Multi-Channel Scatter (MCS): Traffic Balancing
Based on Edge-switching in Datacenter Networks

Zhaogeng Li, Jun Bi, Yangyang Wang
Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
Department of Computer Science and Technology, Tsinghua University, Beijing, China
Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China
li-zg07 @mails.tsinghua.edu.cn, junbi@tsinghua.edu.cn, wangyy @cernet.edu.cn

Abstract—There are many traffic balancing solutions for dat-
acenter networks. All of them require network fabric or/and
end user modifications. In this paper, we propose Multi-Channel
Scatter (MCS), a new traffic balancing solution in datacenter
networks. MCS works in the edge-switching layer (e.g. virtual
switches in hypervisors) between the network fabric and end
users. It can be deployed by the datacenter operators at a
relatively low cost. MCS scatters packets in one TCP flow to
several different forwarding paths (channels) to balance traffic.
It can filter duplicated ACKs triggered by packet out-of-order,
and uses congestion detection with ECN to update the weight of
different paths and avoid packet loss. MCS processes packets in a
switching-based mechanism and introduces acceptable overhead.
Our simulation results demonstrate that its performance is much
better than ECMP and close to MPTCP.

Index Terms—Datacenter Network, Traffic Balancing, ECMP,
MPTCP, MCS

I. INTRODUCTION

In modern datacenter networks, there are many equivalent
paths between any server pair, which provide sufficient server-
to-server bandwidth and quite a good failure tolerance. ECMP,
which uses the hash value of TCP/UDP 5-tuple for next hop
selection, is often used for distributing traffic among equivalent
paths [1], [2], [3], [4]. However, the effectiveness of ECMP is
limited because the path selection is totally random.

Recently, many advanced traffic balancing solutions have
been proposed. Some of these solutions propose that the
datacenter should modify the network by introducing central-
ized scheduling or using specialized switches to balance the
traffic [5], [6], [7], [8]. Some other solutions propose that end
users should employ a new transport protocol to balance the
traffic in order to get better performance [4], [9]. There are
also some solutions which introduce spraying-based balancing
mechanisms [10], [11], [12], [13]. However, none of these
solutions are widely used.

Problems of the above solutions are obvious. Central-
ized scheduling has a scalability problem. Using specialized
switches introduces more cost and complexity. New transport
protocol and reordering required by spraying-based mecha-
nisms are only possible when the operating systems of end
users can be controlled by the datacenter operator. Therefore,
we need a new traffic balancing solution other than the above

types.
ISBN 978-3-901882-94-4 © 2017 IFIP

In this paper, we propose a traffic balancing solution based
on edge-switching, named Multi-Channel Scatter (MCS).
MCS requires no modification to the network (as long as
ECMP is used) or the operating systems of end users. MCS
works in a shim layer between the network fabric and end
users, which is often virtual switches in hypervisors. MCS
scatters packets in one TCP flow to several different forward-
ing paths (channels) by changing the 5-tuple. MCS leverages
an elaborate switching procedure to eliminate the impact of
packet out-of-order, uneven traffic distribution, and failures.
In order to improve the performance, MCS does not buffer
any packet or use any fine-grained timer. According to our
preliminary implementation based on OVS, the overhead of
MCS is acceptable.

We have evaluated MCS with two types of simulations.
First, we performed simulations of a scenario with a simple
topology as a benchmark. The results show that 8-channel
MCS has a much better performance than ECMP and is
approximate to MPTCP, even in the case of asymmetric
topology. It is also demonstrated that MCS can guarantee
fairness among scattered flows, and the impact of failures is
restricted. Second, we performed a simulation of a scenario
with a relatively large-scale topology (8-ary fat tree [14]). The
results also show that MCS can achieve a good performance
very close to MPTCP. In a word, MCS is effective.

The main contribution of this paper is to propose a traffic
balancing solution based on edge-switching without modifi-
cations to the network. Since MPTCP is approximate to the
optimal traffic balancing, we do not argue that MCS is better
than MPTCP. In fact, the aim of MCS is to get a performance
close to MPTCP without assistance of end users. MCS and
MPTCP have different application scenarios. MPTCP is used
by end users, while MCS is deployed by the datacenter
operator. MPTCP may not be used by end users because of
its inherent drawbacks. However, MCS can still work in such
a case.

The rest of this paper is organized as follows: In Section II,
we introduce the related works. Section III describes MCS
from a high-level aspect. We explain the design details of
MCS in Section IV. Section V makes some discussions on
the channel number, fairness, GRO friendliness, adaption to
some other techniques and overhead. In Section VI, we show
the evaluation of MCS. We conclude this paper in Section



VIL

II. RELATED WORKS

There are a lot of literatures focusing on traffic balancing
in datacenter networks. Hedera [5] and MicroTE [6] require
a centralized scheduler and openflow switches to reschedule
flows. Conga [7] and HULA [8] require specialized switches
with functionalities of flowlet splitting and utilization probing.
The above two types of solutions have inherent drawbacks:
The former one cannot balance highly dynamic traffic; The
latter one cannot handle dense flow arrival very well. Besides,
network modifications in these solutions are costly and have
not been proved viable in a production environment.

There are also some proposals that only change end hosts
with new TCP protocols. MPTCP [4] is a solution which uses
several subflows to transmit data. It has some disadvantages,
including high computation overhead and incompatibility to
middleboxes [15]. FlowBender [9] uses ECN feedback (ECE
flag in TCP header) to detect congestion and change forward-
ing path by using different TTL value (switches must support
TTL-ECMP [16]). These solutions require datacenter users
changing the transport protocols by themselves, which is not
always possible in a cloud scenario.

Some other literatures propose per-packet spraying to bal-
ance traffic, like DRB [11] and DRILL [12]. DcTail [10]
is also a per-packet spraying solution on a lossless ethernet
(with PFC pause). Similarly, Presto [13] splits one flow to
segments of 64KB (flowcell) and uses different paths to
forward them. Since these spraying-based solutions introduce
pervasive packet out-of-order, they require an extra reorder-
ing mechanism at the end hosts. Besides the overhead of
reordering, these solutions have another drawback that they
cannot fit asymmetric topology very well [17]. Therefore,
spraying-based solutions are not good choices in a production
environment.

To reduce the amount of packet losses, end users in dat-
acenters often use DCTCP [18] to reduce the congestion
window. For the cases when the users do not enable these TCP
modifications, a virtualized congestion control with similar
behavior can be deployed in the virtual switches [19], [20].
The virtualized congestion control limits the sending rate by
reducing the receive window size, because the actual sending
rate is determined by the minimum of the receive window size
and the congestion window size.

III. MCS OVERVIEW

MCS works in a shim layer between the network fabric and
end users, like [19] and [20]. This shim layer can be the virtual
switch when VMs are provisioned, or the edge switch when
physical hosts are provisioned. In this paper, we only consider
MCS in a virtual switch. MCS aims to scatter the packets in
one TCP flow into several different forwarding paths. Neither
the network fabric nor the end user is aware of the scatter:
The network fabric uses ECMP, and end users use original
TCP. Note that MCS will not change UDP or other non-TCP
packet processing. Fig. 1 depicts the deployment of MCS.

i |
| 1
I A :
i I
ORI [N //7etii e, A0\ W
Virtual Virtual ‘ MCS
Switch AHED Switch || MCS Agent
v
Non-TCP TCP TCP TCP TCP
Socket Socket Socket Socket Socket
VM VM VM VM
Server Server Server

Fig. 1. MCS works in a shim layer between the network fabric and end users
(e.g. virtual switches in hypervisor). MCS scatters the packets in one TCP
flow into several different forwarding paths (channels) when the both sides
support MCS and reside in different hosts.

For simplicity, we use the term u-flow to refer to the TCP
flow from the view of end users, while using the term n-flow
to refer to the TCP flow from the view of network fabric. In
the case of ECMP, a u-flow is identical to the corresponding n-
flow. ECMP cannot result in perfect traffic balancing because
a u-flow can only get through one path (determined by n-flow)
during its lifetime. However, the 5-tuple of u-flow and n-flow
have different uses for the network fabric (as a forwarding
identifier) and end users (endpoint identifier). Therefore, the
identifiers of u-flow and n-flow should be decoupled.

MCS breaks this coupling by changing (destination/source)
port number in TCP headers. MCS at the transmit side will
set different port numbers for different data packets, and put
the information for recovering the original port number in an
extra TCP option named MCO (Multi-Channel Option, shown
in Fig. 2). Different port numbers lead to different forwarding
paths when ECMP is used. Inspired by wireless transmission,
we use the term channel to refer to one port number and the
corresponding forwarding path. MCS at the receive side will
remove the MCO and recover it to the original packet. In this
way, packets in different channels will traverse different paths,
which is transparent to both the network fabric and end users.

MCS introduces pervasive packet out-of-order, which will
harm TCP performance significantly if it is not well handled
[21]. MCS does not employ reordering buffer like [11] and
[12] does. The reason is that we want to avoid large buffers
and fine-grained timers to reduce overhead and make hard-
ware offloading simpler. Instead, MCS uses a switching-based
processing! for each inbound and outbound packet. MCS can
differentiate packet out-of-order from packet loss, and filter
duplicated ACKs to prevent unexpected retransmission. In
addition to out-of-order handling, MCS can detect conges-
tion and failure to change traffic distribution across different
channels. MCS also extends the window control mechanism
introduced by [19] and [20] to avoid packet loss.

MCS maintains a capability table in it, which keeps the

I'There are only three types of action for each TCP packet: change the
packet header, forward it and drop it.



0 8 16 32
ReceivedCE| Received | Received
Bitmap Bitmap Packets Channel ID

Global Sequence Number (GSN)

Local Sequence Number (LSN)

Fig. 2. Composition of MCS Option (MCO).

information whether a server supports MCS or not?>. Only
when the peer side is not in the same host and supports MCS,
MCS processing will be applied. Across-internet TCP flows
can also use MCS, as long as the gateway supports MCS
processing. For a packet belonging to a TCP flow which is
scattered by MCS, a flag in the reserved bits of the TCP header
should be set to inform the peer side.

MCS and MPTCP have some similarities. However, they
are totally different solutions. The main difference is that
MPTCP is a TCP implementation which can be used by end
users, while MCS is a switching functionality at the network
edge which should be deployed by the datacenter operator.
MCS is not an MPTCP proxy [22] either. An MPTCP proxy
should establish connections by itself and maintain its own
buffers, which is not a good choice because of high overhead.
Therefore, how to design MCS is an entirely new problem.

IV. MCS DETAILS
A. MCO and Channels

In MCS, packets should carry some extra information,
including local sequence numbers and feedbacks. This in-
formation is exchanged as a TCP option (MCO), which is
inserted by MCS on the transmit side and removed by MCS
on the receive side. As shown in Fig. 2, it is composed of
six fields (12 bytes in total): First three fields are feedbacks
(see in Scction IV-D, IV-E and IV-F). The fourth ficld is the
channel ID. The fifth field is the global sequence number
(GSN). The sixth field is the local sequence number (LSN).
Note that MCO is invisible to end users, so that it does not
need Kind and Length fields like other TCP options. Because
the segmentation offloading (e.g. TSO) happens in physical
NICs (not in the virtual NICs of VMs), MCS processes TCP
data packets before segmentation. That means inserting MCO
will not introduce a noteworthy MTU problem.

For one TCP flow, each channel has its own local sequence
space. The sequence number field in the TCP header should be
changed to the local sequence number in the current channel.
Although the local sequence number is already in the required
field of a TCP header (denoted by QSN), LSN in MCO is
still indispensable. The reason is the existence of segmentation
offloading. The offloading segments a large TCP data packet
to small ones which comply with MTU, while it just copies
all TCP options to each segment packet. Putting LSN in MCO

2Since MCS works only when the both sides support it at the same time,
it can also be implemented as an agent in the protocol stack if the server is
not virtualized (see Fig. 1).

Flow States (68 Bytes):
32-bit NextLocSegNo [8] (NLSN)
32-bit NextSegNo (NSN)
32-bit LastACKNo (LAN)
32-bit RetrSegNo (RSN)
32-bit MilestoneSegNo (MSN)
16-bit WindowSize (WS)
16-bit FreshnessVector (FV)
16-bit SkipTokenVector (SKV)
8-bit WeightVector (Wv)
8-bit CongestedBitmap (CB)
8-bit ActiveBitmap (AB)
8-bit InitializedBitmap (IB)
8-bit ReceivedBitmap (RB)
8-bit ReceivedCEBitmap (RCB)
4-bit WindowScale (WSC)
4-bit CurrentChannel (cec)
8-bit Flags (FL)
8-bit Alpha (AL)
8-bit ReceivedPackets (RP)
32-bit Timestamp (TS)

Fig. 3. Flow states in 8-channel MCS. The notations in brackets are
abbreviations of the fields. Many fields are bitmaps or vectors, meaning that
each of them contains the corresponding value for all channels. The Flags field
includes SlowStart, Close, Loss, and Initialized. The usage of most fields is
explained in Section IV.

makes it simpler to compute the actual sequence number of a
packet (denoted by ASN): ASN = GSN + (QSN — LSN).

MCS on the transmit side selects the channel for each
TCP data packet in a weighted-round-robin mechanism (more
details are in Section IV-D). In the rest of this section, we
assume that 8 channels are used (from channel O to channel
7). Let NPN denote the (source/destination) port number used
for the n-flow and UPN denote the (source/destination) port
number used for the u-flow. If MCS on the transmit side
decides to use channel ¢ to send a data packet, it should change
the port number in the TCP header to NPN = UPN—i. MCS on
the receive side should change the port number in the reverse
way: UPN = NPN+i.

B. Flow States

MCS maintains a set of states for each flow as shown in
Fig. 3 (8 channels). The usage of most fields will be explained
in the following. For one flow, the states require 68 bytes
for 8-channel MCS. All the flow states are organized in a
hash table. Note that 2 flows are associated with one TCP
connection (paired in the table). According to [23], one server
has 100s to 1000s concurrent connections. Therefore, MCS
needs O(100KB) to store all the flow states, which is not a
problem for current CPU cache.

C. Out-of-order Handling

The flow states stored in MCS include the next local
sequence number (NLSN) for each channel. If a received
packet carries an expected local sequence number in the
corresponding channel, it will not be viewed as a packet loss
even if the global sequence number is not in sequence. Note



that the local sequence number will never be acknowledged. If
a packet with a specific local sequence number is dropped, the
retransmission of this packet will carry a new local sequence
number, and may use another channel.

Algorithm 1 shows the simplified procedure of out-of-order
handling. Since Last ACK Number (LAN) is also kept in the
flow states, MCS can identify duplicated ACKs. If there is no
packet loss, all duplicated ACKs will be dropped directly by
MCS (line 13). If the ACK is piggybacked by a data packet,
MCS will unset the ACK flag instead of dropping the packet.
If there is a packet loss (when a local sequence gap is found in
any of the channels), MCS on the receive side will set the Loss
flag in the flow states (line 6). The duplicated ACKs will pass
MCS when the Loss flag of the reverse flow is set. In order
to unset the Loss flag after the retransmisson is completed,
the flow states also include a retransmission sequence number
(RSN). When a packet loss is found, RSN is set to the global
sequence number of the current packet (line 7). After the
reverse ACK number is larger than RSN, the Loss state will
be unset (line 17).

Algorithm 1 Out-of-order Handling

1: procedure ONRECEIVEDATA (Packet p, Channel c)

2: qsn <— Sequence Number in p

3 lsn < Local Sequence Number in MCO

4 gsn < Global Sequence Number in MCO
5: if NLSN. < sn then
6
7
8

Flags.Loss < true
RSN < gsn + (qgsn — lsn)

NLSN. < gsn + p.size

9: procedure ONSENDACK(Packet p, Channel c)

10: an $— Acknowledgement Number in p

11: if LAN = an then > Duplicated ACK
12: if Flags.Loss = false then

13: unset ACK flag in p or drop p

14: else if LAN > an then

15: LAN <+ an

16: if LAN > RSN then

17: Flags.Loss < false

The above mechanism of duplicated ACK filtering may
incur a severe problem when a non-duplicated ACK packet is
dropped in the fabric. As this ACK never reaches the transmit
side, there might be a retransmission. However, since MCS
on the receive side has already changed LAN kept in the flow
states, it will always regard the ACK to the retransmission as a
duplicated one. This may result in endless retransmission. To
cope with this problem, MCS will change LAN to the global
sequence number of the data packet, when LAN is larger than
that (not shown in Algorithm 1).

There is a special case of packet out-of-order. A packet
with FIN flag may arrive at the receive side before the ACK
in 3-way handshake (mainly for small flows). As described in
RFC 793, the TCP receive side will return an RST to close

the connection if it receives a FIN when it is in the state of
SYN-RECV. In order to avoid this problem, after MCS on
the receive side receives a FIN packet, it will generate a TCP
packet without any flag (TCP null packet) first and send it to
the receiver to change the TCP state from SYN-RECV to EST
before the arrival of FIN.

D. Channel Selection

Scattering packets to different channels in round-robin
mechanism does not result in perfect traffic balancing, because
the forwarding path of one channel is random. To achieve
better traffic balancing, MCS detects congestion of different
channels and tries to transmit less data on congested channels.
MCS on the receive side uses CE tag of ECN in IP header
to detect congestion. If a channel is congested, MCS on the
receive side will keep a record in the flow states (RCB) and
give a feedback to the transmit side along with the next packet
(as ReceivedCE Bitmap in MCO) going back.

When MCS receives a congestion feedback, it will keep a
record in the flow states (CB). MCS will update the selection
weight of different channels (WV) according to CB every RTT.
MCS uses the method shown in Algorithm 2 to realize RTT
estimation (widely used in TCP implementations). If a channel
is congested in the recent RTT, the selection weight of this
channel is increased by 1 unless it equals to 3 (line 6-7). In
order to maintain the stability, at most one channel is allowed
changing its weight (line 8). If the weight of every active
channel is larger than 0, we decrease each of them by 1 as a
normalization (line 10).

Algorithm 2 Weight Update
1: procedure ONRECEIVEACK(Packet p)
2: an < Acknowledgement Number in p
3 if MSN < an then
4 for each channel ¢ do > Update selection weight
5 if ¢ is congested in the recent RTT then
6: if WV, < 3 then
7
8
9

WV. <+ WV.+1
break
if WV, > 0 for any i € [0, 7] then
10: WV < WV—-0x55
11: MSN < NSN + 1

There are four possible values for selection weight: 0,1,2,3.
The weight value w means that for each channel, the probabil-
ity to select this channel is 27". It equals to weighted-round-
robin which uses 27" as the weight. MCS uses Skip Token
(SKV) to realize the channel selection as shown in Algorithm
3. Skip token means how many times this channel should be
skipped before it is selected. If one channel is skipped, MCS
will check the next channel in the round-robin sequence.

E. Window Control

Weight adjustment can help MCS to move traffic from
congested channels to uncongested channels. However, if all
the channels are congested, traffic shifting does not work. In



Algorithm 3 Channel Selection
1: procedure ONSENDDATA (Packet p)
2: for i in [1,9] do

3: ¢ < (c+14) &7 > in the round-robin sequence
4: if AB. = true then © the channel must be active
5: if SKV. = 0 then

6: SKV. + (1 <WV,) -1

7: break

8: else

9:

SKV. «+ SKV.—1

order to avoid packet loss, MCS introduces the window control
mechanism in VCC [19] and AC/DC TCP [20]. MCS keeps a
window size (WS) in the flow states and changes it in the way
of DCTCP. Therefore, MCS can change the window size field
in the TCP header of ACK packets (as the receive window)
to regulate the flow rate, because the flow rate is determined
by the minimum of the congestion window and the receive
window.

For each packet received by MCS, WS kept in MCS can
be increased. Algorithm 4 shows this procedure. Similar to
ordinary TCP congestion control, the increase of WS has two
types: slow-start increase (at the beginning) and congestion-
avoid increase (after a congestion). Here MSS is the maximum
segment size. Received Packets in MCO is the number of
packets (without CE tag) acknowledged by this packet’. MCS
on the receive side increases the value of RP (in flow states)
when a packet without CE tag is received, and will put it in
Received Packets in MCO when a packet is returned to the
send side (set RP to O at the same time). The reason why
MCS needs Received Packets is that the ACK sequence may
be disrupted in MCS (mainly caused by disorders).

Algorithm 4 Window Update
1: procedure ONRECEIVE(Packet p)
2: rp <— Received Packets in MCO
if Flags.SlowStart then
adder < MSSxrp/2

3

4

5: else
6 adder <~ MSSxMSS xrp/WS
7 WS + WS+adder

8: procedure ONNEWRTT
9: if CB # 0 then

> see in Algorithm 2

10: Alpha < (1 — g)xAlpha+g
1 WS < WSx(1—Alpha/2)
12: else

13: Alpha «+ (1 — g)xAlpha

Similar to DCTCP, WS must be reduced every RTT when
there is congestion (line 11). Here g is preconfigured according

3Note that GSO will copy TCP options to each of the segments, which
will make the sum of Received Packets in MCO much larger than the actual
value. Therefore, MCS only considers the MCO with LSN equaling to QSN
when it updates WS.

to [18]. Note that MCS does not use the accurate ratio of ECE
like DCTCP because the ratio is meaningless since more than
one paths are used simultaneously. Instead, MCS assumes the
ratio is always 1 when there is a congestion (line 10).

F. Failure Detection

Failure happens frequently in datacenter networks. Assum-
ing a link or a switch fails, for original TCP, all connections
using this failed link or failed switch cannot continue before
routing update completes. MCS is a double-edged sword for
failures. On one hand, for each ongoing flow, scattering traffic
guarantees that the flow can continue with many timeouts be-
fore routing update completes, unless all channels get through
the failure. On the other hand, the number of flows affected
by one failure is amplified. Note that the impact of failures
discussed here only exists before routing update completes.
After routing update completes, no traffic will get through the
failure.

MCS can detect failed channels and circumvent them during
the remaining of its lifetime. Failure detection is different from
congestion detection because no packet is able to traverse a
failed channel to arrive at the receive side. Therefore, MCS
uses an indirect feedback mechanism. Similar to congestion
detection, MCS on the receive side will give a feedback
of channel availability. The Received Bitmap in MCO is
used for the feedback. MCS on the receive side will set the
corresponding bit in RB (in flow states) to 1 when it receives a
packet from one channel. When a packet is going back to the
transmit side, RB should be put as Received Bitmap in MCO,
and be unset afterwards.

MCS on the transmit side uses freshness (FV) to find failed
channel. Algorithm 5 shows the relevant procedures. When
MCS receives a MCO, FV should be updated according to
Received Bitmap (line 2-6). When MCS transmits a data packet
in one channel, the freshness of this channel can be changed
from N to N — 1 (line 7-9). On every RTT, the freshness of
each channel will be decreased by 1 (line 13). If the freshness
of one channel is 0, it means that there is no packet arriving at
the receive side from this channel in the recent N — 1 RTTs.
Therefore, MCS regards this channel as an inactive one (line
15). MCS will not use a channel which is inactive.

In MCS, we set N = 3 (2 bits are required for the freshness
of one channel). That means if a data packet has not been
received in 2-3 RTT/RTO, it can be viewed as a failure.
Assuming RTT is O(100us) and RTO is O(10ms), MCS can
detect failure in not longer than 100ms in practical, which can
be faster than routing updates. This failure detection has tiny
false positive when the packets sent in one channel are all
dropped before they reach the receive side. Fortunately, false
positive has no significant impact because there are still other
available channels.

G. Flow States Removal

MCS should remove the flow states once after a connection
is disconnected. A connection is disconnected after packets
with FIN flag are received by both sides, and there is a LAST



Algorithm 5 Failure Detection
1: procedure ONRECEIVE(Packet p)
2: rb < Receive Bitmap in MCO

3 for each channel ¢ do

4: if rb & (1 < ¢) # 0 then

5: FV.+ N

6 AB. < true

7. procedure ONSENDDATA(Packet p, Channel c)
8: if FV. = N then

9: FV.+ N -1

10: procedure ONNEWRTT > see in Algorithm 2

11: for each channel ¢ do

12: if 0 < FV. < N then
13: FV.<« FV.—1
14: else if FV. = 0 then
15: AB, < false

ACK packet to acknowledge the second FIN packet as a final
step. MCS keeps a Close flag in the flow states. If a packet
with FIN flag is received, the Close flag is set to 1. When an
ACK packet is received, if the Close flags in the corresponding
flow and the reverse flow are both 1, the flow states will be
removed.

Sometimes, the connection does not disconnect normally.
An entry of flow states should be removed if it has not been
accessed for some time (e.g. 1 second), with the help of
timestamp (7) in the flow states. This mechanism may make
states of some flows be removed unexpectedly. Therefore,
we allow the states of a flow to be initialized by any non-
FIN packet (not only SYN packet). A flow whose states are
removed by timeout can regenerate the state information in
this way.

V. DISCUSSIONS
A. Channel Number

In Section IV, we assume MCS uses 8 channels. MCS
can use more channels or fewer channels. Generally, more
channels result in better traffic balancing. However, if MCS
uses more than 8 channels (e.g. 16 channels), MCO and flow
states must be larger than those described in Section IV, and
the processing overhead is also slightly increased. According
to our evaluation in Section VI, since the performance of 8-
channel MCS is already approximate to that of MPTCP, we
suggest to use 8-channel MCS as a default configuration.

B. Fairness

Different TCP flows scattered by MCS can fairly share the
bandwidth because the window size update (in Section IV-D)
complies with AIMD. However, the fairness between flows
scattered by MCS and flows not scattered by MCS is not
guaranteed. Since MCS imposes ECN on the scattered flows,
it will starve the flows which are not scattered nor enable ECN
because of the reason revealed in [19], [20]. Therefore, we had

better deploy MCS in as many servers as possible to maintain
the fairness.

C. GRO Friendliness

GRO, which can assemble small TCP segments into a large
packet in NICs, is widely used to reduce the CPU overhead
on the receive side. Different from [13], MCS does not need
reordering in GRO. This is because there is no out-of-order
from the aspect of n-flows. Hence the segments which are
segmented from one data packet by GSO can be assembled
by GRO easily. Note that the segments which are segmented
from different data packets will not be assembled because the
MCOs in these segments are different.

D. Adaption to Other Techniques

1) Adaption to VxLAN: VXLAN has some impacts on
MCS. Since the source port number in the outer UDP header
is often a hash of headers of the inner frame, the multi-
channel scatter can still work. However, MCS relies on ECN.
That means the network must support ECN in the context of
encapsulation. Otherwise, the channel selection (Section IV-D)
will degrade to round-robin and window control (Section IV-E)
will not take effect.

2) Adaption to SR-IOV: In order to improve the perfor-
mance of virtualization, many datacenters employ hardware
acceleration techniques like SR-IOV, which allow VMs to
get/put data from/to physical NICs directly. In this case, to
realize multi-channel scatter, MCS must be implemented in
the physical NICs. We do not further explore this area in this
paper, but we believe it is not hard to develop NIC-based MCS
because MCS is a switching-based solution without any buffer
or any fine-grained timer.

E. Overhead

One main concern of MCS is its overhead. The commu-
nication overhead is obvious: 12-byte MCO in each packet.
According to the traces uncovered by Facebook [23], the
average packet size in the network fabric is about 400 bytes
for web servers, and about 1400 bytes for Hadoop servers.
Therefore, the average communication overhead of MCS is
about 3% for web servers and 0.9% for Hadoop servers. This
overhead is acceptable because traffic balancing is improved
(both average and maximal flow completion time can be
reduced).

The computation overhead of MCS deserves more attention.
We only consider the extra overhead beyond ordinary virtual
switches like OVS. Besides switching-based operations like
search in the flow table and update of packet headers, MCS
introduces flow states manipulations and MCO manipulations.
Fortunately, all the data used by MCS can be stored in the CPU
cache. To evaluate the computation overhead, we implemented
MCS in the datapath of OVS as a prototype. We let two
servers (1Gbps NICs) connect directly with a link. We use
iperf to generate a TCP flow with a throughput larger than
900Mbps. When original OVS is used in both servers, the
sys CPU utilization is about 0.53% (Intel 17-4790, 3.60GHz).



4 Aggregate Switches

m Servers

Fig. 4. Simple two-tier topology used in the benchmark simulation.

When MCS-enabled OVS is used, the sys CPU utilization is
increased to 0.49% (smaller than 1.1x). It demonstrates the
computation overhead of MCS is acceptable.

VI. EVALUATION
A. Methodology

We evaluated MCS with simulations in NS3. To show
the improvement, we used ECMP with VCC [19] as the
baseline solution. As comparisons, we also implemented other
two traffic balancing solutions. First is MPTCP [24] with 8
subflows (with DCTCP congestion control). A data packet
is always assigned to the subflow with the largest available
window. Second is round-robin packet spraying with a reorder
buffer and DCTCP congestion control at end hosts, denoted
by PerPacket.

We performed simulations of two different scenarios. In the
first scenario, we simulated a simple topology as shown in
Fig. 4. There are two edge switches (ToR), both connect to 4
aggregate switches and m hosts. All links in this topology have
a capacity of 10Gbps. Host A; sends SOMB data to host B;.
All the flows start at the same time. We regard this scenario
as a benchmark. The main metric is flow completion time,
especially average flow completion time (AFCT) and maximal
flow completion time (MFCT). To eliminate the impact of
randomness, we repeated the benchmark simulation for tens
of times to get the mean value of AFCT and MFCT.

In the second scenario, we simulated an 8-ary fat tree
topology [14] (with 128 servers), and all links have a capacity
of 10Gbps. We generated all-to-all TCP traffic randomly. We
used two types of TCP flows in this simulation. One is large
flows with average size SOMB. The other is small flows with
average size 20KB. The size of both types of flows is subject
to pareto distribution. And the interval time of two consequent
flows is subject to exponential distribution. The overall average
link utilization is 50%. The simulation results in this scenario
can reveal the effect of MCS in practical.

B. Comparing Different Channel Numbers

To evaluate the impact of the channel number, we ran the
benchmark simulation with different channel numbers. Fig.
5 shows the results (AFCT and MFCT). We find that MCS
is better than Baseline even when there are only 2 channels.

W
wn
(=

| | Baseline

Il 2-channel MCS
|| I 4-channel MCS
L/ 8-channel MCS

99
(=3
=]

a1
W
=]

o3
f=3
(=3

—_
w
(=]

Flow Completion Time (ms)
)
S

wn
=]

(=]

m=8 m=16

Fig. 5. Results of the benchmark simulation when different channel numbers
are used in MCS. The height of each bar represents MFCT, while the height
of each hatched area represents AFCT.

w
w
(=3

| | Baseline

I MCS

|| I MPTCP

|1 PerPacket

e

m=2 m=4

W
(=3
S

[ 5]
W
(=)

o3
i=3
=3

—
w
=

Flow Completion Time (ms)
)
S

w
(=)

(=]

m=8
(a) Symmetric Topologoy

450
400} | EBEE Baseline m
|| I MCS

|| I MPTCP
| | PerPacket

wn
=]

w
(=}

NN W W
i=3 (=3
=3 =3

—
w
=

Flow Completion Time (ms)
S
S

wn
=

(=]

m=4-

m=8
(b) Asymmetric Topologoy

Fig. 6. Results of the benchmark simulation which compares ECMP, MCS,
MPTCP and PerPacket. The height of each bar represents MFCT, while the
height of each hatched area represents AFCT.

More channels can introduce better performance. However,
the benefit of increasing channels is limited. That is why we
do not consider 16-channel MCS (needs larger MCO and flow
states). In the following, we take 8-channel MCS as the default
configuration.

C. Comparing Different Traffic Balancing Solutions

We compared MCS with Baseline, MPTCP and PerPacket.
Fig. 6(a) shows the simulation result. PerPacket is the best



350
300! | EE Baseline
£ ||mmE MCSw/ GSO
2250 | Il MCS wio GSO
= 200}
£
2 150
£
o
© 100
z
2
0

m=16

Fig. 7. Results of the benchmark simulation in the GSO case. The height of
each bar represents MFCT, while the height of each hatched area represents
AFCT.

solution because it can realize completely even traffic distri-
bution. The performance of MPTCP is very close to PerPacket.
Baseline has the worst performance. MCS is much better than
Baseline and close to MPTCP. Since MCS is a switching-based
solution, the performance gap between MCS and MPTCP is
acceptable. Note that a solution with a higher MFCT may
have lower AFCT because when all the links are fully utilized,
unfair bandwidth sharing will lead to lower AFCT.

Asymmetric topology is a common situation in real datacen-
ter networks, which is often caused by failures. We also com-
pared the benchmark results when the topology is asymmetric:
we changed the capacity of link L in Fig. 4 to 5Gbps. We did
not consider weighted ECMP [25] or Weighted PerPacket. Fig.
6(b) shows the result. The performance of Baseline is still not
good. However, PerPacket is almost as poor as Baseline when
m is large. This consequence is expectable [17], because of
fixed weight and the incorrectness of congestion control. In
fact, the reorder buffer in PerPacket consumes more than 1MB
because of packet out-of-order in this case. MPTCP still has
a very good performance, and MCS is close to it.

D. GSO Impact

GSO is very useful to reduce the computation overhead
of data transmission. In this simulation, we evaluate the
impact of GSO. Fig. 7 shows the result in this case. It is
demonstrated that MCS with GSO is still much better than
Baseline. However, it is a little worse than MCS without
GSO. This is because with GSO, the granularity of traffic
scheduling (among different channels) may be coarser. The
degradation extent depends on the data size in one packet
before segmentation.

E. Fairness

We evaluated the fairness among different flows scattered
by MCS. Fig. 8 shows the throughputs of the 4 flows in
the benchmark simulation when m = 4. The throughput is
calculated at the receive side every 1ms. Each line in this figure
represents one flow. It demonstrates although the throughputs
change with time, they fluctuate around approximate values
(about 8Gbps) after the slow start stage.

10

el

(=)

Throughput (Gbps)

0 20 0 60 80 100 120 140 160
Time (ms)

Fig. 8. Results of the benchmark simulation when m = 4. The throughput
is calculated at the receive side every 1ms.

10

Throughput (Gbps)
o]

0o

0 20 0 60 80 100
Time (ms)

Fig. 9. Results of the benchmark simulation in the failure case. The
throughput is calculated at the receive side every lms.

F. Failure Detection

We also evaluated the failure detection of MCS. In this
simulation, we considered only one flow from host A; to host
Bj. We let link L fail at the time 10ms after the flow starts.
The TCP timeout is set to 10ms. Fig. 9 shows the throughput
of this flow when some channels go through link L. At 10ms
after the flow starts, the throughput decreases dramatically
because there are packet losses. Since all the duplicated
ACKs are filtered in this situation, fast retransmission cannot
be triggered. After a timeout (at 20ms), the send side can
retransmit data. However, it encounters packet losses again
because the failed channels are still used. At about 42ms,
MCS detects the failed channels. Then it will skip the failed
channels forever, and the throughput increases to the normal
value. It takes MCS about 32ms to detect failed channels in
this example, which complies with the analysis in Section
IV-F.

G. Fat-Tree Simulation

In this simulation, we simulated the second scenario de-
scribed in Section VI-A. Fig. 10(a) and Fig. 10(b) show
the CDF of flow completion time of large flows and small
flows separately. For large flows, the performances of MCS
and MPTCP are close to each other and both better than
Baseline (reduce the flow completion time by about 30%
at 50th percentile). For small flows, MCS still outperforms
Baseline and is approximate to MPTCP.



1.0
0.8
E 0.6 . g
O gl — Baseline | |
— MCS
02 —  MPTCP
0'?00 10! 102 103 104
Flow Completion Time (ms)
(a) Large Flows
1.0
0.8
E 0.6+ ' E
O gl — Baseline | |
— MCS
02 —  MPTCP
0T 10° 10" 102 10 104

Flow Completion Time (ms)

(b) Small Flows

Fig. 10. CDF of flow completion time in the fat-tree simulation.

VII. CONCLUSION

In this paper, we propose a traffic balancing solution based
on edge-switching, named MCS. MCS can scatter packets in
one TCP flow to several different forwarding paths (channels)
to make traffic distribute more evenly. It can filter duplicated
ACKs triggered by packet out-of-order to avoid unnecessary
retransmission and window suppression. MCS uses congestion
detection with ECN to update the weight of different paths and
avoid packet loss. Failed channels can be detected and circum-
vented in MCS. MCS introduces acceptable communication
and computation overhead.

We evaluated MCS with simulations. The benchmark sim-
ulation results show that 8-channel MCS has a performance
close to MPTCP, even in the case of asymmetric topology.
Besides, MCS has good robustness when there is a failure. In
a large-scale datacenter, MCS can reduce flow completion time
of both large flows and small flows effectively. In a word, MCS
is a good choice for the datacenter operator to achieve traffic
balancing when they cannot control the operating systems of
end users.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-
tion of China (No.61472213) and sponsored by Huawei. Jun
Bi is the corresponding author.

REFERENCES

[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, E. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hlzle, S. Stuart, and A. Vahdat,

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

“Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network,” in SIGCOMM, 2015.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z. Lin, and V. Kurien, “Pingmesh: A
Large-Scale System for Data Center Network Latency Measurement and
Analysis,” in SIGCOMM, 2015.

“Introducing: Data Center Fabric, the Next-generation Facebook Data
Center Network,” https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric- the- next- generation-facebook- data-center
-network/, 2014.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in SIGCOMM, 2011.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
NSDI, 2010.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in CoNEXT, 2011.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. Lam, F. Matus, R. Pang, N. Yadav, and G. Varghese,
“CONGA: Distributed Congestion-aware Load Balancing for Datacen-
ters,” in SIGCOMM, 2014.

“HULA: Scalable Load Balancing using Programmable Data-
Planes,”  https://ons2016.sched.org/event/61Rj/sosr-hula-scalable-load
-balancing-using-programmable-data-planes, 2016.

A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “FlowBender:
Flow-level Adaptive Routing for Improved Latency and Throughput in
Datacenter Networks,” in CoNEXT, 2014.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the Flow Completion Time Tail in Datacenter Networks,” in SIGCOMM,
2012.

J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet Load-balanced, Low-latency Rout-
ing for Clos-based Data Center Networks,” in CoNEXT, 2013.

S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian, “Micro Load
Balancing in Data Centers with DRILL,” in HotNets, 2015.

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based Load Balancing for Fast Datacenter Networks,” in
SIGCOMM, 2015.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in SIGCOMM, 2008.

C. Raiciu, C. Paasch, S. Barreand, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in NSDI, 2012.
“Avoiding Network Polarization and Increasing Visibility in Cloud
Networks Using Broadcom Smart Hash Technology,” http://tec.
icbuy.com/uploads/2013/1/5/Smart-Table_Technology_%E2%80%94 _
Enabling_Very_Large_Server,_Storage_Nodes,_and_Virtual_Machines_
to_Scale_Using_Flexible_Network_Infrastructure_Topologies.pdf,
2013.

A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the Impact of Packet
Spraying in Data Center Networks,” in INFOCOM, 2013.

M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
SIGCOMM, 2010.

B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized Congestion Control,” in
SIGCOMM, 2016.

K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and A. Akella,
“AC/DC TCP: Virtual Congestion Control Enforcement for Datacenter
Networks,” in SIGCOMM, 2016.

K. Leung, V. Li, and D. Yang, “An Overview of Packet Reordering
in Transmission Control Protocol (TCP): Problems, Solutions, and
Challenges,” IEEE Transactions on Parallel and Distributed Systems,
April 2007.

X. Wei, C. Xiong, and E. Lopez, “MPTCP Proxy Mechanisms,” https:
/tools.ietf.org/html/draft- wei- mptcp- proxy-mechanism-02, 2015.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. Snoeren, “Inside the Social
Network’s (Datacenter) Network,” in SIGCOMM, 2015.

C. Paasch, R. Khalili, and O. Bonaventure, “On the Benefits of Applying
Experimental Design to Improve Multipath TCP,” in CoNEXT, 2013.
J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers,” in EuroSys, 2014.



