
SEMUD: Secure Multi-hop Device-to-Device
Communication for 5G Public Safety Networks

Milan Schmittner, Arash Asadi, and Matthias Hollick
Secure Mobile Networking Lab, Technische Universität Darmstadt, Germany
{milan.schmittner, arash.asadi, matthias.hollick}@seemoo.tu-darmstadt.de

Abstract—Multi-hop Device-to-Device (D2D) communication
has emerged as a key enabler for public safety applications in 5G
networks. A failure of these applications would be catastrophic
since they control vital human-in-the-loop services. As a result,
it is of utmost importance to identify and mitigate security
risks prior to commercial deployment. To this end, we devise
SEMUD, the first secure multi-hop D2D solution for 5G mobile
networks. It enables robust and secure communication even in
the absence of supporting infrastructure. We design SEMUD to
be compliant with 3GPP Proximity-based Services, the standard
to implement D2D communications. We implement SEMUD in
the ns-3 simulator and our testbed. Via extensive simulation,
we assert its resilience against strong adversaries and attacks.
Furthermore, we show the energy efficiency and achievable
throughput of our proposal on real devices.

I. INTRODUCTION

Although D2D was initially designed for single-hop com-
munications, it re-emerged in 5G cellular networks for multi-
hop communications that are indispensable for the new gen-
eration of national security and public safety communication
systems [1]–[4]. However, due to the initial single-hop de-
sign of D2D communication, its multi-hop challenges, i.e.,
interference and resource management and security, are under-
explored. In particular, security is ignored as many assume
D2D communication to be inherently secure due to the pres-
ence of cellular infrastructure. This is indeed a dangerous
misconception as we have observed a plethora of security
issues in the infrastructure throughout the evolution cellular
networks [5]. These issues illustrate that design trade-offs
made a decade ago are no longer effective in 5G.

Moreover, the infrastructure’s role in D2D communications
reduces from a managing entity to a facilitator. Hence, D2D
users are exposed to even more threats in comparison to legacy
cellular users. These threats are particularly hard to circum-
vent in multi-hop D2D because the presence of intermediary
users subjects the system to several security threats such as
blackhole and wormhole attacks as well as selfish nodes. It
is of utmost importance to protect multi-hop D2D from these
attacks due to its critical use cases including public safety
communication. Prior work in secure D2D communications
focused on authentication and key management [6]. However,
the 3GPP Proximity-based Service (ProSe) architecture facili-
tates these issues by amending the legacy system design with
D2D specific network entities [7], [8]. Nevertheless, end-to-
end security is still a challenge for multi-hop D2D [4], as

current solutions do not protect users from the above advanced
attacks.

In this paper, we propose a framework for Secure Multi-
hop D2D (SEMUD) communication. SEMUD is the first
framework to address security issues for multi-hop D2D and
to provide a standard-compliant solution resilient against a
wide spectrum of attacks in presence and absence of cellular
infrastructure. We design SEMUD to be compatible with the
3GPP ProSe architecture, which is specifically conceived to
cater the needs of D2D applications such as certificate manage-
ment and neighbor discovery through the ProSe architecture.
At its core, SEMUD’s communication protocol provides au-
thenticated, confidential, and denial-of-service (DoS)-resilient
end-to-end message exchange by leveraging state-of-the-art
security mechanisms such as Merkle tree message labeling
and flow-based neighbor reliability metrics [9], [10]. The main
contributions of this paper are:

• Compared to its competitors, SEMUD incurs low over-
head w.r.t. computation and communication while achiev-
ing stronger security properties by implementing oppor-
tunistic flow initialization, efficient duplicate detection,
and an in-network Merkle tree compression algorithm.

• We compare the performance of state-of-the-art cryp-
tographic primitives and implement SEMUD both in
real hardware and the ns-3 simulator. We benchmark
SEMUD against a popular secure multi-hop scheme to
assess its performance against two strong adversaries
(blackhole, and combined replay and blackhole attack)
using simulation; and we demonstrate the practicality of
SEMUD assessing its power consumption and computa-
tional overhead on representative hardware platforms.

The rest of this paper is structured as follows: in Section II,
we give an overview of SEMUD’s architecture and workflow,
while we describe SEMUD communication in Section III. In
Section IV, we shed light on our implementation on which we
base our evaluation following in Section V. We discuss related
work in Section VI and finally conclude in Section VII.

II. SECURE MULTIHOP D2D (SEMUD)

In this section, we state our security assumptions and pro-
vide an overview of our 3GPP ProSe-compliant architecture
as well as SEMUD’s workflow.ISBN 978-3-901882-94-4 c© 2017 IFIP

A. Security Assumptions

Our security assumptions consist of an attacker model and
a trust model. We elaborate on them in the following.

Attacker Model. In this work, we consider attacks on the
classic security triad Confidentiality, Integrity, and Availability
(CIA). In particular, our attacker is an entity controlling a
portion of authenticated User Equipments (UEs) within the
network. She can consequently take part in normal network
operations, but is not limited to, mounting localized jamming,
message injection, modification, and dropping attacks; spe-
cific attacks on the forwarding protocol; or any combination
thereof. However, the attacker cannot break cryptographic
primitives. The attacker may choose time and location of the
attack. This means, she might start attacks when the infras-
tructure network is (temporarily) unavailable and, e. g., cannot
revoke certificates from misbehaving nodes or otherwise help
in mitigating attacks.

Trust Model. SEMUD devises an end-to-end communica-
tion scheme. Hence source and destination UEs need to trust
each other. This trust establishment is mediated by the trusted
infrastructure. However, we do not assume trust relationships
between source/destination and other intermediate UEs since
this would either: (i) impose a scalability problem with the
complexity of O(n2); or (ii) require continuous access to the
infrastructure network which cannot be guaranteed.

B. SEMUD Architecture

To foster D2D services, 3GPP includes three ProSe-specific
elements in the existing network architecture. These elements
are ProSe Application, ProSe Function, and ProSe Application
Server. Fig. 1 graphically depicts the location and interworking
of each element in 3GPP’s architecture. In addition, the other
existing network entities such as Mobility Management Entity
(MME) and Home Subscriber Server (HSS) are amended to
support communication with these new ProSe-specific ele-
ments. Here, we briefly describe the main ProSe elements and
refer the interested reader to [7] for more details.

ProSe Application. The ProSe Application runs on the
ProSe-enabled UEs and it supports control and data commu-
nication between ProSe-enabled UEs and the ProSe Func-
tion. Moreover, direct discovery procedure is handled by
ProSe Applications. SEMUD ProSe Application supports di-
rect neighbor discovery, network authentication, and message
forwarding. These operations are explained in detail in the
following subsections. SEMUD ProSe Application also: (i)
has access to a pseudo-random number generator rand (), (ii)
can compute a cryptographic hash function hash (·), (iii) has
access to a stream cipher prf (K,n) which takes a key K and
some nonce n as inputs, and (iv) can compute authentication
tags tag (K, ·) based on a shared key K. We discuss suitable
candidate functions in Section IV-B.

ProSe Function. The ProSe Function is a logical function
located inside Evolved Packet Core (EPC), and it handles net-
work related actions of ProSe. In the current specification [7],
ProSe Function may play different roles depending on the
use-case. SEMUD ProSe Function mainly assists in direct

EPC 3rd party networkE-UTRAN

eNB

S-GW

P-GW

HSS SLP

MME

ProSe

Application

ProSe

Application

ProSe

Application

Internet

ProSe

Application

ProSe

Function

ProSe

Application

Server

Fig. 1: 3GPP ProSe reference architecture.

discovery, EPC-level discovery, and direct communication.
The location information used for EPC-level discovery is
obtained from the SUPL Location Platform (SLP). ProSe
function also acts as a reference point between SEMUD UEs
and SEMUD Application Server that is used for operations
such as certificate distribution.

ProSe Application Server. This entity is located outside
the EPC and it provides the necessary functionalities for
the SEMUD specific operations. It also supports application
layer functionalities such as the storage of ProSe User and
ProSe Function IDs, and mapping between them. The SEMUD
Application Server acts as a Certificate Authority (CA) that is
accessible during normal network operation. During this time
UEs can contact the CA to receive a valid certificate. These
certificates are used for mutual user authentication. This means
that registering new users is only possible while the infrastruc-
ture network is available. However, secure communication is
possible between registered users even when the Application
Server is inaccessible.

C. SEMUD Workflow

We design SEMUD as a comprehensive end-to-end solu-
tion. Unlike existing secure multi-hop frameworks [9]–[11],
SEMUD explicitly leverages cellular infrastructure as a trust
anchor while remaining operational in its absence. In the
following, we elaborate on the workflow of SEMUD.

Phase 1: Subscription. As for other ProSe services, a
user interested in SEMUD should send a subscription request
including its public key to the SEMUD ProSe Function. The
ProSe Function forwards this request to the ProSe Application
Server and requests for authorization from HSS to use ProSe
services for this user. If both requests are accepted, ProSe
Function forwards the successful subscription message to the
UE. This message contains a certificate for the UE’s public
key.

Phase 2: Discovery and Authentication. ProSe offer two
device discovery methods, namely, EPC-level discovery and
direct discovery. SEMUD can benefit from both methods. UEs
associated with SEMUD services can use the infrastructure
(i.e., EPC-level discovery) to find and join other SEMUD
associated UEs in vicinity. In EPC-level discovery, neighbors’
public keys and certificates are provided by the network.
In the absence of infrastructure, SEMUD UEs exploit direct

discovery and use beacons to explore their vicinity. A UE can
transmit beacons either to advertise its presences or to request
a response from others UEs. While EPC-level discovery is
more efficient, direct discovery is crucial when infrastructure
support is nonexistent. In direct discovery, neighbors’ public
keys and certificates are exchanged during the association
procedure [7]. Neighbor (i.e., UEs in a single-hop distance)
authentication prevents Sybil and blackmailing attacks on the
forwarding protocol described below. A symmetric session key
between two neighbors can be derived using a Diffie–Hellman
key exchange. Neighbor-to-neighbor communication can then
be authenticated.

Phase 3: Key Distribution. SEMUD uses public keys
for user authentication and session key establishment. In the
presence of infrastructure, key distribution is done by querying
the ProSe Application Server. In the absence of infrastructure,
a UE requests a destination’s public key and a certificate in the
association stage. Thus, the destination is authenticated in the
same way as above and a shared secret derived using Diffie–
Hellman key exchange. We denote such a shared key between
source s and destination d as Ksd.

Phase 4: Communication. This phase is rather sim-
ple in legacy single-hop D2D systems and consists of di-
rect communication between the D2D pairs over the pre-
allocated/negotiated frequency band [12]. However, multi-hop
D2D communication is exposed to new security risks that
are not present in legacy single-hop D2D systems. Hence,
SEMUD communication phase requires a comprehensive pro-
cedure from message generation to acknowledgment handling
to ensure its robustness against a wide spectrum of attacks
such as message forgery, blackhole, and wormhole attacks.

Phase 5: Termination. The termination process is as de-
fined in [7] which consist of sending a deregistration message
to the ProSe Function. Next, the user certificate is added to
the ProSe Application Server certificate revocation list.

III. COMMUNICATION PHASE IN SEMUD

In this section, we describe how SEMUD secures multi-hop
D2D communication in a computational and bandwidth effi-
cient manner. Any effective secure communication mechanism
should follow the CIA triad model. Thus, SEMUD exploits
symmetric key cryptography for message confidentiality and
integrity and an adaptive neighbor reliability metric for avail-
ability. Next, we elaborate on the design and communication
procedure of SEMUD (see Fig. 2 for an overview).

A. Message Generation

SEMUD establishes flows for end-to-end communication
similar to [11]. The cryptographic material securing each flow
is drawn from a Merkle tree, an accepted cryptographic tool for
secure multi-hop communication [13], [14]. We first introduce
the message format and then discuss peculiarities of Merkle
tree usage and construction.

Message Format. The SEMUD MSG in Eq. (1) contains
flow synchronization (SYN) and automatic repeat request
(ARQ) flags , source s and destination d identifiers, flow

identifier H which is the root of a Merkle tree of height
l, the kth MSG identifier bk, and an integrity check value
icv. If SYN is set, a nonce n is included as well. The
user payload may be encrypted using the stream cipher
prf (Ksd, hash (n+ k)). The icv is computed over all fields
excluding the flow authenticator fk and length l′ as well as
ARQ. SYN is set until the first ACK of the flow is received.
Additional meta data (message type, length of hash values,
and length of entire message) is excluded for brevity.

MSG = 〈flags, s, d,H, bk, icv, n, fk(l
′, l),P〉 (1)

Merkle Tree Usage. SEMUD utilizes Merkle hash trees for
message labeling, flow authentication, and proof of message
reception. In particular, the idea is to use the input values for
the tree’s leaf nodes as message identifiers bk and to commit
to them with the root H which is used as a flow identifier. The
messages identifiers, in turn, are computed from a secret ak
as bk = hash (ak). Since MSGs are end-to-end authenticated,
the destination node will only reveal the pre-image ak of the
message identifier bk for authentic messages in the form of
an acknowledgment (ACK) (Section III-D). Upon reception
of ak, intermediate UEs can deduce that the destination must
have received an authentic message with bk.

SEMUD Merkle Tree Construction. We construct the
SEMUD Merkle tree as follows: (i) we use a unique and
random nonce n and use it together with Ksd to seed a
cryptographically secure pseudo-random number generator
prf (·, ·), e. g., a stream cipher; and (ii) we “chop” the output
of prf (Ksd, n) into w blocks of size |hash (·) | to create all
ak for k = 1, . . . , w and construct the Merkle tree as shown
in Fig. 3. Our unique approach of seeding the Merkle tree
with a nonce n enables the source to share all secret values
ak with the destination by just communicating n. Together
with the shared key Ksd, the destination is able to repeat the
Merkle tree construction process and retrieve all ak. Without
(i), the source should communicate all ak individually in a
confidential manner that would waste bandwidth.

When creating the Merkle tree from n and Ksd, we need to
assert that n is never reused for any source–destination pair,
otherwise replay attacks are possible. Reasonable candidates
for n are timestamps or randomly chosen values drawn, e. g.,
from a system-provided rand () function. The drawback of
choosing timestamps as nonces is the additional attack vector
on time synchronization services, e. g., NTP [15] or GPS [16].
When choosing n purely at random, n must be large enough to
avoid nonce reuse due to the well-known “birthday problem”.
We choose to implement the second option with a random
192-bit nonce.

The tree size w is optimally chosen such that it is equal
to the number of messages a source node wishes to transmit
for a certain flow. If this number is known a priori, w can
be approximated and fed into SEMUD as an optimization.
In all other cases, SEMUD has to rely on a default tree
size. However, choosing the default tree size incurs a trade-
off: (i) the length of the flow authenticator included in every
message grows logarithmically with the tree size, but (ii) very

Source
UE

Destination
UE

Relay
UE1

Relay
UEn

- Message format

- MT usage

- MT construction

- MT reconstruction

- ICV authentication

- ACK generation

- Duplicate detection

- ACK authentication

- Reliability metric update

- Reliability metric

- Forwarding Decision

- Opportunistic flow initialization

- Awaiting response

- Duplicate detection

- Flow authentication

- Flow authenticator minimizationMessage

generation

A

Message

forwarding

B

Message

verification

C

Message

forwarding

B

Message

verification

C

Message

forwarding

B

Message

verification

C

Message

reception

D

ACK

handling

E

ACK

handling

E

ACK

handling

E

!"
"!
""
!

Fig. 2: Overview of SEMUD communication stages and the operations executed within each stage.

H = hash (hash (. . .) ||xl)

hash (hash (b1) ||x1)

hash (b1)

b1 = hash (a1)

a1

x1

·

·

xl

·

·

·

·

bw

aw

prf (Ksd, n)

Fig. 3: SEMUD Merkle tree generation. The
leaf seeds ak are drawn from a stream cipher
prf (·, ·), which, in turn, is seeded by a
secret key Ksd and a public nonce n.

small trees cause frequent flow restarts, i. e., whenever all bk
have been used, a new tree must be created. In the following
sections, we propose countermeasures to reduce the impact of
flow restarts (Section III-B) and to dynamically minimize the
flow authenticator length (Section III-C).

B. Message Forwarding

Here, we describe the forwarding decision that is based on a
reliability metric. Moreover, we explain how established flows
are used to initialize new flows.

Reliability Metric. In contrast to the per-destination rout-
ing state used in classic MANET protocols, SEMUD keeps
the forwarding state per flow. Thus, SEMUD UEs maintain
separate per-neighbor reliability metrics for every encountered
flow. The reliability metric r ∈ [0, 1] is computed as the
running average of the MSG delivery rate (i. e., the number of
valid ACKs returned from a neighbor) as described in [11].
It has been shown in [11], [17] that this approach provides
lightweight protection against any type of accidental and delib-
erate message loss including hard-to-detect selective message
dropping, i. e., greyhole attacks.

Forwarding Decision. This decision is made probabilisti-
cally based on the reliability metric. A UE forwards a MSG
with probability 1− r using a broadcast transmission or with
probability r using a unicast to the most reliable neighbor.
Should two or more neighbors have the same reliability metric,
we use the average round-trip time to break the tie. The
intuition is that we use broadcast for “route exploration”
if no reliable path exists, and otherwise unicast for “route
exploitation”.

Opportunistic Flow Initialization. New flows in SEMUD
will be established (i) when a new source–destination pair
wishes to start communication, or (ii) upon flow restarts,
i. e., when all leafs of an existing flow’s Merkle tree have
been used up, but the source–destination pair wants to con-
tinue communication. In a straight-forward implementation,
forwarding UEs would initialize the reliability metrics for
newly encountered flows with 0, which would mean that initial
MSGs would always be broadcast, i. e., flooded through the
entire network. However, we propose to allow the reliability

metrics of a new flow to be copied from an existing flow when
(i) flows restart (source and destination of old and new flow
matches) or (ii) the UE already knows a path to the destination
which has worked for a different flow (only the destination of
old and new flows matches). If multiple candidate matches
exist, we choose the most recently updated flow to assure
freshness. On the one hand, copying routing state results in
information reuse, i. e., unnecessary network-wide flooding
due to route exploration for an already discovered destination
is avoided. On the other hand, it maintains the strong security
properties assured by separating routing state. Note that in case
of an impersonation attack, opportunistic flow initialization
might result in choosing the compromised flow. Nevertheless,
such mistakes are quickly mitigated due to quick reliability
updates calculated from valid ACKs or their timeouts. We
will demonstrate the advantage of our opportunistic flow
initialization approach in Section V.

Awaiting Response. When forwarding a MSG, a UE starts
one timer for each new bk which expires after TACK. In addi-
tion to starting the timer, the tuple 〈m, bk, H〉 together with
the forwarding decision is added to a collection of previously
seen MSGs. This tuple serves the purpose of authenticating
ACKs (as described in Section III-E) and it is discarded after
the MSG timer expires. If the timer expires and no ACK
has been received, the reliability metric for the next hop UE
is decreased. We employ an adaptive TCP-inspired timeout
calculation for TACK following the same approach as in [18].

C. Message Verification

Next, a UE filters out the MSGs that either have already
been forwarded (i.e., duplicates) or contain an invalid flow
authenticator. In addition, a UE computes the minimal authen-
ticator length for the next hop UE.

Duplicate Detection. Duplicate detection consists of two
steps. First, a UE calculates a message digest m using a
collision-resistant hash function of the incoming MSG (ex-
cluding the variable-length field fk). This serves for identify-
ing unique MSG copies which might have the same message
identifier bk. If the UE has already seen the pair 〈m, bk〉, the
MSG is dropped.

H

·

·

b1

•

b2

•

·

b3

·

b4

l′ = 2 H

◦

◦

b1

◦

b2

◦

·

b3

·

b4

l′ = 0

H

◦

◦

b1

◦

b2

◦

·

b3

•

b4

l′ = 1 H

◦

◦

b1

◦

b2

◦

◦

b3

◦

b4

l′ = 0

Fig. 4: Exemplary Merkle tree (w = 4) visualizing optimal flow authenticator
lengths l′ for different MSG identifiers bk . Bullets (•) indicate tree nodes
that have to be included in MSG k. Circles (◦) are known tree nodes sent
in previous MSGs. Dots (·) are unknown nodes but are not required to
authenticate bk . Thick lines indicate the verification path.

We propose that each UE keeps per-flow state to memorize
which MSGs have already been acknowledged for preventing
replay attacks. A very low-complexity and space-efficient
implementation of such a data structure is a zero-initialized bit
vector. Setting bit k in the bit vector signifies that the kth MSG
of a certain flow is acknowledged, and, thus, future replays of
bk can be ignored. Specifically, a UE checks whether MSG
k of the indicated flow has already been acknowledged (kth
bit set), and if yes, discards it. The effectiveness of our replay
protection mechanism in shown Section V.

Flow Authentication. The Merkle tree assures that all bk
can be authenticated to a single value, that is, the root H which
serves as a flow identifier. Intermediate UEs can validate that
bk belongs to H by traversing the tree from bk to the root H ′

using intermediate tree nodes fk and checking that H ′ = H .
The flow authentication procedure has been described in [11]
and assures that only MSGs belonging to the flow will be
forwarded.

In-Network Flow Authenticator Compression. The size
of the flow authenticator fk has a drastic impact on the
protocol overhead. fk grows linearly with the tree height l.
In previous works [11], [13], [19], all sibling nodes in the tree
from the leaf to the root (tree nodes x1, . . . , xl in Fig. 3) are
included in each message. For large trees, this naı̈ve approach
generates significant overhead. For instance, a tree of height
l = 10 allowing to send 210 = 1024 MSGs under that
flow) requires the header to include 10 hash values for fk.
In absolute terms, these results in 10 × 32 = 320 bytes per
MSG when using a contemporary hash function with a 32-byte
output.

SEMUD employs a more efficient method: SEMUD UEs
incrementally construct the Merkle tree as they receive new
bk and fk values (note that intermediate nodes cannot construct
the entire tree from n since they do not possess Ksd). Starting
from the second received MSG, l′ < l new tree nodes are
required to authenticate the flow. The idea is visualized in
Fig. 4. In a stable network, the lower bound average of l′

is constant with (2l − 1)/2l < 1 which leads to a 10-fold
overhead reduction compared to the example above.

In order to devise a practical distributed algorithm to cal-

culate l′, nodes need to keep track of the current Merkle tree
state of their neighbors. SEMUD UEs do this by leveraging
the ACKs received from their neighbors: when receiving ak
from neighbor h, a UE knows that h has the kth leaf of the
Merkle tree, as well as the authenticated path from this leaf to
the root. Otherwise, h would have been unable to authenticate
and forward the kth MSG in the first place. To determine
minimal l′, i. e., the shortest possible flow authenticator length
for which the next-hop node will still be able to authenticate
bk, we use Algorithm 1. For broadcast MSGs, we set l′ to
the maximum among all neighbors, i. e., l′ = maxh l

′
h with l′h

being the minimal flow authenticator length for neighbor h.
This scheme assures that (i) a UE can always authenticate

any MSG received from another correct UE; and (ii) the
transmitted flow authenticator does not convey redundant
information, i. e., it is exactly as long as it needs to be for
minimal MSG overhead. Note that our scheme is agnostic to
packet loss and packet reordering.

Automatic Repeat Request. In the rare case that a UE is
unable to authenticate the flow because fk is too short due
to lost state, it may “bounce” the MSG back to the sender
with the ARQ flag set to request for the complete fk. The
receiving UE then removes the flag and returns the complete
fk of length l to the requester if possible. Otherwise, it drops
the MSG.

D. Message Reception

In addition to verification, the destination UE checks the
MSG’s icv. MSGs with an invalid icv are discarded. For the
first MSG of a flow (SYN flag set), the destination locally
computes the full Merkle tree as described in Section III-A.
For every MSG, the destination selects ak from the Merkle tree
and generates the appropriate ACK (Eq. (2)) which consists
of the message digest m and the ACK authenticator ak. The
ACK is then returned to the sender.

ACK = 〈m, ak〉 (2)

E. ACK Handling

ACKs are primarily meant for secure proofs of delivery
used to update the neighbor reliability metrics. Upon ACK
reception, a UE calculates bk = hash (ak) and checks whether
the ACK belongs to a valid MSG, i. e., whether any MSG
with m and bk has been forwarded before. If not, the ACK

Algorithm 1 Minimal Flow Authenticator Length

function MINAUTH(k, l, h)
l′ ← 0
while l′ < l do

kleft ← (k ⊕ (1� l)) ∧ (−1� l)
kright ← kleft + (1� l)− 1
for k′ ∈ [kleft, kright] do

if h has acknowledged k′ then
return l′

l′ ← l′ + 1

return l

TABLE I: Computation time in µs of several cryptographic algorithms on
various platforms for 1024-byte strings averaged over 10 000 runs. Ed25519
is a state-of-the-art elliptic-curve signature scheme and included as a reference.

CLASS ALGORITHM ALIX APU NEXUS MAC

hash (·) SHA-256 184 36 18 6
Blake2b 167 8 29 3

prf (·, ·) XSalsa20/20 97 12 12 5

tag (·, ·)
SipHash-2-4 66 4 8 1
HMAC-SHA-512 417 35 92 6
Ed25519 (verify) 8761 1479 815 168

is dropped. Otherwise, and if the sending UE matches the
previous forwarding decision, the reliability metric for the
sending UE is increased. The ACK is then forwarded to
the neighbors from which the UE received copies of the
corresponding MSG. In addition, a valid ACK updates the
bit vector used for duplicate detection and neighbor Merkle
tree state as described in Section III-C.

IV. IMPLEMENTATION

We choose the Click modular router [20] for SEMUD
implementation to allow for a realistic evaluation on both
real hardware (Linux, Android) and simulation (ns-3). In this
section, we discuss suitable candidate functions for SEMUD’s
crypto primitives and devise a practical link-local broadcast
authentication scheme based on symmetric cryptography.

A. Reference Platforms

We evaluate our SEMUD on heterogeneous platforms with
different CPU architectures, processing capabilities, memory
configurations (256 MB to 16 GB RAM), and operating sys-
tems (Debian Linux, Android 6, macOS 10.11). In particular,
these are: ALIX [21], APU [22], LG Nexus 5, and MacBook
Pro (early 2015).

B. Cryptographic Primitives

The choice of efficient cryptographic primitives is imper-
ative for any practical communication protocol. In SEMUD,
cryptographic operations consume the longest processing time
during packet forwarding and constitute the major portion
of the communication overhead. Our implementation relies
on primitives provided by the lightweight, cross-platform
libsodium (v1.0.11) [23]. A performance comparison between
different candidate algorithms on our reference platforms is
shown in Table I. The table also gives an intuition on why
public key crypto is unsuitable to be used on a per-MSG basis:
the cumulated forwarding delay would be unacceptably large.
We select SEMUD’s cryptographic primitives as follows:
• hash (·) is implemented as Blake2b with an output size

of 16 bytes. Note that the hash function used to construct
the Merkle tree does not need to be collision resistant but
only preimage and second-preimage resistant.1 Hence, a
128-bit security margin is sufficiently large.

1Collision resistance: given hash (·), it is hard to find x and x′ such that
hash (x) = hash (x′). Preimage resistance: given y, it is hard to find x
such that hash (x) = y. Second-preimage resistance: given x, it is hard to
find x′ 6= x such that hash (x) = hash (x′).

• prf (Ksd, n) is implemented as XSalsa20/20, a stream
cipher using 256-bit keys and 192-bit nonces.

• tag (Ksd, ·) is implemented as SipHash-2-4 [24], which
generates small 8-byte authentication tags for short-input
(order of kilobytes) messages using a shared secret Ksd.

C. Practical One-hop Broadcast Authentication

SEMUD requires neighbor-to-neighbor communication to
be authenticated to prevent blackmailing and Sybil attacks.
The 3GPP proposed method for secure one-to-one (unicast)
communication relies on direct session key exchange be-
tween two UEs [8]. Authenticated communication can then be
achieved using MACs. For one-to-many or one-to-all (broad-
cast) communication, the 3GPP proposes an infrastructure-
supported scheme which establishes a group key. However,
this proposal is unsuitable for public safety-related operations
where we assume that the infrastructure might be unavail-
able. Other cryptographic methods to authenticate broadcast
communication are either based on digital signatures or on
TESLA [25], which is based on symmetric-key cryptography
and delayed key disclosure to achieve asymmetry. We deem
both approaches impractical since digital signatures are com-
putationally expensive; and TESLA requires time synchroniza-
tion between all nodes, and introduces authentication delay
which would impede SEMUD’s reactiveness to route changes.

The small output size of SipHash enables us to implement a
one-hop broadcast authentication scheme based on symmetric-
key cryptography without TESLA’s deficiencies: a forwarding
UE computes authentication tags for each neighbor h ∈ F
(excluding the sender) and appends all of them to the MSG.
A receiving node then tries to authenticate every tag. If
any of them succeeds, the MSG is processed, and otherwise
discarded. The expected number of SipHash calculations at
a receiving node is |F|/2, the communication overhead is
|F| × |tag (·, ·) |. We argue that this scheme is practical since
(i) the number of neighbors is typically low compared to the
total number of nodes in the network (which is what TESLA
was designed for), so the communication and computational
overhead for transmitting and verifying all tags remains low
on average; and (ii) broadcasts are used for route exploration
which rarely occurs in established communication flows.

TABLE II: Simulation settings

PARAMETER VALUE

Network

Number of nodes 100
Fraction of attackers 0, 10, 20, 30, 40, 50 %
Dimensions 3000× 3000m2

Random waypoint mobility v = 3 km/h
Propagation loss model Free-space path loss

Traffic Concurrent Flows 10
Payload size and MSG rate 128 bytes at 2 s−1

Protocol Merkle tree size 2l 128 (flow lifetime 64 s)
Beaconing rate 4 s−1, timeout 1 s

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600

PD
R

time [s]

attackers
0

20
50

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600

PD
R

time [s]

attackers
0

20
50

Fig. 5: Blackhole attack: reliability of Castor (top) and
SEMUD (bottom).

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600

PD
R

time [s]

attackers
0

20
50

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600

PD
R

time [s]

attackers
0

20
50

Fig. 6: Combined replay and blackhole attack: relia-
bility of Castor (top) and SEMUD (bottom).

1

101
102
103
104
105

0 10 20 30 40 50

D
el

ay
[m

s]

Number of Attackers

Castor SEMUD

0
2
4
6
8

10
12

0 10 20 30 40 50

O
ve

rh
ea

d
[K

B
]

Number of Attackers

Castor SEMUD

Fig. 7: Combined replay and blackhole at-
tack: delay and overhead.

V. EVALUATION

In this section, we assess the performance of SEMUD via
ns-3 simulations. Moreover, we show the energy and through-
put performance on real devices. Due to lack of secure multi-
hop D2D schemes, we opted to benchmark SEMUD against
Castor [11], the state-of-the-art in MANET security. Castor
has been shown to outperform contemporary MANET security
schemes such as SEAD [13] and Sprout [26]. We use ns-3 sim-
ulations to expose both schemes to two hard-to-detect attacks
by powerful adversaries, i.e., blackhole and combined replay
and blackhole attack, and analyze the schemes’ performance
such malicious scenarios. However, the simulations do not
provide several important metrics such as energy consumption
and realistic throughput measurement due to cryptographic
operations on a real device. To this aim, we evaluate SEMUD
against Castor using real devices.

We are primarily interested in four metrics: (i) packet
delivery ratio (PDR), (ii) delay, (iii) protocol overhead,
and (iv) energy consumption. The duration of each simula-
tion/measurement is 10 minutes. The bar plot figures report
both the average values and 95% confidence intervals of 10
differently-seeded runs. Our energy measurements assume out-
band D2D which is expected to be the first D2D deployment
due to less regulatory complications [27], [28]. Nonetheless,
SEMUD’s design relies on the ProSe architecture and is
independent of the D2D mode. In our evaluation, we assume
that the supporting infrastructure is not available. Note that
3GPP still mandates the UEs who wish to use D2D services
to have subscribed to ProSe at some time in the past. The
security-related evaluation is performed in the ns-3 network
simulator with Click implementations of SEMUD and Castor.
Detailed simulation settings for ns-3 are provided in Table II.

A. Blackhole Attack

The blackhole attacker drops messages in order to cause
maximum harm to network operation. First, it plays along
during route exploration by forwarding broadcast messages

to place itself on an active path. Then, it drops all unicast
messages during route exploitation to disrupt ongoing com-
munication. In Fig. 5, we observe that SEMUD exhibits a
more stable behavior than Castor. The PDRs of both schemes
have an almost identical increasing trend during the first 64
seconds of the simulation. In this time frame, both schemes
are gradually identifying and circumventing the blackhole
attackers according to the procedure defined in Section III.
While SEMUD approaches a rather stable PDR, Castor’s PDR
drops periodically due to flow restarts. Flow restarts occur
if the source ran out of MSG identifiers bk, i. e., leaves of
the Merkle tree, for the current flow. In this case, the source
UE needs to construct a new Merkle tree to continue the
communication. Since the old and the new flow identifiers
are cryptographically unrelated, Castor re-explores the path
towards the destination. Thereby, Castor UEs also “forget” the
compromised paths forcing them to re-identify the attackers.
The periodicity (64 seconds) of the drops are equal to the flow
lifetime (2l/ MSG rate). Note that the larger is the Merkle
tree, the higher is the protocol overhead in terms of bandwidth
and processing time. SEMUD circumvents the issue of flow
restarts by opportunistic flow initialization: instead of re-
exploring the path, SEMUD UEs try to leverage their prior
network knowledge (i. e., reliability metrics).

B. Combined Replay and Blackhole Attack

In this section, we expose UEs to even stronger attackers,
which, in addition to selectively dropping messages, inject
expired MSGs and ACKs to reinforce their appearance as
reliable forwarders. We first sketch the combined replay and
blackhole attacker M attemping to jeopardize the communi-
cation between two UEs A and B: First, M overhears and
records any valid MSG–ACK pair k of some flow H between
A and B. Then, M replays (i. e., broadcasts) MSG k and
ACK k shortly after one another at an interval of Trep (after
an initial delay of Trep). The attacker chooses Trep such that
it is larger than the ACK timeout, i. e., Trep > TACK. To

ensure this, the attacker conservatively sets Trep uniformly
from 1000 ± 300ms for each pair. The jitter (±300ms) is
introduced to avoid synchronization between attacking nodes.
Each attacker replays at most 5 pairs per second.

Fig. 6 demonstrates that SEMUD significantly outperforms
Castor in this scenario: with 20% attackers, SEMUD’s PDR
remains above 80%, while Castor’s is below 40%. This is
due to the fact that SEMUD employs a more effective replay
protection mechanism than Castor. Since Castor UEs do not
keep the state for MSG k after the ACK timeout, they can be
tricked into accepting the same MSG k for flow H again. Since
the kth ACK has potentially been disclosed by the destination,
the attacker can directly acknowledge its own replayed MSG.
As a result, intermediate UEs increase the reliability metric
for the attacker. Thus, Castor UEs are likely to forward new
MSGs for flow H to the attacker. In Section IV-C, the PDR
peaks at 20 attackers occur at flow restarts since Castor
UEs are paralyzed by the attackers and flooding becomes
the most reliable option. Note that the achieved PDR during
flow restarts in this scenario never exceeds those observed in
Section IV-C. Finally, when the fraction of attackers reaches
50%, neither scheme delivers acceptable results. With such a
high density of attackers, the medium is simply jammed by
replayed MSG and ACKs.

Fig. 7 shows that Castor collapses once the fraction of
attackers reaches 30%: the delay skyrockets above 3 seconds.
This occurs as Castor UEs are themselves forwarding replayed
MSGs, thus, amplifying the effective jamming impact of the
attackers. The result is DoS caused by exceeding the network
capacity. However, SEMUD maintains a delay below 11ms
due to ignoring the attackers and, thus, containing their impact
radius to a single hop. We also observe that Castor’s protocol
overhead increases tremendously since Castor UEs unwantedly
amplify the attack. In contrast, the attack has an insignificant
impact on SEMUD’s protocol overhead.

C. Achievable Throughput

Since SEMUD applies cryptographic operations per MSG,
we are concerned about data throughput. Table III shows that
the choice of lightweight symmetric-key cryptography and
efficient hash algorithms allow competitive data rates even
on dated platforms. For example, the Nexus 5 can handle
almost 10 000 MSGs per second. In the next section, we also
shed light on the energy efficiency of SEMUD on the same
platform.

D. Smartphone Energy Consumption

Since the SEMUDs ProSe Application performs crypto-
graphic operations on battery-powered devices, it is critical

TABLE III: Achievable source throughput of our Click implementation on
various platforms with a payload size of 1024 bytes per MSG. Goodput
considers only user payload.

METRIC ALIX APU NEXUS MACBOOK

Throughput (MSG/s) 3641 19840 9524 149525
Goodput (Mbit/s) 29.01 158.03 75.84 1190.98

Idle Transmission Idle

Po
w

er
[m

W
]

Time [s]

SEMUD
Castor

200
400
600
800

1000
1200
1400
1600
1800
2000

0 100 200 300 400 500 600

Fig. 8: SEMUD power consumption on a Nexus 5.

to ensure that such operations do not incur significant energy
consumption. In this experiment, we assess SEMUD’s impact
on battery lifetime of an LG Nexus 5. The test setup consists
of two smartphones, one of which acts as a traffic generator,
the other as a receiver. To measure the energy consumption,
we use the Monsoon power monitor which connects to the
battery contacts of the smartphone [29]. The traffic generation
(100 messages per second) runs for 5 minutes and starts at the
3-minute mark. We measure the average energy consumption
over 10 minutes. We show the results in Fig. 8. The idle
power consumption comprises Android background tasks and
the active wireless ad hoc connection. During transmission, we
observe an increase of 100 mW which consists of (i) wireless
transmissions and (ii) SEMUD message processing. Note that
the power consumed by SEMUD during 5 minutes of active
transmission amounts to only 30 seconds of screen power
consumption (1000 mW). The results should be similar for
other phone models [30]. During our measurements, the screen
is turned off. However, the screen turns on at the beginning
of the measurements due to the power analyzer disconnecting
the USB port. This causes the power consumption peak during
the first seconds.

VI. RELATED WORK

While the literature on D2D communications is abun-
dant [31], the majority of articles focuses on issues such as
scheduling, interference management, power allocation, and
architectural enhancement. D2D-specific security aspects have
received little attention so far and mainly focused on authen-
tication and key management [6], [32], [33]. However, there
is no work on secure multi-hop D2D communication. As a
result, we focus on related schemes in MANETs, which shares
some characteristics of D2D-enabled networks. Early work in
this field are less comprehensive with respect to security at-
tack resilience or practicality consideration. SAODV [34] and
SRP [35] are both vulnerable to the tunneling attack (a weaker
form of the wormhole attack). ARAN [36] and SEAD [13]
rely on expensive public key cryptography. Ariadne [37]
successfully routes around multiple colluding malicious nodes,
but requires security associations between all nodes on the
path which causes scalability issues for key distribution. All
above schemes only secure control messages and disregard

the security of user data which make them vulnerable to
packet dropping. Sprout [26] introduces probabilistic path
probing to also secure data transmission using signed end-
to-end acknowledgments. Castor [11] also uses end-to-end
acknowledgments, but achieves higher resilience against so-
phisticated attacks such as blackholes and wormholes by
incorporating an implicit and independent route discovery.
However, compared to SEMUD communication, Castor is
susceptible to replay attacks, suffers from flow restarts, and
exhibits a much larger per-message overhead. All of the above
proposals lack considerations for practical deployment, i. e.,
problems such as trust establishment or key distribution are left
out and taken for granted. Our use of the ProSe architecture
provides a working solution to this problem.

VII. CONCLUSION

The provisioning of robust and secure multi-hop D2D
communication is crucial for safety-critical applications in 5G
networks. In this article, we describe the design of SEMUD,
which offers the first standard-compliant solution for this
purpose. SEMUD leverages ProSe infrastructure components
for bootstrapping; and as a trust anchor during infrastructure-
based operation. Its designation, however, is to operate in
the absence of infrastructure in multi-hop D2D settings. For
these settings, SEMUD offers strong security and robustness
guarantees, even under adversarial conditions. We have shown
the feasibility and practicability of our approach by means
of a prototypical implementation for the ns-3 simulator as
well as mobile end systems. In the absence of competing
multi-hop D2D security solutions, we benchmark SEMUD
against Castor, a state-of-the-art secure MANET scheme. Our
simulation results reveal that SEMUD outperforms Castor
under several powerful and hard-to-detect attacks. In partic-
ular, we show that SEMUD increases the PDR by up to a
factor of 3 and reduces delay at least by a factor of 2.6. The
measurement results on Nexus 5 smartphones indicate that
SEMUD incurs low overhead allowing high throughput and
low energy consumption. Finally, we make our source code
publicly available [38].

ACKNOWLEDGMENT

This work has been co-funded by the LOEWE initiative
(Hessen, Germany) within the NICER project, and by the
German BMBF within CRISP.

REFERENCES

[1] J. M. B. da Silva, G. Fodor, and T. F. Maciel, “Performance analysis
of network-assisted two-hop D2D communications,” in IEEE Globecom
Workshops, 2014.

[2] H. Nishiyama, M. Ito, and N. Kato, “Relay-by-Smartphone: Realizing
Multihop Device-to-Device Communications,” IEEE Commun. Mag.,
vol. 52, no. 4, 2014.

[3] Y. Wu et al., “Device-to-device (D2D) meets LTE-unlicensed,” IEEE
Commun. Mag., 2016.

[4] B. Badic et al., Rolling Out 5G: Use Cases, Applications, and Technol-
ogy Solutions. Springer US, 2016.

[5] A. Shaik et al., “Practical Attacks Against Privacy and Availability in
4G/LTE Mobile Communication Systems,” in NDSS, 2015.

[6] M. Wang and Z. Yan, “A survey on security in D2D communications,”
Mobile Networks and Applications, 2016.

[7] 3GPP, “3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; Proximity-based services (ProSe);
Stage 2 (Release 13),” TR 23.303 V13.0.0, 2015.

[8] ——, “3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; Proximity-based Services (ProSe);
Security aspects (Release 13),” TR 33.303 V13.3.0, 2016.

[9] T. Shu and M. Krunz, “Privacy-preserving and truthful detection of
packet dropping attacks in wireless ad hoc networks,” IEEE Transactions
on Mobile Computing, vol. 14, no. 4, 2015.

[10] S. Paris et al., “Cross-layer metrics for reliable routing in wireless mesh
networks,” IEEE/ACM Trans. Netw., vol. 21, no. 3, 2013.

[11] W. Galuba et al., “Castor: Scalable secure routing for ad hoc networks,”
in IEEE INFOCOM, 2010.

[12] A. Asadi, P. Jacko, and V. Mancuso, “Modeling multi-mode D2D
communications in LTE,” arXiv preprint arXiv:1405.6689, 2014.

[13] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: secure efficient distance
vector routing for mobile wireless ad hoc networks,” Ad Hoc Networks,
2003.

[14] B. Hu and H. Gharavi, “Smart grid mesh network security using
dynamic key distribution with merkle tree 4-way handshaking,” IEEE
Transactions on Smart Grid, vol. 5, no. 2, 2014.

[15] A. Malhotra et al., “Attacking the Network Time Protocol,” in USENIX
NDSS, 2016.

[16] P. Papadimitratos and A. Jovanovic, “GNSS-based positioning: Attacks
and countermeasures,” in IEEE MILCOM, 2008.

[17] P. Papadimitratos and Z. J. Haas, “Secure Data Communication in
Mobile Ad Hoc Networks,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, no. 2, 2006.

[18] M. Schmittner and M. Hollick, “Xcastor: Secure and Scalable Group
Communication in Ad Hoc Networks,” in IEEE WoWMoM, 2016.

[19] M. Islam and M. Hamid, “SHWMP: A secure hybrid wireless mesh
protocol for ieee 802.11s wireless mesh networks,” Transactions on
Computational Science VI, 2009.

[20] E. Kohler et al., “The Click Modular Router,” ACM Transactions on
Computer Systems, vol. 18, no. 3, 2000.

[21] ALIX platform. Online: http://www.pcengines.ch/alix.htm
[22] APU platform. Online: http://www.pcengines.ch/apu.htm
[23] “The Sodium crypto library (libsodium).” Online: https://libsodium.org
[24] J. P. Aumasson and D. J. Bernstein, “SipHash: A fast short-input PRF,”

in LNCS, vol. 7668, 2012.
[25] A. Perrig et al., “Efficient Authentication and Signing of Multicast

Streams over Lossy Channels,” in IEEE S&P, 2000.
[26] J. Eriksson, M. Faloutsos, and S. V. Krishnamurthy, “Routing amid

colluding attackers,” in IEEE International Conference on Network
Protocols, 2007.

[27] A. Asadi, V. Mancuso, and G. Rohit, “An SDR-based Experimental
Study of Outband D2D Communications,” in IEEE INFOCOM, 2016.

[28] S. Andreev et al., “Cellular Traffic Offloading onto Network-Assisted
Device-to-Device Connections,” IEEE Commun. Mag., 2014.

[29] M. Schulz, “Preparation of a Nexus 5 Android Smartphone for Power
Analysis,” Tech. Rep., 2016.

[30] A. Rice and S. Hay, “Measuring mobile phone energy consumption for
802.11 wireless networking,” Pervasive Mob. Comput., vol. 6, no. 6,
2010.

[31] A. Asadi, Q. Wang, and V. Mancuso, “A Survey on Device-to-Device
Communication in Cellular Networks,” IEEE Communications Surveys
& Tutorials, 2014.

[32] W. Shen et al., “Secure key establishment for device-to-device commu-
nications,” in IEEE GLOBECOM, 2014.

[33] A. Zhang et al., “SeDS: Secure Data Sharing Strategy for D2D Com-
munication in LTE-Advanced Networks,” IEEE Trans. Veh. Technol.,
2016.

[34] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in
ACM Workshop on Wireless Security, 2002.

[35] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc
networks,” in SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference, 2002.

[36] K. Sanzgiri et al., “A Secure Routing Protocol for Ad Hoc Networks,”
in IEEE ICNP, 2002.

[37] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A Secure On-demand
Routing Protocol for Ad Hoc Networks,” Wireless Networks, vol. 11, no.
1-2, 2005.

[38] “SEMUD source code.” Online: https://seemoo.de/semud

