for even medium sized groups.
Although efficient variations, supporting inexpensive compu-
tations, have been proposed recently [12], the communication
complexity remains unchanged. Our approach does not require
group key agreement as the group initiator chooses the group
key and distributes it securely to the other group members.

The centralized group key management protocols [14], [17]
assume the presence of a central administrator to assist the
formation and maintenance of secure dynamic groups in the
network. Also, these solutions assume that there is only sender
for the entire network, which is usually the administrator and
that there is a multicast key-tree [23] to distribute the group
key. In [14], the authors maintain a physical multicast tree of
the group members and use public-key certificates for group
key establishment. However, this is an expensive approach as
the data is encrypted on a per link basis and is not secure
in the model considered in our work. In [17], the authors
propose an approach to align the physical topology to the key
tree for reducing cost of group key distribution. Furthermore,
some works [7], [25] have focused on achieving reliability
for the group key distribution process as ad-hoc networks are
inherently unreliable. The work in [19] considers the problem
of dynamic ad-hoc group management within a well-defined
geographic region. This work allows arbitrary nodes to form
a group, but still requires the group controller to establish the
group key. Our key distribution protocols do not require an
online dynamic group controller for managing keys. Once the
administrator deploys the group, the nodes need not contact
the administrator for any key distribution.

In the distributed group key establishment setting, the work
in [24] considers the problem addressed in our paper. This
work considers dynamic group formation and pre-distributes
secrets to achieve group key establishment. The assumption
is that the nodes are assigned to random groups before
deployment. The nodes collaborate at run-time to generate
the group keys. However, this approach is inefficient as it
requires a collaborative effort from neighboring nodes and
hence, cannot support arbitrarily large groups. A good survey
of key management issues in ad-hoc networks may be found
in [1], [8], [11], [13], [21], [22]. Our key distribution protocols
support arbitrary group formation and do not place restrictions
on the location or neighborhood of a given node.

III. OUR BASIC TEMPLATE FOR GROUP KEY

ESTABLISHMENT

Consider two groups of users, X and Y . Let users
in Y be named y1, y2, · · · , yn and the users in X named
x1, x2, · · · , xm. We proceed as follows: we create a secret, say
s, and a large random value Rx, and give them to every user
in X . Now, user yj from Y gets the secret f(s, j) where f is a
one-way function, i.e., it is not possible for yj to extract s from
f(s, j). In addition, all users y ∈ Y , also receive f(s,Rx) from
X . We call this scheme as hs(X,Y ). The secret s is called
the master secret.



Theorem 1. Any message encrypted by f(s, j) can be
decrypted only by yj or any user in X .

Proof. The secret f(s, j) is given to yj only and therefore,
only yj ∈ Y can decrypt a message encrypted with f(s, j).
Also, since s is known to every user in X , any user in X can
generate this secret and decrypt any messages encrypted with
this secret.

Now, we use this scheme for secure group key establish-
ment between arbitrary users. Towards this end, consider the
case where the system users are divided into two parts: X1

and X2, i.e., X1 ∩ X2 = φ and X1 ∪ X2 =set of all users.
Apply the scheme hs(X1, X2) and hs(X2, X1). Let s1 and s2
be the respective master secrets used above and let R1 and R2

be the respective random secret values.

Theorem 2. Given two users, xj ∈ X1 and xk ∈ X2, they
can communicate securely using secrets f(s2, j)XORf(s1, k)
and establish a secure group key.

Proof. Based on Theorem 1, users that can generate
f(s2, j) are those in X2 and xj . Likewise, users that can
generate f(s1, k) are those in X1 and xk. Thus, xj and xk

are the only users that can generate both the secrets.

Theorem 3. Given user xj ∈ X1 is a group sender and
all the users in X2 are the group receivers, then xj can use
the above scheme to securely establish the group key.

Proof. Based on Theorem 1, users that can generate
f(s2, j) are those in X2, and the user xj knows this secret
by construction. Also, users in X2 receive f(s1, R1), and xj

can generate this secret. Thus, xj and the users in X2 are the
only users that can generate both the secrets.

The above scheme maintains three secrets per user. It
allows a user in X1 to communicate with user in X2 and vice
versa. However, it does not allow two users in X1 (respectively,
X2) to communicate with each other. This problem can be
solved recursively by applying the same algorithm for X1 and
X2 independently. For instance X1 is split into two mutually
disjoint partitions X11 and X12 such that |X11| = |X12| =
�|X1|/2�. The hs(X,Y ) scheme is instantiated on X11 and
X12 and hence, secures the communication among nodes in
X1. Proceeding recursively, the leaf nodes of the hierarchy
contain partitions with individual users.

Theorem 4. The number of secrets in the recursive scheme
is 3 logN .

Proof. At each level, a user needs to store two keys. One
key is its local key, say 〈s1, R1〉, with which it generates keys
for the other partition of users. Another two keys, say, f(s2, j)
and f(s2, R2), which the user gets from the other partition. As
there are logN levels, the total storage is only 3 logN keys.

Theorem 5. The above scheme allows any sender to
securely establish a group key with any dynamic ad-hoc group.

Proof. There are two scenarios possible for a sender: (a)
the sender and group receivers are in the same partition, and
(b) the sender and group receivers are in different partitions.
If the sender and the receivers are in the same partition, the
sender uses the secrets at the lower layers of the template,
which provide security between the sender and the receivers,

to establish the group key. If the sender and receivers are in
different partition, then the sender uses the pair-wise secrets
to establish the group. In a special case, if all the receivers are
in the other partition, then the cost of group key establishment
is optimal: i.e., one message and one encryption. Any other
scenario can be composed as a combination of these two
scenarios.

We have shown that it is possible to achieve group key es-
tablishment in dynamic ad-hoc groups with our template based
shared secret distribution. However, the worst case complexity
of group key establishment is O(N) encryptions and messages,
especially when the group size is between N

2 and 3N
4 . In the

following, we demonstrate that the template structure can lead
to more efficient shared secret distributions, which support
communication efficient group key establishment. Now, we
show how this secret distribution can be used for group key
establishment between these two partitions.

Dynamic Addition of Nodes. Our approach supports
dynamic addition of new nodes in a straightforward manner.
We assume that the perceived additions are bounded within a
percentage of total population and we instantiate the protocol
by leaving certain vacancies in the logical partitions. When a
node is to be added, the node is first placed in a vacancy at
the lowest level of the template and the corresponding keys
are loaded. Proceeding recursively, the node moves up the
hierarchy into its corresponding vacancies and is loaded with
all secrets according to its position. Most importantly, with this
approach, the key distribution in the existing nodes remains
unchanged and the new node can establish secure groups with
any subset of existing nodes.

IV. SUB-SET SECRET DISTRIBUTION

Our sub-set secret distribution is an enhanced version of
the scheme from [4], which considers one sender and a set of
receivers. The sender chooses a pool of k distinct secrets and
each receiver is given a unique sub-set of l secrets from this
pool. By construction, no two users share identical subsets of
the secrets. We instantiate this basic scheme on our template
to construct an efficient secret distribution protocol for group
key establishment. In [4], the authors show that for a group
size of n, a sender maintains only k = log n+1/2 log log n+1
secrets and each user receives a unique subset of |k|/2 secrets.

Now, consider two partitions S and R as shown in Figure
1. The users in the S-partition receive a pool of secrets
{K1,K2,K3,K4, s} and the users in R-partition receive
{C1, C2, C3, C4, r}. The random values s and r are used to
blind the secrets before they are given to the users in the other
partition. To load the secrets to the users in partition R, the
administrator generates blinded values of the secrets held by
the S-partition as follows: hKi = HMAC(Ki, s)∀Ki ∈ S
where HMAC is a secure one-way hash function. Each user
in R receives two sets of secrets: one set for secure pair-wise
communication and other for secure group communication. For
secure pair-wise communication, each user receives a unique
sub-set of the blinded secrets, e.g., R1 receives hK1, hK2. This
distribution ensures that the combination of these two secrets is
known only to R1 and users in S, but not known to any user in
R. For secure group communication, R1 receives XOR value
of the secrets that are not part of the unique subset, e.g., R1



receives hK3 ⊕ hK4. This distribution allows R1 to generate
a shared group secret as follows: hC1 ⊕ hC2 ⊕ hC3 ⊕ hC4

combined with secrets hK1 and hK2 received from S. This
secret can be used by R1 to send a message securely to all
users in S. Furthermore, due to the properties of XOR, this
secret can be generated by all the users in R-partition with
their respective secrets.

 
R1 
R2 
R3 
R4 
R5 
R6 

 

S1 
S2 
S3 
S4 
S5 
S6 

K1, K2, K3,  
K4, s 

C1, C2, C3,  
C4, r 

hC1, hC2, hC3 XOR hC4 

hC1, hC3, hC2 XOR hC4 

hC1, hC4, hC2 XOR hC3 

hC2, hC3, hC1 XOR hC4 

hC2, hC4, hC1 XOR hC3 

hC3, hC4, hC1XOR hC2 

hK1, hK2, hK3 XOR hK4 

hK1, hK3, hK2 XOR hK4 

hK2, hK3, hK1 XOR hK4 

hK1, hK4, hK2 XOR hK3 

hK2, hK4, hK1 XOR hK3 

hK3, hK4, hK1 XOR hK2 

hK1=HMAC(r,K1) hC1=HMAC(s,C1) 

S-Partition R-Partition 

Fig. 1: Sub-set Secret Distribution

Now, we show how this secret distribution can be used for
group key establishment between these two partitions. As an
example, we let S1 ∈ S be the sender of the group and choose
three different group membership instances. In the first group
instance, only one user R1, from R-partition, is a member of
the group. In this case, S1 uses a combination of the secrets:
hC1 ⊕ hC2, which are known to R1, and hK1 ⊕ hK2, which
are loaded, to generate a unique session traffic encryption key
as follows:

Tk= hC1 ⊕ hC2 ⊕ hK1 ⊕ hK2

Next, S1 generates a session group key kg and encrypts kg
with Tk using a symmetric encryption algorithm ENC, such
as AES, and transmits the encrypted message ENC(Tk, kg)
to R1 after attaching the necessary meta-data. For mes-
sage integrity, using Tk, S1 can add message authentica-
tion code (MAC) to authenticate the message as follows:
HMAC(Tk, kg). The cost of the group key establishment
with authentication is one encryption, one signature, and one
message transmission.

In the second group instance example, several users from
R-partition are chosen by S1 as group members. For instance,
R4, R5, R6 are chosen as the group members. To establish
the group key, S1 first determines the minimum set of keys
that are shared among these nodes. This problem is known
as the key-cover problem, as identified in [23], and reduces
to the general set-cover problem, which is known to be NP -
complete. We use a greedy heuristic algorithm to solve this
problem as follows. We create a list of the secrets and for each
secret we list the users sharing that secret. Now, we select the
secrets that are shared by the maximum number of the group
users. In this case, hK4 is shared among all the nodes and is
not known to the other members in R. Therefore, S1 generates
the traffic encryption key Tk by using XOR to combine hK4,
hC1 and hC2 and uses Tk to transmit the group key kg . The
algorithm is shown in Algorithm 1.

While the cost of group key establishment is only one, the
cost of authenticating the message is higher in this scenario.
The sender S1 needs to generate multiple MACs because

it is essential that each receiver should be able to verify
independently the source of the messages transmitted. For
instance, if hK4 were to be used to sign the message, then
it is not possible to distinguish between S1 and the receivers
as any of the parties could have generated the signature. The
sender follows the authentication approach of [15], in which
the sender generates multiple MACs for the same message
using different secrets and each receiver can verify a sub-set
of these signatures with the secrets in possession. Therefore,
the sender generates the following MAC secrets, which are
used to sign the group key messages: hK1 ⊕ hC1 ⊕ hC2;
hK2⊕hC1⊕hC2; hK3⊕hC1⊕hC2; and hK4⊕hC1⊕hC2.
The cost of authentication is therefore, O(log |R|), as this is
the number of secrets held by the sender for a receiver set R.

In the final group instance, all users in partition R are the
group members. The sender S1 generates the traffic encryption
secret Tk by computing XOR of the values, hC3 ⊕ hC4,
received from R, and hK1 ⊕ hK2 ⊕ hK3 ⊕ hK4, which can
be generated by all the users in R. Note that, the combination
of these secrets is known only to S1 and no other user in S
knows these values. Also, the sender generates signatures as in
the previous scenarios, i.e., the sender S1 generates HMAC
signatures on the message with all the secrets in its possession.

Algorithm 1: Key Selection Algorithm
Input: R = {R1, R2, · · · , RN}
Output: KC : Set of Keys Covering R

1 Let Keys(R) denote set of keys known to R;
2 Let Users(K) := {Ri|K ∈ Keys(Ri)}; #set of users

knowing K
3 KC:=φ;

4 while R is not empty do
5 KC = KC ∪ {Ki|Max(|Users(Ki)|∀Ki ∈

Keys(R)) }; #greedy Max function selects the key
that covers maximum number of receivers

6 R = R− Users(Ki); #update receiver set

7 return KC;

The above group variations solve the problem of group
key establishment if the sender and receivers are in different
partitions. But if S1 wishes to transmit the message to another
user in S then the above scheme is not sufficient as the users in
S do not share any unique secrets. For this case, we partition S
in two equal sized mutually disjoint sets, Sa, Sb and perform
the secret distribution for each partition using the above
scheme. Furthermore, this partitioning is repeated until at the
leaf node only the individual users remain. As any group size
can be decomposed into a variation of the above mentioned
group instances, the sub-set secret distribution enables secure
group key establishment for dynamic ad-hoc groups.

The number of secrets stored at each user is as follows.
Assuming that there are n total users in the network, the
initial partitions consist of n/2 nodes each. A user stores
log n

2 + 1
2 log log

n
2 + 1 secrets for the partition it belongs to

and 1
2 (log

n
2 + 1

2 log log
n
2 +1) secrets received from the other

partition. Proceeding further, the total number of secrets stored
at each user is: 3

2 ((log n− 1)( logn+4
2 ) + log log n).



V. DUAL ONE-WAY HASH CHAIN SECRET DISTRIBUTION

Our second template instantiation is based on the use of
one-way hash chains first described by Leslie Lamport [16]
for authentication. A one-way hash chain is generated from
a random seed s by repeated application of a hash function
on the seed as follows: h(s), h(h(s)), h(h(h(s))) and so on,
where h is a one-way hash function such as HMAC. The
notation, ht(s) denotes that the one-way hash function h has
been applied t times over the random seed s. The important
property of one-way hash chains is that one can efficiently
compute ht+1(s), ht+2(s), · · ·, from ht(s), but it is infeasible
to compute ht−1(s), ht−2, · · · from ht(s).
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Fig. 2: Dual One-way Hash-Chain Distribution

To describe our secret distribution, we again consider the
two partitions S and R consisting of users as shown in Figure
2. To the users in a given partition, say S, the administrator
distributes two random seed values, Pf and Pr. Now, the
administrator instantiates two one-way hash chains of the form
h(Pf ), h

2(Pf ), · · · , h|R|(Pf ) called the forward chain and
h(Pr), h

2(Pr), · · · , h|R|(Pr), called the reverse chain, each of
length |R|. Note that any user in S-partition can generate these
values at run-time and need not store them explicitly. A user
Ri ∈ R receives one hash value from each of these chains,
such that the combination of the hash values is only known
to this user. From the forward chain Ri receives hi(Pf ) and
from the reverse chain Ri receives h|R|−i+1(Pr). Based on the
secret distribution and property of the one-way hash chains, no
other user in R knows both these secrets and neither can any
user generate these values. For instance, user R4, knowing the
secret h4(Pf ), cannot derive the secret h3(Pf ) known to R3

as it is not possible to generate h3(.) using h4(.). Vice-versa,
R3 cannot use the loaded secret h4(Pr) to generate the secret
h3(Pr) known to R4. The complete distribution of secrets is
shown in Figure 2. Now, we show how this secret distribution
enables a sender, say S1 ∈ S, to achieve secure group key
establishment in the three types of group instances discussed
previously.

In the first group instance type, the group consists of one
user from the R-partition, say R1. The sender S1 generates the
secrets h(Pf ), h

6(Pr) and combines them with h(Qf ), h
6(Qr)

received from the R-partition, to form the traffic encryption
key Tk as follows: h(Pf )⊕h6(Pr)⊕h(Qf )⊕h6(Qr). The Tk

resulting from above is known only to S1 and R1 and no other
user in either partitions. Next, to generate the MAC secret, S1

combines the hash values it received from R with the secrets
given to R1 as follows: h(Qf )⊕h(Pf )⊕h6(Pr) and h6(Qr)⊕
h(Pf ) ⊕ h6(Pr) and generates the HMAC signatures with

both these secrets. This is an essential step for authentication
because of the nature of one-way hash chains, any other user
in S can also generate the individual hash values that can be
generated by S1, but at the same time, any other user in S
cannot know the values received by S1 from R. Therefore,
the cost of group key establishment is one encryption, two
signatures and one message transmission.

In the second group instance, several users from R-partition
are group members. For instance, R1, R2, R3 are chosen as
the group members. To generate the traffic encryption secret
Tk, the sender S1 computes the secrets known by these users.
In this scenario, since the logical identifiers of the users are
known to S1, the identifiers of the secrets known to these users
are known to S1 as well. Since the users have consecutive
identifiers, S1 determines that all these users either know or
can generate the secret: h3(Pf ) and h6(Pr). For instance, R2

knows h5(Pr) and can compute h6(Pr) and so on. Therefore,
S1 generates the traffic encryption secret by combining these
common secrets with the hash values it received from R as
shown, to generate the Tk: h3(Pf )⊕h6(Pr)⊕h(Qf )⊕h6(Qr).
This instance shows that one-way hash chains offer more
opportunities for optimization and this is validated through
the experimental results as well. However, these optimizations
do have a tradeoff in terms of the user computation, which
is only a few additional fast hashing operations. The message
authentication is similar to the previous group instance, i.e., S1

combines the common secrets, used in the traffic encryption
key generation, with each of the secrets it received from R
to generate the MAC secret. The MAC secrets generated are:
h(Qf ) ⊕ h3(Pf ) ⊕ h6(Pr) and h3(Pf ) ⊕ h6(Pr) ⊕ h6(Qr).
Thus, the cost of group key establishment is: one encryption,
two signatures and one transmission. The worst case scenario
occurs when the receiver size is R

2 and none of the identifiers
are consecutively numbered, i.e., the identifiers are R1, R3, R5

and so on. In this scenario, the sender needs to securely unicast
the group key to each of these users and therefore, the group
key establishment cost is O(|R|) in the worst case. In practice,
however, the probability of such a situation is very low.

In the third and final group instance, all the users in R are
selected as the group users. For this scenario, the sender S1

generates the traffic encryption key by combining two types of
secrets: (a) a secret that can be generated by all users in R from
their pre-loaded values and (b) the secrets received from R. We
note that, all the users in R can generate the secrets: h6(Pf )
and h6(Pr) from their pre-loaded values. Therefore, the traffic
encryption key Tk is generated as follows: h6(Pf )⊕h6(Pr)⊕
h(Qf ) ⊕ h6(Qr). Next, for generating the signatures on this
message, S1 uses h(Qf ) ⊕ h6(Pf ) ⊕ h6(Pr) and h6(Qr) ⊕
h6(Pf ) ⊕ h6(Pr), which is similar to the previous scenario.
Thus, the cost of group key establishment for broadcast is one
encryption, two signatures and one message transmission.

Finally, using the decomposition technique discussed in the
previous section, the one-way hash chain secret distribution
can achieve group key establishment across any dynamic ad-
hoc group. The total number of secrets stored at each user can
be computed as follows. Each user stores two random seeds
for each partition and receives two hash values from the other
partition. Since there are log n partitions, the number of secrets
stored at each user is 4 log n. However, this approach requires
that the users generate the necessary hash values at run-time



and this complexity is O(n) in the worst-case. Thus, compared
to the sub-set secret distribution, the one-way hash chain
technique involves more computations from the user and we
illustrate this impact in our experimental analysis. On the other
hand, the sub-set secret distribution incurs more transmissions
than those required in one-way hash chain distribution.

VI. ENHANCING COLLUSION RESISTANCE

The secret distribution protocols discussed can be vul-
nerable to user collusion, i.e., two or more users combining
their secrets to compromise the communication of other users.
In this section, we describe a collusion resistance scheme to
handle this situation and reduce the impact of collusion.

To highlight the tradeoffs involved, we note that, perfect
collusion resistance is achieved only if each user shares a
unique secret with every other user. In this secret distribution,
a sender needs to send as many messages as the size of the
dynamic group to establish the group key. Since our protocols
offer avenues for optimizing this cost, we focus on enhancing
collusion resistance. We only consider collusion attacks, i.e.,
insider attacks and not compromise attacks, in which an
external adversary captures the nodes. We surmise that the
hardware is sufficiently tamper proof and an adversary cannot
really gain much information by collecting random devices. In
a collusion attack, two or more users combine their secrets and
try to compromise the secure channels used by a sender for
group key establishment. An attack is successful if the sender
generates a traffic encryption key using secrets that are found
in the combined pool of secrets of the colluding users.

In our protocols, the key vulnerability is that the secrets dis-
tributed to the users are based on a deterministic protocol and
it is possible that the user identifiers provide useful information
to a colluding adversary to identify suitable targets. Thus, to
prevent collusion, we use two intuitions: (a) first, increase the
number of secrets with the users and, (b) second, randomize
the distribution of these additional secrets. Based on these two
ideas we describe an approach to distribute additional secrets
to the users in a nearly random manner. The effect of such a
secret distribution is that the adversary needs to select many
target users for effective collusion attack and such efforts are
eventually detected by other nodes. To describe our approach,
we consider two partitions of users A and B as shown in Figure
3, which have been secured by one of the secret distributions.
The total number of ad-hoc nodes in the group is assumed to
be |A| + |B| = N . We assume that all the sub-partitions of
A and B, which are not shown in the figure, are also secured
based on our template approach.

Now, in our original secret distribution, the A-partition
would be decomposed and the sub-partitions will be secured
and so on. But, as discussed earlier, this kind of deterministic
distribution is susceptible to better collusion attacks. To prevent
this, we instantiate a second secret distribution on the A
and B partitions. Instead of partitioning A, we randomly
select several user blocks from A, as shown in Figure 3 and
exchange them with equal sized random user blocks from
B. For example, we may randomly choose three user blocks
A1, A2, A3 from A such that |A1+A2+A3| = |A|/2 = |N |/4,
i.e., we randomly select half of the users in the partition. In
similar manner, we randomly choose user blocks B1, B2, B3

from B. Now, we exchange these user blocks across the

A-partition
|A|=N/2

B-partition
|B|=N/2

B1
A1

|A1+A2+A3|=N/4
S t

B3

B2A2

A3

| |
Random user 
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Random user blocks
Secret

Distribution

A3

A1

B3

B2 A2B1
A3B3

Fig. 3: Random Displacement of User Blocks
A1, A2, A3, B1, B2 and B3

partition, i.e., A1, A2, A3 are placed into B and B1, B2, B3

are placed into A. Finally, our secret distribution is performed
on the re-arranged partitions. This approach ensures that the
original set of users in A will now share a different set of
secrets and the same applies to the users in B. Since the
distribution of users is random, it is difficult for an adversary to
try to select the best possible nodes for collusion. Furthermore,
after the secret distribution at the top-level, we decompose the
individual partitions into sub-partitions as shown in Figure 3.
We repeat the random exchange of users for the sub-partitions
and perform the secret distribution.

This distribution ensures the users are now randomly dis-
tributed and that several users share additional secrets that will
enhance the collusion resistance as compared to the original
secret distribution. The storage at the users is two times higher
as they need to store secrets from both the secret distributions,
but still poly-logarithmic in complexity. The algorithms for
group key establishment remain the same except that a sender
will apply secrets from both the distributions to send a secure
message. From experimental results we show that, the cost of
the group key establishment does not increase by the same
amount and is slightly lesser due to the optimizations offered
by the underlying secret distribution protocols.

VII. PERFORMANCE EVALUATION

We evaluate the performance of our protocols on different
group instances focusing on the cost of group key estab-
lishment and relative tradeoffs in the two secret distribution
protocols. We use the following metrics for this purpose: the
number of group key establishment messages and the number
of signatures by the sender. We also measure the impact of
collusion on our protocols and evaluate the effectiveness of
our collusion resistance mechanisms.

A. Experimental Methodology
We do not make any assumptions regarding the topology of

the network and only assume that there are routing mechanisms
in place to deliver the packets to any receiver. We focus only
on the cost of the sender and the receivers during the group
key establishment process. We performed each experiment by
choosing a fixed network size, then electing a random sender
and choosing random users as group members from this net-
work. For our experiments, we considered the network group
sizes with, 128, 256, 512 and 1024 users and groups with, 24,
32, 48, 64, 80, 96, 128 and 160 receivers. In each experiment,
the sender chooses a random set of receivers to form the
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Fig. 4: Encryptions Performed in Sub-set and One-way Hash Schemes and Relative Comparison
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Fig. 5: Signature Cost in Sub-set and One-way Hash Schemes and Relative Comparison

group and establishes the group key among these receivers.
We averaged each experiment over 5 different senders and
for each sender repeated the experiment over 10 trials by
choosing a different set of receivers for the given sender. We
focus only on the number of operations involved in achieving
a specific task, e.g., the number of encryptions performed
and the number of transmissions, and do not consider specific
implementation details such as the encryption algorithms, key
lengths or hash functions involved. Our implementation was
done in Java and experiments were conducted on PC running
Windows 7 operating system on a 3.4GHz Intel(R) Core(TM)
i5-3570 processor.

B. Group Key Establishment Cost
Our group key establishment cost reduces the number

of sender messages for small and large sized groups, while
keeping the cost reasonable for medium sized groups. In Figure
4, we show the number of encryptions performed by the sender
in the sub-set and one-way hash chain schemes. Each unique
encryption of the group key is counted as one message for
this computation. From this figure, we note that, the cost is
lowest if the receiver set is nearly proportional to the group
size. If the group size is large and receiver set is small, the
sub-set scheme, Figure 4a does not perform very well and the
reduction in cost is less than 10%. The one-way hash chain
scheme, Figure 4b, performs better in such cases, but requires
a higher computation from the users. In Figure 4c, we show
the reduction in number of messages achieved by the one-way
hash chain scheme compared to the sub-set scheme.

The signature cost is shown in Figure 5, in which the one-
way hash chain performs much better than the sub-set scheme.
Overall both the schemes require that the number of signatures
is no higher than half the group size. Figure 5c, shows that the
one-way hash chain outperforms the sub-set scheme in terms
of signatures.

C. Collusion Resistance Evaluation

Our collusion resistance approach reduces the impact of
collusion by nearly 50%. In Figures 6, we evaluate the effect
of collusion on the group key establishment process for sub-set
keying scheme as the results for one-way hash chain scheme
are similar. We choose the number of colluding users as: 5,
10, 15, 20, 25 and 30 users, where a larger set is likely
to be detected or noticed by other nodes in the network.
For this experiment, the colluding users combine their secret
information and try to compromise the secure channels, both
confidentiality and authentication, between different pairs of
users. A compromised channel indicates that for any given pair
of users, the secrets known to this pair of users is a subset of
the secrets known to the colluding users and therefore, the
communication between the pair of users is not secret. The
results for the “plain” version of the protocols are shown in
Figures 6a, and 6c, which show that the colluding nodes can
compromise up to 90% of the secure channels. Figures 6b and
6d, labeled “Collusion Resistant”, show that by adopting our
collusion resistance approach we are able to reduce the impact
of collusion by nearly 50% for the same scenarios.
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Fig. 6: Effect of Collusion and Mitigation by Collusion Resistance in Sub-set Scheme

VIII. CONCLUSION

We have addressed the problem of secure group key estab-
lishment for dynamic ad-hoc groups. Our major contribution
is a structured template based approach to enable a sender
to communicate securely with any dynamically identified
group in the network. We performed two instantiations of our
template and showed that these two instantiations reduce the
cost of group key establishment while keeping the storage at
the users manageable. Furthermore, to mitigate the effect of
collusion, we have described a randomized approach to dis-
tribute additional secrets to the users. Our collusion resistance
approach has been able to reduce the impact of collusion by
50%, as seen from our experimental validation. The future
work in this domain is to explore further instantiations of our
template in more network settings, such as the Internet-of-
Things. Our structured template enables administrators to have
more control on the secret distribution and storage at the users.
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