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Abstract—Remote Procedure Calls (RPCs) realize client-server
interactions via a request-response message-passing protocol.
They simplify distributed application programming by eliminat-
ing the need for explicitly having to code the details of a remote
interaction. However, none of the existing RPC implementations
are designed to work properly for Delay/Disruption-Tolerant
Networking (DTN) where network connectivity is periodic, inter-
mittent, and prone to disruptions. In this paper, we present DTN-
RPC, a new approach to provide RPCs for DTN environments.
DTN-RPC relies on (a) control and data channels to cope with
potentially short contact durations in DTN where large amounts
of data cannot be transmitted, (b) explicit and implicit modes
to address remote servers, (c) Non-DTN and DTN transport
protocols for issuing calls and receiving results, and (d) predicates
that servers check to decide whether a procedure should be
executed. The implementation of DTN-RPC is based on Serval,
an open-source, disruption-tolerant wireless ad-hoc networking
system. Our experimental results indicate that the measured CPU
and network overheads for DTN-RPC are reasonably low so
that it can be executed on smartphones or routers, and that
the round-trip times and the number of successful RPCs are
highly satisfactory in dynamic networks with unstable links.

I. INTRODUCTION

The possibility of calling a procedure on a remote computer
has been introduced to program client-server interactions in
a procedural manner. Remote Procedure Calls (RPCs) [1]
have proven to be useful in many distributed computing
scenarios to simplify application programming by eliminating
the need for explicitly having to code the details of remote
interactions based on a request-response message-passing pro-
tocol. RPCs have been integrated into programming languages
(e.g., Java RMI, Python RPyC, Distributed Ruby DRb-RPC,
and Erlang RPC), dedicated applications (e.g., SAP RFC),
and WWW protocols (e.g., XML-RPC, JSON-RPC, SOAP,
Windows WCEF, Google gRPC, Google Web Toolkit RPC).

However, none of the existing RPC implementations are
designed to work properly for Delay/Disruption-Tolerant Net-
working (DTN) [2], [3] where network connectivity is peri-
odic, intermittent, prone to disruptions, and a direct connection
to a remote server might not exist. DTN scenarios with
potentially large transmission delays as a result of either
inadequate physical link properties or extended periods of
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network partitioning are common in natural disasters. For
example, during the 2010 earthquake in Haiti, public and
mobile telephone systems were destroyed or disturbed and
could not be rebuilt or repaired for days!. An inoperative
cellular communication infrastructure during the earthquake
in New Zealand on November 14, 2016, created uncertainty
about whether people were still in the affected areas®. Even in
the absence of disasters, there are still regions, e.g., in India [4]
and Australia [5], where no telecommunication infrastructure
exists and where people cannot communicate using mobile
devices. Whenever reliable end-to-end connectivity is not
available, DTN can be used to sustain communications without
requiring any conventional infrastructure.
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Fig. 1: Calling a remote procedure in a DTN disaster scenario.

Being able to use RPCs in these scenarios could provide
great services for civilians and professional first responders.
For example, quadcopters could offer a procedure that takes
a picture with a mounted camera at a particular geographical
location and returns it over the network. Then, rescuers could
request an overview image via an RPC to a quadcopter while
performing other tasks until the file arrives over a DTN
connection using nodes of other rescue workers or citizens
as relay nodes. This example is illustrated in Fig. 1, where
the call takes the blue route, but the result arrives over the
red route due to the connection loss illustrated by the yellow
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lightning symbol. This might take longer, but without DTN
the call could not be made at all.

In this paper, we present DTN-RPC, a new approach to
provide RPCs for DTN environments. DTN-RPC relies on (a)
control and data channels to cope with potentially short contact
durations in DTN where it is impossible to transmit large
amounts of data, (b) explicit and implicit modes for server
addressing, (c) Non-DTN and DTN transport protocols for
calls and results, and (d) predicates that servers can check
to decide whether a procedure should be executed. Our open-
source implementation of DTN-RPC? is based on Serval [6],
[71, [8], [9], an open-source, disruption-tolerant wireless ad-
hoc networking system. Our experimental results obtained
within the network emulation framework CORE indicate that
the measured CPU and network overheads for DTN-RPC are
reasonably low so that DTN-RPC can be executed on smart-
phones or routers, and that the round-trip times and the number
of successful RPCs are highly satisfactory in dynamically
changing network topologies with unreliable connectivity.

The paper is organized as follows. Existing work on RPCs
will be examined in Sec. II. The design of DTN-RPC will be
presented in Sec. III. Implementation issues will be discussed
in Sec. IV. Experimental results will be shown in Sec. V.
Sec. VI concludes the paper and outlines areas of future work.

II. RELATED WORK

Tu and Stewart [10] present a Java RPC framework where
small data is replicated and sent over a second TCP connection
to the server or back to the client. At the destination, a listener
collects all arriving data on all connections, reassembles the
original data, and passes it to the corresponding handler.

Stuedi et al. [11] increase the efficiency of RPCs in data
centers by softening the userland and kernel separation in the
network stack and by using remote direct memory access to
minimize the overhead of network operations by performing
them with less context switches and zero-copy network I/O.

Chen et al. [12] introduce memory regions where server
and client exchange data to improve the efficiency of RPCs be-
tween virtual machines (VMs) on the same host computer. The
proposed framework has three components: (a) a notification
channel that informs the server about new calls and the client
about arriving results, (b) a control channel that sends meta-
data (e.g., the parameter count), and (c) a transfer channel that
is responsible for transmitting data between server and client
and putting the data in the predefined memory regions.

Shyam et al. [13] propose solutions for situations where an
RPC server is not available. The first solution is a heartbeat
server that observes whether the RPC server is operative.
The second solution is that every node sends a health check
message to the RPC server. Since these messages are typically
smaller than an RPC request and no computations take place,
the answer of the health check should arrive faster. If the
answer does not arrive within a timeout that is smaller than
the timeout for the RPC, the server is considered inoperative.
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Reinhardt et al. [14] address the problem of providing
RPCs in wireless sensor networks. In particular, the authors
eliminate the need of conventional RPCs to send predefined
data to predefined destinations, typically addressed by ports,
by publishing descriptions of new sensors that can be used by
other sensors or nodes dynamically.

Shi et al. [15] present a framework where mobile devices
can offload jobs to other mobile devices. In scenarios where
node mobility is high, only small tasks will be offloaded;
otherwise larger jobs will be offloaded, too. To increase the
number of offloaded jobs, every job is split into smaller tasks.
Additionally, every node has to announce its capabilities, such
as CPU capacity and available battery power. To offload a
job, the framework compares the task requirements with the
capabilities of the client and tries to find a server that satisfies
the requirements better than the client. If no server is found,
the job will be executed locally.

Chen et al. [16] propose a solution for offloading compu-
tations to ad-hoc cloudlets. A job is offloaded via an ad-hoc
communication channel that is closed after the procedure has
been called successfully. The result of the job can arrive (a) via
an ad-hoc channel if server and client are in close proximity,
(b) via a cellular network used when an ad-hoc connection is
not possible, (c) via a WiFi access point, if available.

Zhang et al. [17] propose a solution for cloudlets with
intermittent connectivity where parts of a job will be executed
either locally or remotely. The decision which of both options
is chosen is based on a probability that includes the cost
of executing a task. Two cost factors are calculated: (a) the
cost when the phase is executed locally, where, e.g., energy
consumption is important, (b) the cost when the phase is
executed in a cloudlet, where, e.g., available bandwidth is
important. Based on this information, a Markov chain can be
constructed and the optimal path can be found.

Lai et al. [18] propose an offloading algorithm for delay-
tolerant mobile networks that increases the amount of off-
loaded data without increasing the transmission overhead or
delay. The transfer channel is chosen based on the contact
duration between two nodes and the available transmission
protocols. Therefore, every node logs which neighbors are
available. Based on the available neighbors, on the size of the
data that is offloaded, and the estimated waiting time, a priority
is computed. With these factors, a utility is calculated that
denotes whether data should be offloaded using this particular
channel or not.

To summarize, several of the related works address prob-
lems of RPCs in traditional networks, where links are either
static or tasks are on the same machine, such as in VMs.
Furthermore, direct memory access methods to reduce net-
working overhead cannot be used in a DTN environment, due
to possibly untrustworthy nodes. Also, control mechanisms
like heartbeats or duplicating data on multiple channels are no
options for DTN. In the offloading approaches, the particular
problems of RPCs in DTN are either not addressed or would
require additional infrastructure, such as cell towers for 3G
or LTE connectivity, or nodes with access to the Internet.



Our proposed DTN-RPC is designed to provide RPCs in DTN
environments without requiring any additional infrastructure.

III. DTN-RPC
This section presents the design of DTN-RPC.

A. Fundamental Considerations

There are several differences between RPCs in traditional
networks and RPCs in DTN.

In conventional RPC implementations, errors are handled,
for example, if the connection between client and server is
lost. In DTN, it is not certain whether a call even reaches its
destination. Thus, errors in DTN can only be handled in a
few situations, since error reports could just not arrive and the
client would not notice that the call was not successful. The
server, on the other hand, would have to spend computational
overhead while trying to inform the client about the error.
Furthermore, disruptions and poor connection quality make it
impossible to support real-time communication or to guarantee
a predefined quality of service in DTN.

Common RPCs are location transparent. For this purpose,
stubs or proxy functions exist to handle communication via the
network. In DTN, a call will explicitly be executed remotely,
and it is expected that there will be networking overhead when
executing a remote procedure.

In several RPC implementations, the client has to register
at the server before calling a procedure. Since in DTN the
address of a server is typically not known, client registration
is not possible.

Traditional RPC servers either announce the procedures
they offer or there exists a lookup service where clients can
find information about which server offers which procedure.
In DTN, server announcements might not reach or lookup
services might not be available for clients when needed.

B. Control and Data Channels

DTN is often used in mobile mesh and ad-hoc networks
where the network topology changes frequently. This can lead
to short contact durations between nodes where it is impossible
to transmit large amounts of data. Due to this restriction, two
separate communication channels are introduced in DTN-RPC:
the control and the data channel.

The control channel is responsible for transmitting meta-
data, such as the procedure name and the parameters, from
client to server, and possible results from server to client. The
control channel supports two modes to address remote servers,
explicit and implicit (any or all), as described below.

Explicit: If the address of a server is known and the server
is reachable, DTN-RPC will choose the explicit mode and will
try to establish an end-to-end connection to this specific server.

Implicit (any or all): If the address of a server is not known,
but potential servers are reachable, both the any and all modes
(summarized as the implicit mode) are used to broadcast a call.
In the any mode, the client waits for exactly one response. This
is helpful if it is known that servers exist that offer a particular
procedure, but it does not matter which server responds. The

| Client ‘

Yes _/ Broadcast
Reachable Non-DTN 3

Start

§ Implicit No

i | Transparent
! =

3 ) Receive /|
3 Explicit No Result !
3 Call via 3
Reachable Ye? Non-DTN
ilServer
1 No 1
i Offer Reachable i
Procedure Ve
Return via i
Non-DTN !

Fig. 2: DTN-RPC flowchart for client and server.

first arriving response will be accepted. In the all mode, the
client will wait for as many answers as possible until its
internal timeout occurs. This is useful in scenarios where the
quality of the results varies with the executing machine (e.g.,
GPU support, different algorithms), where different answers
should be combined (e.g., to implement aggregate functions
that return a value across all items in the results set), or is
influenced by other factors such as geolocation (e.g., sensor
readings, taking a picture).

The payload of the control channel packets must not exceed
the payload size of the underlying transport protocol to keep
the data on the network as small as possible.

The data channel transports larger amounts of data from
client to server and vice versa. It is used if a file is required as a
parameter for a particular call. The transport of the payload in
the data channel is always performed via DTN. The transport
of the meta-data in the control channel is explained below.

C. Transparency

In both explicit and implicit addressing modes, the control
channel of DTN-RPC supports Non-DTN and DTN transport
protocols and automatically switches between them for per-
forming a procedure call, as explained below.

Non-DTN vs. DTN: As illustrated in Fig. 2, if the server
is reachable in the explicit mode, DTN-RPC will use a Non-
DTN transport protocol to call the server. If the server is not
reachable, the call will be issued using a DTN protocol.

After having called a remote procedure in the explicit mode,
the client waits for the response using the same transport



protocol that was used to call the procedure. If the connection
is interrupted, the client additionally waits for results that
arrive via a DTN protocol.

After having successfully executed a received call, the server
checks whether the explicit control channel on which the call
was received via a Non-DTN protocol is still available, as
shown in Fig. 2. If the channel is not available anymore, the
result will be sent via a DTN protocol. The DTN-RPC server
does not attempt to reestablish a Non-DTN connection, since
it is unlikely that a reconnection is successful if one of the
nodes has physically moved out of the network’s reach. If the
call was received via a DTN protocol, the server also uses a
DTN protocol for its response.

Since the implicit modes use broadcast addresses to call
procedures, a different transport protocol has to be used than
in the explicit mode, because reliable point-to-point transport
protocols like TCP do no support broadcast packets. Since a
server availability check in a broadcast scenario would imply
communication between multiple nodes, which would add
additional delays, a call just gets broadcasted without any prior
availability checks. If a timeout occurs and no result arrives,
the call is performed via a DTN protocol.

Transparent: DTN-RPC is designed to automatically select
the most suitable transport protocol in any given scenario. In
the transparent transport method, both client and server are
designed to make all the above dicussed decisions without
any user interaction.

D. Offering and Executing Calls

To offer a remote procedure as shown in Fig. 2, two steps
are required on the server: declaring and implementing a
procedure. The first step of offering a remote procedure is
that every procedure has to be declared as a prototype in
an extra configuration file in order to tell the server which
procedures are available for execution. The implementation of
a procedure, which is the second step, has to be provided as
an external executable written in any programming language.

The parameters of an incoming call are passed in the
order they were received to the external program that then
executes the procedure. After the procedure finishes, the result
is returned to the server that marshals the result and prepares
the result to send it back to the client.

Typically, the computational resources and the battery life-
times of nodes in DTN are limited. To avoid the execution of
calls that would consume too many resources with respect to
the current state of a server, a server can decide whether a
remote procedure should be accepted or not. For this purpose,
we define particular predicates per server, such as thresholds
for resource constraints (number of concurrent processes,
remaining battery life etc.) or available (sensor) hardware like
GPS. This is also shown in Fig. 2. The server checks whether
defined predicates are satisfied. If at least one requirement is
not met, the procedure will not be executed.

Furthermore, each call can provide its own requirements
that also have to be checked by the server. For example, some
calls should only be executed on non-moving nodes, or require

special sensor hardware or extensive resources, such as disk
space or RAM. Therefore, there is a two-stage predicate check
per server: the first one is the general server acceptance check,
and the second one is call-specific and evaluated after having
passed the first check.

IV. IMPLEMENTATION

The implementation of DTN-RPC is based on the Serval
Project [6], [7], [8]. Serval is centered around a suite of pro-
tocols designed to allow ad-hoc and infrastructure-independent
communications. The Serval Mesh Protocols abstract from
lower-layer protocols, such as IP, UDP, WiFi, packet radio or
others. Serval’s real-time packet-switched protocol is the Mesh
Datagram Protocol (MDP), which can be compared to UDP/IP,
but uses SIDs (Subscriber ID, the public key of an asymmetric
elliptic curve key pair) instead of IP addresses, and includes
encryption, authentication and integrity features by default. To
route packets, MDP uses a protocol inspired by OLSR [19] and
B.A.T.M.A.N. [20] for both node discovery and maintaining
a routing table, which facilitates multi-hop routing of packets.
On top of MDP, the Mesh Streaming Protocol (MSP) provides
reliable data streaming, similar to TCP. Finally, Rhizome is a
simple store-and-forward protocol defining files as bundles.
Intended as the DTN protocol of Serval, Rhizome uses an
epidemic routing protocol to transmit files hop-by-hop from
source to destination. Rhizome is purposely agnostic of the
transport protocols below it, requires no routing table and
focuses on single-hop communications, with multi-hop com-
munications emerging as a natural consequence of bundles
replicating among nodes. DTN-RPC uses MDP, MSP, and
Rhizome to handle different situations and addressing modes.

We have conducted an in-depth experimental evaluation of
Serval’s DTN aspects for various network setups and usage
patterns in our previous work [9]. The results have indicated
that Serval is capable of handling extreme conditions such as
saturated networks or many-hop transmissions in a satisfactory
manner. It has also been shown that Serval works well in
realistic scenarios, where the topology changes over time and
users have different requirements. Thus, Serval is an elaborate
and ready-to-use software for DTN and mesh networks.

For programmers, an API is offered that can be used to
develop programs using the DTN-RPC library to execute
procedures on remote devices in DTN environments.

A. Calling a Remote Procedure Transparently

To call a remote procedure transparently, a single function
is required that is part of the offered DTN-RPC API. This
function has five parameters: the server address, the name
of the called remote procedure, the number of parameters of
the procedure, the parameters themselves and the execution
requirements discussed in Section III-D. The mode to be used
is determined by the first parameter of this API function call.

1) Explicit: If the parameter is a valid address, the remote
procedure will be called explicitly, i.e., the call will be issued
via Serval’s MSP, if the server is available. A routing table is
built in an ad-hoc manner. If the address of the server can be



found in this routing table, this particular server is reachable.
While waiting for the result, the client checks periodically
whether the connection is still alive. If the connection termi-
nates, the client starts a Rhizome DTN listener.

2) Implicit: The modes any and all are used if the address is
the ANY address provided by Serval for any or the broadcast
address for all. Since Serval’s MSP supports point-to-point
communication only, it is not possible to send data to the
broadcast address. Therefore, any and all use Serval’s MDP.

Since a reachability test is not possible for broadcast pack-
ets, the procedure will be called without any prior checks.
Since delivery is uncertain, the client sends a call every second
until at least one server responds with an acknowledgement or
a timeout occurs. If an acknowledgment arrives, the threshold
for the timeout is increased. Only if the new timeout occurs,
the client will additionally start a Rhizome DTN listener and
wait for the result via DTN.

The difference between the modes any and all is the number
of results. In the first case, the client stops listening as soon
as the first result arrives. In the second case, the client waits
for as many results as possible, but at least for one.

B. Returning the Result Transparently

While executing the called procedure, the server does not
check periodically whether the client is still reachable. Instead,
this check is done once when the response is ready to be sent.
If the call arrived via MSP or MDP, but the connection is
broken or the client is not reachable, sending will fail and the
server will send the result via Rhizome.

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
DTN-RPC for different network topologies and in various
configurations. Due to the lack of comparable RPC imple-
mentations that can handle disruptive networks, DTN-RPC is
not compared against other approaches. A comparison with
widespread software solutions such as JSON-RPC or SOAP
would be unfair, since they would fail each time the network
connection is lost.

A. Test Setup

Our evaluation of DTN-RPC is based on the open source
network emulation framework CORE*. Compared to protocol
simulations, CORE can run DTN-RPC without modifications
in a more realistic Linux environment. All tests are performed
on a 64-core AMD Opteron 6376 CPU with 256 Gigabyte
RAM, emulating up to 64 virtual nodes at the same time.

1) Measurements: Standard Unix tools are used to measure
system properties with a time resolution of one second. For
CPU statistics, pidstat5 is used, and the Serval and DTN-RPC
processes are monitored from within a node. Network usage
is measured from within the nodes on every network interface
for Serval and DTN-RPC using a custom Python script based
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TABLE I: Topologies

Name | # Nodes | Description

Hub 28 All nodes connected to each other
Chained 32 Pair-wise connected
Islands 64 Partitioned islands with dynamic links in between

on libpcap®. To monitor the behavior of DTN-RPC, metrics
such as call times, round-trip times, and logging functions
were implemented and integrated into the binary.

2) Network Topologies: Three network topologies are con-
sidered, as shown in Table I.

a) Hub: The Hub topology connects 28 nodes with each
other so that every node is one hop away from all other
nodes. As shown in our previous work [9], the Hub topology
is challenging for Serval and thus also for DTN-RPC due
to the high number of direct neighbors, all using bandwidth
and flooding each other with status information. Therefore,
the Hub topology helps to investigate whether DTN-RPC can
handle RPCs when the network is under heavy load.

b) Chained: The Chained topology consists of a chain
of 32 nodes, 31 hops from the first to the last node. Typically,
network connections over the Internet require less than 16
hops. In a DTN mesh network, more hops might be needed
for messages to reach their destination.

¢) Islands: The Islands topology represents a partitioned,
dynamic network with 64 nodes. At the beginning, there
are 4 islands each containing 16 nodes. The 16 nodes per
island are connected randomly with each other, creating an ad-
hoc mesh network. Then, four different behaviors can occur
randomly every 60 seconds: two islands are connected, two
connected islands are disconnected, all islands are connected
or all islands are disconnected resulting in the original state.

3) Network Connections: DTN-RPC adds a new layer of
abstraction to the Serval networking stack. Although Serval
can cope with several degraded networking scenarios, DTN-
RPC is only evaluated in situations where network connections
are completely lost, because this is the most challenging situa-
tion in DTN. Network degradations and bandwidth limitations
would only lead to higher delays, but not break DTN-RPC
itself.

4) Test Sets and Modes: The remote procedure used in our
tests implements a simple echo service. It is called with three
different test sets: (a) OMB, where no file is used; (b) /MB,
where a file of 1 megabyte is transmitted; (c) /00MB, where
a file of 100 megabyte is sent.

Additionally, all tests are executed in 10 different modes:
explicit, any and all via Rhizome; explicit, any and all via
MDP; explicit, any and all transparently and explicit via MSP.

5) Servers: Since the successful execution of remote pro-
cedures in DTN depends on the number and distribution of
servers, every test in Hub and Islands is executed twice, first
with 5% of the nodes as servers and second with 50%. In
Chained, the goal is to determine how DTN-RPC performs if

Shttp://www.tcpdump.org
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Fig. 3: Stacked bandwidth usage for /IMB and 100MB and maximum CPU usage for /MB and 100MB in different topologies.

the call has to travel a long distance. Thus, only one server
and one client at the opposite ends of the chain are needed.
In each test setup, the procedure is called 30 times to get
reliable results. The acknowledgement from the server has to
arrive within 30 seconds on the explicit channel. After the
acknowledgement, the client waits an additional 90 seconds
for the result. If within these 90 seconds no results arrived,
the procedure is called via DTN, which has an additional 90
seconds to finish. After the client has received the result or all
timeouts are reached, the next procedure will be called.
Since our evaluation is concerned with the overhead and the
performance of DTN-RPC, the possibility of DTN-RPC to per-
form predicate checks to decide whether a remote procedure
should be accepted has been disabled in our experiments.

B. Fundamental Properties

In Hub where each node is a single hop away from all
other nodes and Serval uses broadcast packets to announce
meta-data, each node produces a flood of data that is sent
to all neighbors. Thus, both the CPU usage and the network
load in Hub are always higher than in the corresponding
tests in Chained or Islands, due to the high number of direct
neighbors. Furthermore, DTN-RPC does not only use the
API, but also the networking stack and the communication
mechanisms provided by Serval. Thus, DTN-RPC cannot be
measured separately, but only together with other Serval traffic.

Similar to the network usage, the CPU utilization has to be
measured not only for DTN-RPC, but also for Serval running
on a node. The evaluation of the CPU usage shows that the
CPU consumption of DTN-RPC is negligible with about 1%
in heavy load situations. However, the Serval process has a
higher CPU usage, since Rhizome computes a hash for each
file sent. The larger the file, the more time-consuming the
hash computation becomes. DTN-RPC, on the other hand, is
independent of file sizes, because it simply issues a call to the
Rhizome API, which leads to the described 1% CPU utiliza-

tion increase in the DTN-RPC process. Therefore, since the
CPU utilization is dominated by Rhizome, in the experiments
below it is always based on the Serval process.

C. Network Performance

For the OMB tests in the Chained topology, the overall
network load averages at about 2 Mbits per second for each
of the three transport protocols (MDP, MSP and Rhizome).
This is true for all three modes, explicit, any and all. Since
DTN-RPC uses only a single packet for calling the remote
procedure and returning the result in OMB, these packets get
lost in the overall network load that is produced by Serval
exchanging meta-data and therefore not plotted in Fig. 3.

During the IMB and 100MB test sets, the network load
increases up to 70 Mbit/s for /MB and up to 500 Mbit/s for
100MB, as indicated by the blue and red graph of Fig. 3a,
in which the stacked bandwidth for all network interfaces
together with the CPU usage in a logarithmic scale for 5 calls
with the 100MB test set and 30 calls with the /MB test set
is shown. In the /MB and 100MB calls, a file always has to
be transmitted via the Rhizome DTN for calling the remote
procedure and receiving the result. The difference between the
IMB and I100MB calls is due to the different file sizes.

The Hub topology shows a similar behavior, as illustrated by
Fig. 3b, where the stacked bandwidth for all network interfaces
together with the CPU usage in a logarithmic scale for 3 calls
with the 100MB test set and 30 calls with the /MB test set is
shown. The main difference is that the Hub topology suffers
from the problems discussed in Sec. V-B. The overall network
usage for the /MB test sets exceeds 1,000 Mbit/s (blue graph)
and 10,000 Mbit/s for the /00MB test sets (red graph).

Comparing the bandwidth consumption to our previous
results [9], DTN-RPC does not add any measurable network
traffic to the traffic produced by Serval, and thus can handle
scenarios where the network has a high bandwidth usage well.
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D. CPU Usage

As shown in Figures 3a and 3b, CPU usage highly correlates
with network usage. Since CPU usage in the OMB tests does
not exceed 1% after the initial discovery phase, it is not plotted
in Figures 3a and 3b. For the /MB tests, the maximum is at
about 2% up to 3% (red line) and up to 20% for the 100MB
tests (black line) in the Chained topology.

In the Hub topology, the behavior is comparable to the
Chained topology, with the difference that the CPU usage is
generally higher. In the /MB tests, the CPU usage increases up
to about 10% and for the /00MB tests up to 90% during the
sending phase. This relatively high CPU consumption happens
only while a hash of a file is computed and the file is inserted
into the Rhizome store, and thus only during a relatively short
time period. As already mentioned, the CPU usage of DTN-
RPC does not exceed 1%.

E. Round Trip Times

To measure the round-trip times (RTTs), only the Chained
and Hub topologies are considered, since the Islands topology
would not give any credible results due to the random merging
and separation of the islands. RTT is only used to indicate the
time that is needed to transmit the payload through the network
to be sure no additional delays are introduced by DTN-RPC.
The execution of a procedure typically takes longer to finish
than the implemented echo service.

As shown in Fig. 4a, the OMB tests in Chained called by
MDP or MSP (i.e., Non-DTN) are executed within a second.
As the files grow, the RTT increases.

In the DTN tests, the RTTs are similar, regardless of the file
size. Due to the fact that in DTN the control channel as well
as the data channel are transferred via Rhizome, both server
and client have to wait for two files. Therefore, all tests take
about 40 seconds.

Transparent calls are slower than the calls via MDP or MSP
for the OMB and IMB tests. Some of the calls are issued

via MDP or MSP, while others are executed via Rhizome, as
explained in Section III-C. The illustrated RTTs are averaged
over 30 calls, including the slower Rhizome calls. Further-
more, the time it takes to wait until the transport protocol will
be switched is also part of the RTT. Therefore, the transparent
tests are slower than the corresponding explicit tests, but faster
than the DTN tests. Since all J0OMB tests are issued using
Rhizome and the switch time is included in the RTT, the time
it takes for finishing is higher than for MDP or MSP.

As shown in Fig. 4b, the RTTs for tests in Hub do not differ
much from the tests in Chained. The only difference is that
the OMB and IMB tests are faster in Hub, because all nodes
are only one hop away from each other.

To summarize, DTN-RPC can execute remote procedures
satisfactorily fast. The fallback method using Rhizome is
slower, but still can get a result back to the client within an
acceptable time, even if the files are large.

F. Transparency Behavior

In this section, we examine how DTN-RPC behaves in the
dynamic Islands topology with different numbers of available
servers. The figures below show how many of a total of 30
procedures are called using Non-DTN or DTN, respectively,
in terms of percentage values. The left half of the pie charts
represents outgoing calls and the right half incoming results.

Since the Islands topology consists of 4 islands with 16
nodes that merge and separate over time, it is possible that
not all results arrive within 210 seconds at the client (see
Sec. V-AS) if the call was issued in explicit mode, especially
in tests with only 5% servers. Additionally, as the file size
increases, the transmission time increases too, and the number
of successful calls decreases as expected, as indicated by
Fig. 5a, Fig. 5c, and Fig Se. Furthermore, it is evident that
some of the results arrive via MDP or MSP (i.e., Non-DTN),
others only via Rhizome (i.e., DTN). There are two reasons.
First, it is possible that a call is issued successfully using MSP,
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Fig. 5: Percentages of procedures called and results returned via Non-DTN and DTN for /00MB in the Islands topology.

but the route from the server to the client gets lost because the
islands have separated. Then, the result is sent via Rhizome
and arrives after the islands have merged again. Second, the
client cannot establish a connection to the server at all, because
the islands are not connected. The procedure will be called
using Rhizome and the client will wait via Rhizome for the
result. Even if some results do not arrive in the explicit mode,
the DTN protocol helps to improve the number of successful
calls, as shown in Fig. 5. 41.9% of the results in the explicit
tests with the /00MB test set with 50% of the nodes as servers
arrive via Rhizome, and in 41.9% of the tests, no result arrives.
In the implicit tests with the J00MB test set with only 5% of
the nodes as servers, 61.1% of the results arrive via Rhizome,
and only 27.8% of the results do not arrive at all.

Figures 5b, 5d and 5f show implicit tests in the Islands
topology for three different file sizes with different numbers
of servers. It is evident that the implicit mode increases the

number of successful calls in every situation compared to
the explicit tests. Due to the dynamically changing Islands
topology and the relatively short contact durations, it is still
possible that not all results arrive in /00MB. For the explicit
calls, the more servers are available, the more results arrive.

The number of missing results can be decreased if the
contact duration is increased or the waiting time for results
is increased. Furthermore, more elaborate remote procedures
require a lot more time to finish than the simple echo service
used in our evaluation. Therefore, the waiting time for results
of up to 210 seconds in our experiments should be increased
in production environments, since it might be possible that a
result arrives after hours at the client via DTN.

To summarize, the fransparent mode helps to improve
the probability of receiving results in dynamically changing
network topologies like Islands. Furthermore, the transparent
mode can deliver results where a traditional RPC would



not lead to any response due missing network connections.
Finally, if the waiting time for results is adequately large,
the probability of receiving results increases, because when
a DTN protocol is used, results do not get lost, but simply are
not transmitted via a direct connection to the receiving node.
Therefore, given sufficient time, results will always reach their
destinations.

VI. CONCLUSION

In this paper, we have presented DTN-RPC, a new approach
to provide RPCs for DTN environments. DTN-RPC relies
on (a) control and data channels to cope with potentially
short contact durations in DTN where it is impossible to
transmit large amounts of data, (b) explicit and implicit modes
to address remote servers, (c) Non-DTN and DTN transport
protocols for issuing calls and receiving results, and (d)
predicates that servers check to decide whether a procedure
should be executed. The implementation of DTN-RPC is based
on Serval, an open-source, disruption-tolerant wireless ad-hoc
networking system. Our experimental results have indicated
that the measured CPU and network overheads for DTN-
RPC are reasonably low so that DTN-RPC can be executed
on smartphones or routers, and that the round-trip times
and the number of successful RPCs are highly satisfactory
in dynamically changing network topologies with unstable
links. Thus, DTN-RPC adds remote computing capabilities
in the form of RPCs to DTN. These can, for example,
greatly improve the tools available for professional responders
during emergencies by utilizing low-power mobile devices
that can offload tasks, such as requests for aerial overview
images or for face recognition based comparisons to search
for missing people. Furthermore, CPU-intensive tasks such as
reconstruction of 3D models for replication of spare parts in
the field [21] can be delegated off-the-grid to more powerful
participants in the area.

There are several areas for future work. First, DTN-RPC
has been tested and evaluated using emulated networks. We
plan to perform tests with smartphones to get a better view
on the real-world performance of DTN-RPC and a realistic
evaluation of its energy consumption. Second, since the Non-
DTN transport protocols produced satisfactorily results in the
Chained and Hub topologies, DTN-RPC should be evaluated
without relying on the strict differentiation between control
and data channels. Finally, although it is relatively difficult to
implement error handling and acknowledgement mechanisms,
our evaluation has shown that this is not impossible. Thus, an
acknowledgement system should be implemented for the any
mode to inform other servers that the execution has already
started.
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