
A Framework for Less than Best Effort
Congestion Control with Soft Deadlines

David A. Hayes, David Ros, Andreas Petlund and Iffat Ahmed
Simula Research Laboratory

Fornebu, Norway
Email: {davidh,dros,apetlund,iffat}@simula.no

Abstract—Applications like inter data-centre synchronisation
or client-to-cloud backups require a reliable end-to-end data
transfer, however, they typically do not have strong capacity
or latency constraints, just a loose delivery deadline. Besides,
their potential to disrupt more quality-constrained flows should
be kept to a minimum. These applications could be well served
by a transport protocol providing a less-than-best-effort (LBE)
or scavenger service rather than TCP but, neither TCP nor
standard LBE methods like LEDBAT consider any notion of
deadline or completion time. TCP simply tries to maximise the
use of available capacity, while LEDBAT tries to enforce an LBE
behaviour regardless of any timeliness requirements.

This paper introduces a framework for adding both LBE
behaviour and awareness of “soft” delivery deadlines to any
congestion control (CC) algorithm, whether loss-based, delay-
based or explicit signaling-based. This effectively allows it to
turn an arbitrary CC protocol into a scavenger protocol that
dynamically adapts its sending rate to network conditions
and remaining time before the deadline, to balance timeliness
and transmission aggressiveness. Network utility maximization
(NUM) theory provides a solid foundation for the proposal.
The effectiveness of the approach is validated by numerical
and simulation experiments, with TCP Cubic and Vegas used
as examples.

I. INTRODUCTION

Many bulk data transfer applications do not need to consume
as much capacity as the network can provide them. Instead
they may be able to use a less-than-best-effort (LBE) service
model [1], also called “scavenger”, to send their data at a lower
rate than that of a typical best effort (BE) service.

There are different ways in which an LBE service can be
implemented; for instance, some form of priority scheduling
can be used in routers to allocate residual capacity to LBE
traffic flows. In this work we focus on end-to-end LBE con-
gestion control (CC), that is provided by algorithms running
in end-hosts as part of a transport protocol.

In particular we address data backup and replication appli-
cations that need to traverse networks that are not necessarily
controlled by the application provider. Such a service should:
(i) keep disruption of concurrent BE interactive services to a
minimum; (ii) have a timeliness constraint, i.e., the transfer
should be finished by a soft deadline to fit in with other net-
work activity and to ensure a timely correctness of replicated
data; (iii) be able to achieve Item ii, by dynamically adjusting
its aggressiveness in competing with BE traffic from that of a
scavenger-type service up to that of a BE-type service.

This paper introduces a framework for providing LBE
congestion control that can trade (lack of) aggressiveness for
meeting loose deadlines. To the best of our knowledge, no such
deadline-aware LBE CC methods have ever been proposed
in the literature. Such a deadline-aware LBE service would
require API support to provide (i) the size of the data to
transfer, and (ii) the soft completion time for the transfer. This
may be done through a simple update to the transport API
(such as an IOCTL) or by using a middleware framework that
provides the necessary abstractions (like [2], [3]), however, the
focus of this paper is on the CC mechanism itself.

We adapt and extend a network utility maximization
(NUM) [4]–[6] based model where congestion control specific
prices, like loss and delay, are mapped to a universal price
measure [7]. This allows us to design a soft-deadline aware
LBE service that can adapt any available end-to-end CC,
independent of the type of congestion control or the conges-
tion signal(s) used for making sending-rate decisions. As we
will see, different CCs and congestion signals may provide
different performance and tradeoffs. However, the framework
can leverage whatever CC methods and congestion signals are
available on a particular networking stack, and can support
future, improved CC methods when they become available.
This flexibility is one of the major contributions of this work.

The paper is organised as follows. Section II discusses
the NUM theory our method builds on. Section III presents
the design of the basic method and the mathematical model
behind it, numerical validations and simulations, and pseudo-
code for a loss-based TCP Cubic implementation. Section IV
extends the basic design to the more realistic case of different
CC methods coexisting in the network, and provides an
implementation in pseudo-code for a delay-based TCP Vegas
implementation. Section V evaluates, by means of simulations,
how the proposed method performs, with both loss and delay-
based CC flavors and under realistic cross-traffic patterns.
Section VI positions our work and contributions with respect
to previous work. Finally, Section VII concludes the paper.

II. BACKGROUND: NETWORK UTILITY MAXIMIZATION

This work uses NUM, pioneered by Kelly [4], [5] and
Low and Lapsley [6] as a basis for the design of a deadline
aware – less than best effort (DA-LBE) service. With NUM
the network congestion control problem is framed as an
optimization problem where we seek to maximize the utilityISBN 978-3-901882-94-4 c© 2017 IFIP

traffic sources get from their send rates, Us, subject to not
exceeding the capacity limit of network links:

max
x≥0

S∑
s=1

Us(x
(s)) (1)

subject to
∑
s∈S(l)

x(s) ≤ cl ∀l = 1, . . . , L (2)

where x(s) is the send rate of source or flow s, cl is the
capacity of network link l, and S(l) is the set of flows that
traverse link l. This optimization problem may be solved in a
distributed manner through its Lagrangian dual:

min
p≥0

max
x≥0

 S∑
s=1

Us(x
(s))−

L∑
l=1

pl

(∑
s∈S(l)

x(s) − cl

)
(3)

where the Lagrange multiplier, pl, can be thought of as the
“price” of congestion that the network assigns to each link.
Each source, s, determines its send rate x(s) using the total
measure of congestion along its end-to-end path:

x(s) =
(
(Us)

′)−1(∑
l∈L(s)

pl

)
(4)

where L(s) is the set of links that source s uses from end to
end through the network. This framework fits our problem
well. A congestion controller could “artificially” inflate or
discount these congestion prices to change its relative share
of network capacity.

Using NUM, Trichakis et al. [8] investigate a scenario where
there may be a minimum rate requirement for particular flows
in a particular time period. In order to meet the contracted
rate, flows discount the measured congestion price, allowing
them to achieve a higher relative send rate. In the case of
a DA-LBE service we generally need to inflate the measured
congestion price to allow a lower relative send rate; but reduce
the amount of inflation, when necessary, to be able to deliver
the desired amount of data before a deadline.

III. DEADLINE-AWARE LBE CONGESTION CONTROL

A DA-LBE traffic source should: (i) be no more aggressive
than BE traffic, (ii) react appropriately to network congestion,
(iii) take advantage of available network capacity when there
is no congestion, and (iv) attempt to finish transmitting its
data by the deadline. We model an LBE service in the NUM
framework as a traffic source s that inflates its measured
network price, q(s), by some weight w(s) ∈ [wmin, wmax]:

x(s) =
(
(Us)

′)−1(q(s)
w(s)

)
(5)

where q(s) =
∑
l∈L(s) pl. When w(s) = wmin, the send rate

x(s) is at its lowest LBE rate, and when w(s) = 1, the send
rate x(s) is equivalent to a BE rate. We term the degree of LBE
service LBEness. In this work, we choose wmax = 1 to limit
aggressiveness to be equivalent to that of BE traffic, however,
choice of wmax can be a matter of policy.

Initially w(s) = wmin for maximum LBEness (that is, max-
imum price inflation), but it is adjusted periodically with
respect to the closeness of the “soft deadline” at intervals
of duration Tw. This allows the traffic source to react to
the dynamic network conditions over short time scales, but
vary its LBEness over longer time scales in order to complete
transmission of the data by the deadline. The manner of setting
the weight w may be driven by policy which determines how
optimistic one might be as to whether network congestion will
improve before the deadline, knowledge of typical network
conditions, or through prediction of future network conditions.
For simplicity, in this paper we use the current network
conditions as indicative of future conditions.

The lowest send rate for a source that will meet the deadline
after the nth interval of duration Tw, i.e., at tn = tn−1 + Tw,
is given by:

ζ(tn, tD) =
data remaining

tD − tn
(6)

where tD is the soft deadline for completion of the data being
sent by the source. This target rate ζ is used to determine
an appropriate weight w for the source. We explore two
methods of adapting w: a proportional-integral-differential
(PID) controller and model-based-control (MBC).

A. PID-based update

PID controllers base their control on the error ε between
the current state and the target state. The control signal from
a PID controller is based on the weighted combination of the
current error, past history, and the projected error. We use a
normalized error signal mapped to w to enable easy scaling:

εn =
ζ(tn, tD)− x̄(tn−1, tn)

x̄(tn−1, tn)
wn−1 (7)

where x̄(tn−1, tn) is the average send rate over the preceding
Tw interval (tn−1, tn], and wn−1 is the weight used by the
source in the preceding interval.

The PID control signal un is calculated as follows

In = In−1 + Twεn (8)

un = Kpεn +KiIn +Kd
εn − εn−1

Tw
(9)

where Kp, Ki, and Kd are the weights (or gains) for propor-
tional, integral, and differential parts respectively. We update
w as follows:

wn = [un]
1

wmin
(10)

where [y]
b

a
, min(b,max(y, a)).

The most difficult part of a PID controller is determining
the values of Kp, Ki, and Kd. Using a normalized error signal
helps to ensure the chosen gains are widely applicable.

B. MBC-based update

Model-based control relies on having a good model for
protocol send rate with respect to the network price, in

TABLE I
TCP AND DA-LBE SOURCES

Source Start Finish Deadline Size
TCP 1 0 s 600 s - greedy
TCP 2 200 s 1000 s - greedy
TCP 3 800 s 1000 s - greedy
TCP 4 1010 s 1600 s - greedy
TCP 5 1200 s 2000 s - greedy
TCP 6 1400 s 1800 s - greedy

DA-LBE 400 s - 1700 s ηcl
(1700−400)

, η = {0.1, 0.3}

particular what network price would achieve the desired LBE
bit rate:

q̂n = M(ζ(tn, tD),RTTmin, . . .) (11)

or in terms of network utility

q̂n = (Us)
′(ζ(tn, tD)) (12)

where q̂n is the model estimated network price that will
achieve the desired bit rate at interval n, and RTTmin is the
RTT when there is no queuing.

The control estimates the model error as the relative dif-
ference between the target for the interval (tn−1, tn] and the
send rate measured for that target at the end of the interval1:

ε
n−1 =

ζ(tn−1, tD)− x̄(tn−1, tn)

x̄(tn−1, tn)
. (13)

The new weight is then based on the model’s estimate of the
price that will achieve the desired rate q̂n, with respect to the
actual network price q

n−1 measured in the previous interval,
corrected by the error between target and measurement ε

n−1:

wn =

[
q
n−1

q̂
n

(1 + ε
n−1)

]1
wmin

. (14)

C. Numerical validation
We conduct a simple numerical experiment to test the

efficacy of the proposed scheme. We model a network with a
maximum capacity of cl = 100 that randomly varies around an
average of 90 units, changing every 5 s. Over the experimental
time of 2000 s six normal TCP sources start and complete at
various times as well as a competing DA-LBE source (see
Table I). The DA-LBE sources send a file of size equal to
either 10% or 30% of the network capacity over the start to
deadline target duration of the session. We use a w update
period of Tw = 10 s in our experiments. In practice Tw needs
to be long enough to obtain a good estimate of the average
send rate and short enough to allow the DA-LBE sender to
meet the target deadline if network conditions change.

We use the alpha-fair family of utility functions first pro-
posed by Mo and Walrand [9]:

U(x) =

{
log x α = 1

(1− α)−1x(1−α) α > 1
(15)

U ′(x) = x−α . (16)

1Note that the base term is slightly different to the error value used in the
PID based control since it estimates the error in the model rather than the
error between the control and the target.

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) PID

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) MBC

Fig. 1. Numerical experiments with α = 2 in (15). Soft deadline is shown
with an arrow.

All traffic sources, including the DA-LBE source have the
same utility function with α = 2 which reflects TCP fair-
ness [10] and calculate their send rate as follows:

x(s)n =

(
qn

w
(s)
n

)− 1
2

(17)

where w
(s)
n = 1,∀n for all sources that are not DA-LBE

sources. In this numerical experiment we model TCP adjusting
its send rate incrementally, with the actual send rate:

a(s)n = a
(s)
n−1 + γ

(
x(s)n − a

(s)
n−1

)
(18)

where γ = 0.02 in these experiments.
For this experiment we set the price as the probability of a

packet drop on a single bottleneck link modeled as a M/M/1/K
(K = 100) queue of capacity cl and load ρ =

∑
s a

(s)−cl
cl

.
Figure 1 shows the results using both the PID and MBC

based control. In this experiment the control model perfectly
matches the system, so the resulting control resembles a
critically damped system. The PID controller works on a
normalized error signal and gains of Kp = 0.5, Ki = 0.03,
and Kd = 0.1 for the proportional, integral and differential
elements respectively. It can be difficult to tune PID controller
gains, this being a little overdamped, but appropriate for a
LBE service. The PID based control can be applied to any
TCP CC mechanism, and normalizing the error signal helps to
make the gains more widely applicable. However, many TCP
congestion control mechanisms have good models, hence, the
model-based approach may prove to be the more robust in the
end. For this reason we explore MBC based control in the
remainder of this paper.

In the numerical experiments the DA-LBE flow is able to
use the spare capacity during the short 10 s interval at 1000 s

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

Fig. 2. MBC control with w increase rate limiter (lw = 0.05), α = 2 for all
flows.

when there is no other traffic. Ideally we would also like DA-
LBE to give way to other traffic during heavy loads. The PID
controlled DA-LBE (Fig. 1a) gives way at first when there
is an increase in the other traffic. The MBC based control
(Fig. 1b) gives way in the same circumstances, but only for a
short period, more strictly keeping to its target rate in order
to meet the deadline. Since the deadline is soft and ensuring
LBEness is important, we add a limit to the rate of increase
of w, while not restricting the decrease in w, as follows2:

ŵn =

{
wn−1 + lwwn (wn − wn−1) > lwwn

wn otherwise .
(19)

Figure 2 shows that limiting the w’s rate of increase in this
way allows the DA-LBE flow to give way more to other traffic.
This has potential to cause it to overshoot its soft deadline,
especially when there are heavy loads near the deadline.
The gradient limit then becomes an additional parameter that
determines how slowly the DA-LBE flow should adapt back
to its target rate when it experiences heavy loads.

D. Applying the framework to the protocol stack

In this section we look at how this theory can be applied
with minimal changes to the protocol stack and demonstrate its
performance using NS2. To achieve LBEness the congestion
price a congestion controller uses needs to be inflated. For a
loss based CC mechanism, e.g., Cubic, this could be done by
dropping packets to cause more loss, however, a better method
would be to inflate the price by generating “phantom” ECN
signals. Indirectly this could be done by changing the conges-
tion controller’s reaction to congestion, i.e. the multiplicative
decrease factor commonly referred to as β. We investigate both
of these methods.

Some CC mechanisms use delay as well as loss. This can
enable earlier detection of congestion than relying on packet
loss and may make it more suitable for an LBE mechanism.
We investigate this in Sec. IV.

1) Phantom ECN: For a loss based CC mechanism the
simplest way to inflate the congestion price is to generate
additional phantom loss or ECN episodes. ECN is preferred
since retransmissions are not part of the congestion response.
The phantom ECN method increases the number of congestion

2Note that when the increase in w is limited, the model error, ε, is not
updated to avoid artificially inflating the error due to the limiting.

indications, resulting in faster congestion window (cwnd)
oscillations over a smaller cwnd range. This results in good
short time scale LBE transmission characteristics. A draw
back of this method of inflating the price is that generating
phantom ECN signals can prevent the mechanism taking
advantage of short periods of increased available capacity.
Ideally it would be good to have a “no congestion” signal
to trigger the cessation of phantom ECN generation. In loss
based CC mechanisms this can only be inferred from the
absence of packet loss. A delay based signal could supply
this information.

2) Adjusting the decrease factor β: An indirect way of
inflating the price is to inflate the response to congestion. In an
AIMD CC, changing the β factor can achieve this. This allows
the congestion controller to take advantage of short periods of
increased available capacity, but it relies on a high enough
congestion indication rate to be effective. This restricts the
short term LBEness that can be achieved, especially in high
bandwidth delay product (BDP) environments.

3) Adapting loss based TCP to be DA-LBE: Figure 3 shows
the basic algorithm for adapting a loss based TCP to be DA-
LBE. The mechanism has two parts: (i) the update of the
price weight w every Tw, and (ii) either generate phantom
ECN signals based on w or back off more aggressively.
Function uPID adapts w as a PID controller, and function uMBC
calculates w based on the steady state Cubic model [11] and
the measured error. This algorithm is implemented outside
the NS2 Linux congestion control module allowing the PID
controller to work with any similar loss based CC mechanism.

The phantom ECN method measures the average time
between real congestion indications, τ̄cong, and stops sending
phantom signals if more than vτ̄cong has elapsed since the last
real congestion indication (v = 3 in these experiments).

We use NS 2.35 to run similar experiments to those in
Sec. III-C. We use the dumbbell topology where access links
have a capacity of 1 Gbps with a 1 ms propagation delay, and
the bottleneck link has a capacity of 100 Mbps, BDP length
buffer and a propagation delay of 10 ms. Exponentially dis-
tributed inter-packet time background traffic (1500 B packets)
at an average of 10 Mbps is sent over the bottleneck in addition
to the traffic described in Table I. We use the Cubic NS2 Linux
congestion control [12] as the TCP sources and adapt this as
outlined previously to be our DA-LBE traffic source.

Figure 4 illustrates Cubic based DA-LBE through phantom
ECN generation with both the PID and MBC control. Both
controls perform well. The w increase rate limiter allows the
MBC control to give way more readily to other traffic where
proximity to the deadline permits.

At t = 1000 s there is a 10 s period when there are no other
TCP flows in the system. In this scenario this interval is too
short for the mechanism to detect congestion abatement and
cease phantom ECN signals. Thus the DA-LBE flow is unable
to make use of this short period of available capacity.

Figure 5 shows the same scenario with LBEness achieved
through manipulating the β-factor. The results are similar for
both the PID and MBC controllers, the MBC again being

w update procedure every Tw
Calculate x̄(tn−1, tn)
Calculate target rate ζ(tn, tD)
switch control do

case PID do
w ← u

PID
(x̄(tn−1, tn), ζ(tn, tD))

case MBC do
w ← u

MBC
(x̄(tn−1, tn), ζ(tn, tD), ζ(tn−1, tD))

Modifications to congestion control
switch method do

case Phantom ECN do
Augment ACK processing as follows:
tcong ← time since last real congestion signal
τcong ← time between the last two real congestion signals
if tcong > vτ̄cong then

if rand() < P[loss](1/w − 1) then
/* Initially rand() < 0.25 */
Generate phantom ECN signal

case Adjusting β do
/* βorig: original decrease factor */
β = βorigw for congestion reaction

Function u
PID

(x̄(tn−1, tn), ζ(tn, tD)):
Calculate wn from (7) to (10)
return wn

Function u
MBC

(x̄(tn−1, tn), ζ(tn, tD), ζ(tn−1, tD)):
/* Cubic based model */

ĉwnd← ζ(tn, tD)× RTT
q̂n ← RTTmin

ĉwnd
4
3

(
4(1−β)

(0.4(4−(1−β)))

) 1
3

Calculate ŵn from (13), (14) and (19)
return ŵn

Fig. 3. Loss-based TCP DA-LBE algorithm. MBC based on Cubic.

a little smoother. In this scenario it is impossible for the
DA-LBE flow to maintain a low send rate as probability of
experiencing packet loss is too low. This is apparent in the
Cubic model used in the algorithm from [11]. The β-factor
mechanism is able to take advantage of that short 10 s period
where there are no other TCP flows at t = 1000 s.

4) PID versus MBC: Key to the PID controller’s per-
formance is tuning its gains. Key to the MBC controller’s
performance is a good model of the congestion controller.
Normalizing the PID error input and controlling w = (0, 1]
enables the PID gains to be applicable across a wide range of
conditions. Gains can be tuned to provide desirable character-
istics for the DA-LBE source, however, wrongly configured
gains could result in a wildly oscillating transmission rate;
something not desirable for a DA-LBE traffic source. Given
the availability of good models for commonly used congestion
controllers, MBC control provides an alternative with similar
performance but a minimum of configuration.

IV. DEADLINE-AWARE LBE CONGESTION CONTROL FOR
HETEROGENEOUS TRAFFIC SOURCES

There are advantages in basing DA-LBE on a CC that
reacts to more timely congestion indications than packet
loss. However, mixing different CCs which react to different
“prices” can make it difficult to ensure DA-LBE remains

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) PID

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) MBC

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(c) MBC with w increase rate limiting

Fig. 4. NS2 simulation. Cubic TCP flows with a Cubic based DA-LBE
phantom ECN flow. DA-LBE data size is based on 10% Capacity LBE rate.

LBE and does not exceed our BE limit. We draw upon the
heterogeneous congestion control work by Tang et al. [7], [13],
[14], especially the price mapping and weighting, enhancing
and extending the relative price adjustment to encompass DA-
LBE.

Tang et al. [7], [13], [14] show that the effective price a
particular CC algorithm reacts to can be mapped to a common
network price signal, such as queuing delay, loss or ECN
marks. This mapping function depends on each type of CC as
well as characteristics of each network element. Even though,
the ratio of this effective price to a chosen common price can
be used by the source to scale its effective price for fairer
competition:

xs =

((
U (j)
s

)′)−1 1

µ
(j)
s

∑
s∈S(l)

m
(j)
l (pl)

 (20)

where

µ(j)
s =

1

w
(Tang)
s

∑
s∈S(l)m

(j)
l (pl)∑

s∈S(l) pl
(21)

where j ∈ {1, . . . , J} is the jth congestion controller of J
operating in the network, m(j)

l (pl) is the mapping function on

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
)

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) PID

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) MBC

Fig. 5. NS2 simulation. Cubic TCP flows with a Cubic based DA-LBE β
tuned flow. DA-LBE data size is based on 10% Capacity LBE rate.

link l for congestion controller j operating on the common link
price pl, and w(Tang)

s is a weight such that when w(Tang)
s 6= 1 an

arbitrary share can be assigned to source s—given equivalent
utility functions. In practice Tang et al. [7] use w

(Tang)
s as

an adjustment parameter to aid fair competition between TCP
FAST and TCP Reno since the price ratio alone is insignificant.
This is necessary, because although the price ratio helps to
balance the two different congestion controls, it does not take
into account the different reactions to the congestion signals.

We adapt and extend the model in [7] to develop a model for
Deadline-Aware LBE (DA-LBE) traffic sources which react to
different network prices coexisting with BE traffic.

A. Heterogeneous Framework Design

We map prices to the probability of a congestion indication,
weighting it by the relative effect the receipt of each conges-
tion indication has:

P(z,s)
W [cong ind] = W (z,s) I

(z,s)

N
(s)

(22)

where z is the type of congestion measure, e.g. delay, loss,
ECN or some other network price measure; s the sender; I(z,s)

is the number of congestion indications source s registers for
congestion price type z; and N the total number of packets
counted in the time interval. For Reno like CC where the
cwnd is halved upon packet loss, W (reno,s) = 0.5. Similarly
for Cubic where cwnd is reduced by 20 % for congestion
indicated by packet loss, W (cubic,s) = 0.2. For Vegas reacting
to delay-based congestion indications, cwnd is reduced by one.

The relative effect depends on the size of cwnd when the
congestion signal is received, the weight given by:

W (z,s) =
1

I
(z,s)

I(z,s)∑
i=1

κ
(z,s)
i (23)

where κ(z,s) is the corresponding proportion of cwnd that
is reduced, different each time for delay based indications
in Vegas. Vegas also reacts to packet loss, so the weighted
probability of congestion for a multiple-price CC is given by:

P(delay-loss,s)
W [cong ind] =

W (loss,s)P(delay,s)[cong ind] +W (delay,s)P(delay,s)[cong ind]

W
(loss,s)

+W
(delay,s)

(24)

We therefore redefine the price scaling of [7], terming it
φ–the effective price ratio, to take into account the differences
in cwnd adjustment as well as the different price measures:

φ(s) =

∑
z∈Zs

W (z,s)P(z,s)[cong ind]∑
z∈Zstd

W
(z,s)P(z,s)

[cong ind]
(25)

where Zs is the set of congestion price types observed by the
CC operating at source s, and Zstd is the set of CC price types
that the standard CC on the network uses. If both the standard
and LBE CCs have a similar rate of increase in the absence
of congestion, defining φ(s) in this way allows us to use w(s)

purely as an LBE scaling parameter rather than requiring it
for fairness correction as in Tang et al. [7]. Note that in our
work we define w(s) = (0, 1] which suits our control purposes
more than the w(Tang)

s = [1,∞). Thus,

µ(s) = w(s)φ(s) (26)

So that now:

x(s) =

((
U (j)
s

)′)−1(1

µ(s)
P(z,s)
W [cong ind]

)
. (27)

In the heterogeneous case it is insufficient to limit only the
increase in w(s) as was done in Sec. III-C. Increases in network
load also influence φ(s). Limiting the increase, but not decrease
of φ(s) in the same manner as (19) (limiting factor lφ) helps
to maintain the LBE properties.

In situations where the standard TCP increase mechanism
is significantly more aggressive than that used by the LBE
mechanism, then the LBE mechanism will not quite receive its
fair share when w(s) = 1. This is not a significant shortcoming,
since our aim is to be LBE. It could be adjusted for by using
a model of the standard CC’s increase mechanism, however,
this is beyond the scope of this work.

1) Numerical validation: We conduct a simple numerical
experiment, similar to that in Sec. III-C to test the idea. All
TCP flows are modeled the same way as in Sec. III-C with (15)
α = 2 utility, with P[loss] as the price. The DA-LBE flow is
modeled with (15) α = 1.2 utility and uses the probability that

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(a) 10% cl DA-LBE target load

0 500 1000 1500 2000

Time (s) (100ms time steps)

0

20

40

60

80

100

ra
te

tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

(b) 30% cl DA-LBE target load

Fig. 6. MBC control. α = 1.2 for DA-LBE and α = 2 for the other flows

the queue (M/M/1/K=100 model) is larger than a target Q size
as the price (Q

T
= 10 in this experiment).

The DA-LBE flow working on a different price signal
performs similarly to that in Sec. III-C. Importantly, even when
there is a high target load for the DA-LBE flow, it competes
effectively with the TCP modeled flows without taking more
than its fair share. In general fair competition will depend
on how different the utility functions are, or for real TCP
congestion controllers it will depend predominantly on how
different the cwnd increase functions are.

B. Applying the framework to TCP Vegas

As noted in Sec. III-D3, loss based DA-LBE has trouble
either achieving LBE rates with β factor back-off control or
making use of short periods of available capacity with phantom
ECN control. Delay based CC can achieve LBE rates and make
use of available capacity, with low latency [15]. In this section
we illustrate the applicability of our heterogeneous DA-LBE
NUM based work to TCP Vegas [16].

Vegas in congestion avoidance mode calculates the differ-
ence between the actual transmission rate and the expected
rate (for RTTmin) to increase or decrease cwnd—a measure
of queueing delay in packets. The objective is to have a target
(α − β)/2 packets queued along the end-to-end path. If the
difference is less than α, cwnd is increased; if more than β,
cwnd is decreased. Since for a target cwnd α ∝ 1

P(s) , we adjust
α as follows:

α(s) = µ(s)αbase (28)

where α(s) ∈ [1, αmax], αbase = 15, and αmax is set to half a
BDP of packets in these experiments.

Figure 7 shows how Vegas can be modified to be DA-LBE.
Vegas reacts to packet loss by halving cwnd but packet loss

φ update procedure every Tφ
if loss too low then wait another Tφ
Calculate W (z) for z = {delay, loss} // (23)

Calculate P(z)
W for z = {delay, loss}, // (22)

Calculate P(delay-loss)
W // (24)

Calculation φ // (25)
Limit φ increase similar to (19)

w update procedure every Tw
Calculate x̄(tn−1, tn)
Calculate target rate ζ(tn, tD)
switch control do

case PID do
w ← u

PID
(x̄(tn−1, tn), ζ(tn, tD))

case MBC do
w ← u

MBC
(x̄(tn−1, tn), ζ(tn, tD), ζ(tn−1, tD))

µ← wφ // (26)
α← µαbase // (28)

Adjust packet loss processing
if w == 1 then // maximum aggressiveness

if rand() < (1− 1
µ

) then
/* Competing with loss based CC */
Skip cwnd reduction

Function u
PID

(x̄(tn−1, tn), ζ(tn, tD)):
Calculate w from (7) to (9)
return min(w, 1)

Function u
MBC

(x̄(tn−1, tn), ζ(tn, tD), ζ(tn−1, tD)):
/* Vegas model */
τ ← RTT− RTTmin

wbase =
τζ(tn,td)

φα
base

ε← ζ(tn−1,td)−x̄(tn−1,tn)

x̄(tn−1,tn)

w ← wbase + εwbase
Limit w increase (19)
return min(ŵ, 1)

Fig. 7. Vegas DA-LBE algorithm

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

Fig. 8. Vegas MBC 10% Capacity LBE rate (lw = 0.05, lφ = 0.1)

is not part of the Vegas congestion avoidance model. DA-
LBE Vegas supplements the congestion avoidance model with
a mechanism that probabilistically skips cwnd reduction on
packet loss in proportion to φ(s) when w(s) = 1.

Figure 8 shows the Vegas based DA-LBE simulation results
for the same scenerio. The Vegas based version has no
problems taking advantage of the 10 s period from t = 1000 s
where there is only background traffic. The lack of congestion
in the 10 s period from t = 1000 s results in a queueing delay
below Vegas’ target during this period allowing Vegas to take
advantage of available capacity. Unfortunately, reliance on

0 500 1000 1500 2000

simulation time (s)

0

20

40

60

80

100

S
e
n
d
 r

a
te

 M
b
p
s
 (

1
s
 a

v
e
ra

g
e
s
) tcp 1

tcp 2

tcp 3

tcp 4

tcp 5

tcp 6

da-lbe

Fig. 9. Vegas MBC 30% Capacity LBE rate.

RTTmin to estimate path queuing causes Vegas to send at a
higher rate than it should at the start, t = [400, 600].

Figure 9 shows the same scenario in a situation where the
deadline cannot be met. In these circumstances the DA-LBE
mechanism should compete in a BE manner with the Cubic
traffic. The φ parameter enables the Vegas based DA-LBE
flow to compete more fairly than otherwise would be the case.
When w = 1 the algorithm ignores packet loss triggered cwnd
reductions in proportion to φ, reacting to delay scaled by φ as
calculated by the mode.

V. COMPLETION TIME EVALUATION

We evaluate the performance of our two DA-LBE NS2
Linux TCP implementations, Cubic based DA-LBE and Vegas
based DA-LBE, over a bottleneck with realistic traffic based
on real traffic measurements. We use Tmix [17] and the traffic
traces used in [18]. Tmix preserves bidirectional application
level interactions, using this high level data as input to the
underlying TCP transport. This produces reactive background
traffic, though many flows are short and do not leave slow
start. This generates bursty realistic traffic.

We coarsely shuffle (50 s scaled bin size) the Tmix trace to
reduce non-stationarity and scale the connection arrival time
to achieve a target offered load. Note that this is the average
load the network would experience if there were no losses and
retransmissions, and as with real traffic at any point in time the
actual load may be higher or lower than this value. The scaled
traces have application session arrival rates of 99.5, 133.8,
167.1, 202.0, 235.7, and 255.8 sessions/s for offered loads of
about 30%, 40%, 50%, 60%, 70%, and 75% respectively. The
75% load is close to the congestion knee.

With Tmix generating realistic traffic a simple dumbbell
topology suffices for our experiments. After an accelerated
Tmix traffic start up period and settling time a single DA-LBE
source transmits data equivalent to 10% of the bottleneck link
capacity with a soft deadline of 1200 s after start. When each
flow completes, its completion time is recorded, the DA-LBE
source reset, and after a 10 s delay the process repeated. We
simulate under these conditions for ∼60 000 s and show the
results using box-and-whisker plots.

The results in Fig. 10 show that under realistic traffic
conditions both the Cubic and Vegas based mechanisms are
able to complete their transmission before the deadline. The
Cubic based mechanism has more consistent and tighter spread

~30 ~40 ~50 ~60 ~70 ~75
0

500

1000

1500

c
o

m
p

le
ti
o

n
 t

im
e

 (
s
)

Cubic based DA-LBE

Vegas based DA-LBE

Fig. 10. Box-and-whisker plots of Cubic and Vegas based DA-LBE comple-
tion times. Boxes span the middle 50% with whiskers extending up to 1.5×
the interquartile range. Red dashed line shows the deadline.

of completion times over the range of loads tested. In terms
of a predictable behavior in meeting deadlines this is good,
however, it shows that even in realistic traffic scenarios the
pseudo-ECN method of controlling LBEness struggles to take
advantage of the periods of available capacity. These results
affirm our suggestion from the earlier experiments that the
Cubic based mechanism may not be able to fully take advan-
tage of the available capacity (cf. Fig. 4). The delay based
congestion indications are an superior in this respect, though
they do result in a larger spread of completion times as the
load increases. Thus, though both the Cubic and Vegas based
mechanisms are able to adjust their aggressiveness to meet a
deadline (objective (iv) in Sec. III), only the latter mechanism
seems to be able to take advantage of available capacity when
there is no congestion (objective (iii) in Sec. III).

VI. RELATED WORK

LBE congestion control has been the subject of several
proposals in the literature; see [1] for an in-depth survey
and [19] for a more recent example. These proposals cover
a range of approaches to detect congestion—losses, one-way
delays, round-trip times, available bandwidth—and different
reactions to congestion signals, but none of them include a
notion of delivery deadlines. They all aim to achieve scav-
enger behavior irrespective of any flow-completion constraints.
Some may approach normal TCP aggressiveness under some
circumstances (e.g., LEDBAT, under loss), but this is done
independently of application requirements. For most proposals,
there’s no simple way to tune the LBEness of the mechanism.
Optimization work minimizing delay for short TCP transfers
while sharing leftover capacity with background flows [20]
provides some insight into this problem space, though it is not
specifically related to deadlines. To the best of our knowledge,
this paper is the first to both explicitly consider timeliness
constraints, and try to balance such constraints with LBEness
requirements—all adjustable as a matter of application / user
policy.

There are quite a few proposals that add deadline awareness
to the networking stacks of data centre (DC) hosts (see
[21]–[24] and references therein). However, these proposals
are not transferable to Internet CC as they rely on specialised
network support, such as specific scheduling disciplines in

nodes or end-to-end support of ECN. Our approach does not
impose any such requirements on the network, and can be used
across an arbitrary Internet path3. Note also that these DC CC
methods have been designed with typical DC applications (like
web search) in mind. These usually have very short and strict
deadlines, and severe user QoE degradation results if these are
not met. Hence, their focus is on short deadline-constrained
flows, with disruption of other flows being of secondary
importance; our focus is on minimizing the disruption on other
flows caused by long bulk transfers while maintaining a degree
of timely completion. Our method allows for tuning the trade-
off between timeliness and impact on other traffic.

VII. CONCLUSION

A deadline-aware–less-than-best-effort (DA-LBE) service
provides a valuable transport for bulk data transfers such as
backups. It allows transfers to be completed by a soft deadline
while keeping disruption of other traffic sharing the network
to a minimum. This paper develops a framework based on
network utility maximization for transport protocols to inflate
(or in certain circumstance discount) their network “prices” to
achieve these goals.

We have demonstrated its applicability using Cubic and
Vegas as base transports over networks where Cubic is the
dominant transport. Our results show that both Cubic and
Vegas achieve the desired LBE characteristics, although Vegas
can better take advantage of brief instances of available
network capacity. This is due to Vegas’ faster detection of con-
gestion abatement through its use of queueing delay signals.
However, the Vegas mechanism can be too aggressive initially
if it does not have a good estimate of RTTmin. As a part of
future work we plan to explore applying this framework to
a delay gradient based congestion control (CDG [25]) which
does not have this shortcoming.

Our proposed framework has the flexibility to leverage
whatever congestion control methods and congestion signals
are available on a particular networking stack, even when they
are different to the dominant network transport. This enables
it to be applied to future more responsive congestion controls
as they become available. Also as part of future work, we are
planning to implement DA-LBE services in a real operating
system network stack. This framework will also be integrated
into the NEAT enhanced transport layer architecture [2].

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

REFERENCES

[1] D. Ros and M. Welzl, “Less-than-Best-Effort Service: A Survey of
End-to-end Approaches,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp. 898–908, May 2013.

3ECN signals can be leveraged by our method, but they are not mandatory
for its proper operation.

[2] N. Khademi et al., “NEAT: A Platform- and Protocol-Independent
Internet Transport API,” IEEE Commun. Mag., Jun. 2017, to be
published.

[3] K.-J. Grinnemo, T. Jones, G. Fairhurst, D. Ros, A. Brunstrom, and
P. Hurtig, “Towards a flexible Internet transport layer architecture,” in
Proc. of IEEE LANMAN, Jun. 2016.

[4] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Trans. on Telecommunications, vol. 8, pp. 33–37, 1997, corrected
version: http://www.statslab.cam.ac.uk/∼frank/elastic.pdf.

[5] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[6] S. H. Low and D. E. Lapsley, “Optimization flow control–i: Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[7] A. Tang, X. Wei, S. H. Low, and M. Chiang, “Equilibrium of het-
erogeneous congestion control: Optimality and stability,” IEEE/ACM
Trans. Netw., vol. 18, no. 3, pp. 844–857, Jun. 2010.

[8] N. Trichakis, A. Zymnis, and S. Boyd, “Dynamic network utility max-
imization with delivery contracts,” in Proc. of IFAC World Congress,
Jul. 2008, pp. 2907–2912.

[9] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct.
2000.

[10] F. Paganini, A. Tang, A. Ferragut, and L. L. H. Andrew, “Network
stability under alpha fair bandwidth allocation with general file size
distribution,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 579–591,
Mar. 2012.

[11] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul.
2008.

[12] D. X. Wei and P. Cao, “NS-2 TCP-linux: An NS-2 TCP implementation
with congestion control algorithms from linux,” in Proc. of Workshop
on Ns-2: The IP Network Simulator, 2006.

[13] A. Tang, J. Wang, S. Hegde, and S. H. Low, “Equilibrium and fairness
of networks shared by TCP Reno and Vegas/FAST,” Telecommunica-
tion Systems, vol. 30, no. 4, pp. 417–439, Dec. 2005.

[14] A. Tang, J. Wang, S. H. Low, and M. Chiang, “Equilibrium of het-
erogeneous congestion control: Existence and uniqueness,” IEEE/ACM
Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007.

[15] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang, S.
Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing Internet
latency: A survey of techniques and their merits,” IEEE Commun.
Surveys Tuts., Nov. 2014.

[16] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” ACM SIGCOMM
Comput. Comm. Rev. (CCR), vol. 24, no. 4, pp. 24–35, Oct. 1994.

[17] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and
F. D. Smith, “Tmix: A tool for generating realistic TCP application
workloads in ns-2,” ACM SIGCOMM Comput. Comm. Rev. (CCR), vol.
36, no. 3, pp. 65–76, Jul. 2006.

[18] D. Hayes, D. Ros, L. Andrew, and S. Floyd, “Common TCP evalua-
tion suite,” IRTF, Internet Draft draft-irtf-iccrg-tcpeval-01, Jul. 2014.
[Online]. Available: http://tools.ietf.org/html/draft-irtf-iccrg-tcpeval.

[19] S. Q. V. Trang, E. Lochin, C. Baudoin, E. Dubois, and P. Gélard,
“FLOWER – Fuzzy lower-than-best-effort transport protocol,” in Proc.
of IEEE LCN, Oct. 2015, pp. 279–286.

[20] C. Courcoubetis and A. Dimakis, “Fair background data transfers
of minimal delay impact,” in Proc. of IEEE INFOCOM, Mar. 2012,
pp. 1053–1061.

[21] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-Aware Datacenter
TCP (D2TCP),” in Proc. of ACM SIGCOMM, Aug. 2012, pp. 115–126.

[22] G. Li, Y. Xu, and D. Cui, “A deadline and size aware TCP scheme for
datacenter networks,” in Proc. of International Conf. on Comm. Tech.,
Nov. 2013, pp. 366–371.

[23] H. Zhang, X. Shi, X. Yin, F. Ren, and Z. Wang, “More load, more
differentiation – a design principle for deadline-aware congestion
control,” in Proc. of IEEE INFOCOM, Apr. 2015, pp. 127–135.

[24] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows
in commodity datacenters with Karuna,” in Proc. of ACM SIGCOMM,
2016, pp. 174–187.

[25] D. A. Hayes and G. Armitage, “Revisiting TCP congestion control
using delay gradients,” in Proc. of IFIP Networking, May 2011,
pp. 328–341.

