
BFR: a Bloom Filter-based Routing Approach for
Information-Centric Networks

Ali Marandi∗, Torsten Braun∗, Kavé Salamatian† and Nikolaos Thomos‡
∗University of Bern, Bern, Switzerland
Email:{marandi,braun@inf.unibe.ch}
†Université de Savoie, France

Email: kave.salamatian@univ-savoie.fr
‡University of Essex, Colchester, United Kingdom

Email: nthomos@essex.ac.uk

Abstract—Locating the demanded content is one of the major
challenges in Information-Centric Networking (ICN). This pro-
cess is known as content discovery. To facilitate content discovery,
in this paper we focus on Named Data Networking (NDN) and
propose a novel routing scheme for content discovery, called
Bloom Filter-based Routing (BFR), which is fully distributed, con-
tent oriented, and topology agnostic at the intra-domain level. In
BFR, origin servers advertise their content objects using Bloom
filters. We compare the performance of BFR with flooding and
shortest path content discovery approaches. BFR outperforms
its counterparts in terms of the average round-trip delay, while
it is shown to be very robust to false positive reports from
Bloom filters. Also, BFR is much more robust than shortest path
routing to topology changes. BFR strongly outperforms flooding
and performs almost equal with shortest path routing with
respect to the normalized communication costs for data retrieval
and total communication overhead for forwarding Interests. All
the three approaches achieve similar mean hit distance. The
signalling overhead for content advertisement in BFR is much
lower than the signalling overhead for calculating shortest paths
in the shortest path approach. Finally, BFR requires small storage
overhead for maintaining content advertisements.

I. INTRODUCTION

NDN is one of the most prominent ICN [1] proposals that aim
to enhance and/or replace the current IP-based communication
model. It is based on hierarchical names for content objects, in-
network caching mechanisms, and content-level security. NDN
pursues at first a long time goal of the networking community,
i.e., providing location independence to communication [2]. To
reach this goal, content retrieval should be content-oriented,
decoupling content objects from locations so that users can
retrieve them even if their locations change. There are two
packet types in NDN: Interest and Data. Users issue requests
for content sending Interests, which carry hierarchical content
names rather than IP addresses. Therefore, lookup and routing
operations are based on hierarchical content names as well.

Each NDN node uses three main data structures: Content
Store (CS), in which each node caches the received content,
Pending Interest Table (PIT), where nodes maintain received
Interests and the faces through which the nodes receive them,
and the Forwarding Information Base (FIB), in which each

node maintains information about the next hop face(s) through
which known name prefixes can be reached. In NDN, routing
operations are performed only for Interests, meaning that Data
packets use the traces left by Interests in the corresponding PIT
entries, and follow the reverse path of Interests to determine
the locations of the content requesters. An Interest packet has a
nonce field, which contains a random value. This field is used
to detect and discard duplicate Interests coming from different
paths. Hence, loop freedom is ensured for Interests.

In NDN, users issue Interests to request Data packets. It
is necessary to route each Interest over the path(s) through
which it can reach the demanded Data. Hence, routing on
content names is a very important problem in ICN. To route an
Interest, each node looks up the name of the Interest performing
a Longest Prefix Matching (LPM) operation in the FIB. If there
is a FIB entry that contains information about the next hop
face(s) for the name of the Interest, or a prefix of it, the Interest
will be forwarded through the next hop face(s) that are recorded
in the corresponding FIB entry. Therefore, the development of
strategies that optimally populate FIBs is vital for NDN. This
has been the focus of many proposed routing protocols [3]–[6].
When FIBs are populated, the forwarding strategy decides the
face(s) over which an Interest should be forwarded from among
the next hop face(s) specified in the matching FIB entry for
that Interest. For example, the multicast strategy forwards an
Interest over all the faces specified in the matching FIB entry.

In general, there are two main classes of content discovery
solutions in ICN, namely: resolution-based and routing-based.
Resolution-based solutions map requesters with content pro-
ducers at rendezvous points [7]–[9]. These schemes have small
traffic footprints, but their performance degrades when there is
large and dynamic content demands. Routing strategies [3]–[6],
[10]–[12], such as Flooding or algorithms based on Shortest
path calculations, explore a larger area of the network than
resolution-based solutions, and hence, have a higher chance
of finding the content [13]. The Flooding method forwards
all the Interests through all the faces except the incoming
one. This makes flooding inefficient as it wastes significant
bandwidth resources. Differently from flooding, Shortest path
routing solutions forward each Interest only over the shortestISBN 978-3-901882-94-4 c© 2017 IFIP



path to the origin server of the demanded content object. These
routing solutions require full knowledge of the topology as
well as the location of origin servers for all the existing name
prefixes in the network that entails a large overhead.

To avoid wasting network resources through Interests
flooding, an alternative approach is to permit origin servers
advertising their content offers frequently, i.e., whenever new
content objects are available in repositories. Therefore, origin
servers could represent their content offers using Bloom Filters
(BFs) that can represent sets in a compact way. This leads
to a smaller overhead needed for the propagation of content
advertisements. Due to these appealing features of BF-based
content advertisement, in this paper we propose BFR, a routing
protocol that uses BFs for content advertisements from origin
servers for FIB population.

In NDN, temporary copies of a content object might be
cached en-route to the nodes that provide the permanent copies
of the content object. This possibility of in-network caching
enables consumers to retrieve content objects from the caches
that are closer than servers. In our scheme only origin servers
perform BF-based content advertisement. Nevertheless, nodes
receive the content advertisement of an origin server from
all the paths en-route to the origin server and populate their
FIBs accordingly. Further, we adopt the multicast strategy for
forwarding Interests. Therefore, BFR forwards each Interest
in parallel through all the paths towards the origin server of
its demanded content object. The Interest could be satisfied
from the caches before reaching the origin server. Hence, it
is unnecessary for routers to explicitly advertise their cached
content objects, like the scheme proposed in [14], and incur
more advertisement overhead.

BFR is topology oblivious. Hence, it does not need to
propagate and store information about the topology that entails
overhead. In addition, BFR requires reasonable storage and
signalling overhead for content advertisements. Further, it does
not adopt any IP-based routing protocol as primary or fall-
back mechanism. This makes BFR fully content oriented, and
removes any dependencies on IP-based communication models.

The remainder of this paper is organized as follows. Section
II describes the proposed BFR method. Then, Section III
discusses the impact of false positive errors on BFR operation,
robustness to topology changes, and handling of content
migration. Afterwards, we present in Section IV a simulation-
based comparative analysis of the proposed BFR against
flooding and shortest path schemes to illustrate BFR advantages
in practice. We discuss related work in Section V. Section VI
concludes the paper.

II. BLOOM FILTER-BASED ROUTING

In BFR, origin servers represent and advertise their content
objects using BFs. In summary, BFR consists of three phases:
a) Representation of content objects using BFs, b) BF-based
content advertisement, and c) Content retrieval and FIB
population. In the following, we describe each phase in detail.


e1 = /unibe.ch/,

e2 = /unibe.ch/images/,

e3 = /unibe.ch/images/fileName1

Fig. 1. An example for content advertisement BF and related hash functions

A. Representation of content objects using BFs

BF is a space-efficient data structure to represent sets in a
compact way and to support membership queries. When one
represents a set with a BF, false positive probability controls
the performance of the BF, i.e., the probability that an element
that is not in the set is wrongly reported by a BF as being in
the set. In [15], the false positive probability is expressed as a
function of the length of bit table m, the length of the original
set represented by BF n, and the number of hash functions k.
According to [15], when one wants to insert n elements in a
BF and can afford a false positive probability p, the required
size for the bit table m and the number of hash functions k
are respectively given as:{

m = −nln(p)(ln2)2

k = m
n ln2

(1)

In BFR, when an origin server has content objects to offer,
it generates an empty BF for which all the m bits of the bit
array are set to zero. Then, the origin server maps the names
of its content objects into the generated BF. An example of
inserting three URLs into a BF with a parameter set {m =
15, n = 3, k = 3} is presented in Fig. 1. As Fig. 1 shows, the
insertion process consists of feeding each URL to the three
hash functions to get three positions in the bit array and set
all the bits at these positions to 1.

In BFR, each origin server maps the names of its
content objects as well as their name prefixes in its
BF. For example, as Fig. 1 shows, the full name (e.g.,
/unibe.ch/images/fileName1) as well as the name prefixes
(e.g.,/unibe.ch/ and /unibe.ch/images/) are inserted into the
BF. In Section II-C, we discuss the reasons behind inserting
name prefixes into BFs in detail.

To show the savings resulting from using BFs for represent-
ing a set of content objects, we provide an example. Consider
that an origin server stores 200 content objects, which are each
divided into a number of segments. To represent the content
objects, the server creates a BF by setting n = 200, and
targets a false positive error probability of 2% (approximately
four names per BF). Thus, the server needs a BF of size
m = 1628.47 bits and k = 5.64 hash functions. Aligning the
bit table size to byte order and rounding these values, the server
requires 203.5 bytes, i.e., approximately one byte per named



content object. For larger BFs, i.e., larger values of m and n,
and the same false positive probability, the required space for
inserting each URL into the BF stays constant, i.e., one byte.
In NDN, names are URLs. To evaluate our routing approach,
we consider a realistic URL catalogue [16] with the average
URL size equal to 42.45 bytes. For this setting, a server needs
8490 bytes to advertise a list of 200 URLs without BF, while
it needs only 2.4% of this size, i.e., 203.5 bytes, in case it uses
BF. Therefore, the use of BFs results in high compression for
representing a set of content objects.

B. BF-based content advertisement

When an origin server creates a BF that contains the names
of its content objects, it propagates this BF to advertise its
content objects. To propagate the content advertisement BF
and be compatible with the original NDN, an origin server
could encapsulate the BF in an Interest or a Data packet. If the
content advertisement BFs would be inserted in Data packets,
all the nodes but the server nodes, i.e., routers and consumers,
should pull the content advertisement messages. Such a strategy
is followed in [3], where all the nodes frequently pull routing
information regarding the topology and name prefix updates
from the neighbourhood. However, in BFR only certain nodes,
i.e., origin servers, propagate routing information (i.e., content
advertisements) and the rest of the nodes are unaware of the
locations of the origin servers. Therefore, it is not clear up to
which scope the content advertisements should be pulled.

To address this problem, we opt for a push-based content
advertisement scheme. We introduce a new type of Interest
packet called Content Advertisement Interest (CAI) that carries
content advertisement BFs. Hence, BFR propagates CAI
messages to propagate the content advertisement BFs. The
NDN Interest forwarding pipeline detects and discards duplicate
CAI messages and ensures loop freedom for these messages. It
is important to note that the only purpose for the propagation
of CAI messages is content advertisement and no Data packet
is sent as a response to CAI messages. Fig. 2 illustrates the
structure of a CAI message that is identified by the name prefix
/ContentAdvertisement. To distinguish the CAI messages
issued by different origin servers, we allow each origin server
to append its unique ID as the second name component to the
name of the CAI messages that it issues. In the forthcoming,
we describe the reasons behind this choice in detail. As Fig. 2
shows, each CAI message similar to Interest messages exploits
a random nonce to ensure loop freedom. The nodes that receive
CAI messages store them in their PITs. CAI messages should
expire like other packet types stored in nodes’ PITs. Since no
Data is coming back in response to the CAI messages, they
stay in PITs until their timeout. Hence, it is necessary to add
to the CAI message a lifetime field, which indicates when it
expires. To this aim, we reuse the Interest lifetime field to
indicate the lifetime of CAI messages. Origin servers refresh
the CAI messages to keep nodes informed about their content
offers. Further, the content advertisement applications do not re-
express the CAI messages. We should emphasize that this work
aims at proposing a BF-based content advertisement strategy

Fig. 2. CAI message

Fig. 3. PIT entry structure

fully compatible with the original NDN and not to present a
NDN variation. The last components for a CAI message are the
needed information to retrieve the content advertisement BF
consists of the calculated bit array, the size of the bit array, and
a salt count value that is needed to retrieve the same content
advertisement BF at the nodes that receive the CAI message.
Here, we assume that all the origin servers generate their hash
functions with a universal random seed and operate with the
same set of hash functions.

To permit nodes to propagate CAI messages, we add a FIB
entry for name prefix /ContentAdvertisement in the FIBs
of all the nodes, and add all the faces as next hops for this
name prefix at each node. Further, we adopt the multicast
strategy for forwarding the /ContentAdvertisement name
prefix. Therefore, when an origin server issues a CAI message,
this message is forwarded to all the nodes that are located in
one hop distance and those nodes forward it over all the faces
except the incoming one. Each node that receives the CAI
message broadcasts it, while the Interest forwarding pipeline
of NDN Forwarding Daemon (NFD) ensures loop freedom and
discards duplicate CAI messages. Therefore, all the nodes will
eventually receive the CAI message.

The nodes that receive CAI messages record in their PITs
the faces over which they receive each CAI message. Fig. 3
illustrates the structure of a PIT entry in NDN. As Fig. 3 shows,
the faces over which an Interest is received are stored in the
in-records of the related PIT entry. Therefore, to record the
faces over which a CAI message is received, we use in-records.

All the CAI messages share the same name prefix,
i.e., /ContentAdvertisement. Nevertheless, we let origin
servers append their uniqueIDs as second name compo-
nent to the name of the CAI message. For example, in
Fig. 4 server SA generates a CAI message with name
/ContentAdvertisement/A and server SB a CAI message
with name prefix /ContentAdvertisement/B. In general,
servers could append any kind of unique ID (e.g., their MAC
addresses) as the second name hierarchy to ensure name



Fig. 4. Proposed BF-based content advertisement

uniqueness. Let us provide an example to explain the reason
behind appending serverIDs as the second name hierarchy
for CAI messages. In Fig. 4, assume servers SA and SB do
not append their unique IDs as the second name component
to CAI messages. In such a case, if server SA sends a CAI
message with name /ContentAdvertisement, and router R5

receives it. If at a later time instant, server SB sends a CAI
message with the same name, which is received also by router
R5, NFD Interest forwarding pipeline will consider the second
CAI message received by router R5 as redundant because both
messages have the same name. This will lead router R5 to only
record the incoming face of the CAI message issued by server
SB in the PIT entry for name prefix /ContentAdvertisement
and to discard it. This approach makes router R5 to discard
the content advertisement BF of server SB . Hence, router R5

will be unaware of the content offers from server SB . To avoid
this problem, in BFR origin servers append their uniqueIDs
to the name of CAI messages.

To illustrate the content advertisement process, assume that
in Fig. 4 server SA advertises its content objects by sending
a CAI message to router R8. This router receives and stores
this message in its PIT, and forwards it to other nodes, i.e.,
routers R5, R6, R7, and R11. Other nodes also store the CAI
message in their PITs and forward it over all the faces except
the face over which the message has been received. This is
done until all the nodes obtain the CAI message. At the end of
this process, all the nodes receive the CAI message issued by
server SA. In general, CAI messages could flood the network,
or could be sent using random walk. Although the random
walk strategy incurs less bandwidth and storage overhead, we
did not follow this strategy because not all the nodes will be
aware of the content objects offered by all the origin servers.

C. Content retrieval and FIB population

BFR combines content retrieval and FIB population pro-
cesses. To begin with the description of the FIB population
process, assume that server SB in Fig. 4 also advertises its con-
tent offers. After the completion of the content advertisement
propagation from servers SA and SB at time instant t2, all the
nodes store the CAI messages /ContentAdvertisement/A
and /ContentAdvertisement/B in their PITs. The PIT of
consumer CZ is presented in Table I. This Table shows the CAI
messages in the upper rows of the PIT to indicate that the CAI
messages are distributed proactively. In BFR, nodes use the

TABLE I
PIT TABLE OF CZ

/ContentAdvertisement/A
/ContentAdvertisement/B

/unibe.ch/images/fileName1/01

received CAI messages for FIB population. When a consumer
issues an Interest to retrieve some Data, FIB population occurs
hop by hop at all the nodes that are placed on paths en-route
to the origin server of the demanded Data.

Let us describe FIB population, by considering the topol-
ogy presented in Fig. 4 and assuming that at time t3,
consumer CZ issues the first transmission of the Interest
/unibe.ch/images/fileName1/01 to retrieve the first seg-
ment of content object /unibe.ch/images/fileName1 that
is offered by server SA. To populate its FIB, consumer CZ
eliminates the sequence number from the name of the issued
Interest and checks whether the BFs of the stored CAI messages
contain name prefix /unibe.ch/images/fileName1.

In this case, the demanded content object is
produced by server SA, so the BF stored in
/ContentAdvertisement/A verifies that it contains the
name prefix /unibe.ch/images/fileName1. Now, consumer
CZ can add the face(s) over which it has received content
advertisement /ContentAdvertisement/A as the next hop
faces for name prefix /unibe.ch/images/fileName1 into
the FIB. Therefore, if no FIB entry exists for this name
prefix, consumer CZ creates a FIB entry for this name
prefix and adds the face(s) stored in the in-records for the
CAI message /ContentAdvertisement/A as the next hop
face(s) for the FIB entry. After consumer CZ has populated
its FIB for name prefix /unibe.ch/images/fileName1,
it forwards the Interest for this name prefix to router
R1. This router runs the same process as consumer CZ
and checks the Interest name without sequence number,
i.e., /unibe.ch/images/fileName1 in the BF of CAI
messages stored in its PIT. Router R1 continues to forward
the Interest to other nodes according to multicast strategy
until the Interest reaches server SA and the demanded
content object is retrieved. The first transmission of Interest
/unibe.ch/images/fileName1/01 in the network should
reach server SA to retrieve the demanded content object. The
next transmissions of this Interest, may retrieve the content
object from closer caches at routers situated en-route the
upstream path towards server SA.

We select the multicast forwarding strategy that forwards
the received Interests over all the next hops specified in the
FIB for their names and design BFR to work with this strategy
to benefit from the existence of multiple paths between the
consumers and the content servers. This approach is very
efficient in case of topology changes, i.e., unexpected links’
failures or recoveries or when the shortest paths are congested,
thus not able to return Data packets fast enough.



III. DISCUSSION

Here, we discuss the impact of false positive errors on BFR
operation, robustness to topology changes, and handling of
content migration.

A. Impact of false positive errors on BFR operation

When we use BFs, false negative errors cannot happen,
however, false positive errors are possible and affect the
performance of the system. To discuss the impact of false
positive errors on BFR operation, let us again study the example
in Section III-C. Assume that all the content advertisement
BFs operate with the false positive probability of 2% and all
the content advertisement BFs of an origin server operate with
the same set of hash functions. Consumer CZ issues Interest
Ip for name prefix p = /unibe.ch/images/fileName1,
while server SA possesses the content objects for this
name prefix. When consumer CZ checks name prefix p in
the BFs of CAI messages /ContentAdvertisement/A and
/ContentAdvertisement/B, the BF stored in the former
CAI message correctly verifies that it contains name prefix p
because false negative errors cannot happen. However, the
BF stored in the latter CAI message may falsely report
with probability 2% that it contains name prefix p. If this
false positive report happens, consumer CZ populates its FIB
for name prefix p according to the faces stored in the in-
records of both CAI messages /ContentAdvertisement/A
and /ContentAdvertisement/B. Therefore, consumer CZ
routes the Interest for name prefix p towards both servers SA
and SB . Router R1 receives the Interest for name prefix p from
consumer CZ . At this router, the content advertisement BF of
CAI message /ContentAdvertisement/A correctly verifies
that it contains name prefix p and, therefore, router R1 forwards
the Interest for this name prefix towards server SA. However, at
the same router, the content advertisement BF of CAI message
/ContentAdvertisement/B might give a false positive report
for name prefix p because all the content advertisement BFs
of server SB operate with same hash functions. Therefore,
router R1 might forward the Interest for name prefix p towards
server SB as well. When routers R2 and R4 receive the Interest
Ip from router R1, they make the same forwarding decisions
as router R1. Also, subsequent nodes that receive Interest Ip
from routers R2 and R4 take the same forwarding actions.
Hence, Interest Ip will be eventually satisfied because all
the nodes forward it towards server SA, which provides the
demanded content object. However, this Interest might reach
server SB , which does not provide the demanded content object.
In summary, when node n checks an Interest for name prefix p
against all the content advertisement BFs stored in the PIT, the
one that contains name prefix p correctly verifies that it has
this name prefix because false negative reports are impossible
for BFs. At the same node, if another content advertisement BF
gives a false positive report for name prefix p, the Interest will
be forwarded towards both the correct origin server, i.e., the
origin server, which provides the demanded content object and
the wrong origin server, i.e., the server that does not provide
the demanded content object. This forwarding pattern leads the

Interest to be satisfied anyway because it is forwarded over the
paths towards the origin server of the demanded content object,
while the Interest might reach a wrong origin server due to
several wrong forwarding decisions caused by false positive
reports from content advertisement BFs at several nodes.

B. Robustness to topology changes

To combat link failures, routing protocols should be resilient
to link failures and should adapt to link recoveries. When a
link failure is detected, the nodes connected to the failed link
should prevent Interests from passing through this link until it
recovers. This is done in BFR by taking the following actions,
when a node detects a link failure: a) the node removes the
face associated with the failed link from all the in-records of
all the CAI messages that exist in the PIT, and b) it removes
the face associated with the failed link from all the FIB entries.

When detecting a recovered link, the nodes connected to this
link force all the Interests to pass through it as it is a newly
allocated network resource. In BFR, the nodes connected to a
recovered link perform the following actions: a) they add the
face associated to the recovered link to all the in-records of all
the CAI messages that exist in the PIT, and b) they add the face
associated to the recovered link as a next hop face in all the
FIB entries. It is worth nothing that the Interests pass through
a recovered link for a short time because by receiving fresh
CAI messages, all the routes will be automatically updated.

C. Handling of content migration

Content migration, i.e., moving a number of content objects
stored in the repository of a server to the repository of
another server, may occur in networks. When content migration
happens, it is necessary to propagate new CAI messages
and to immediately inform the network about the changes
in the servers’ repositories so that nodes remove the stale
CAI messages stored in PITs. For this purpose, we present
a strategy, which aims at removing stale CAI messages from
PITs upon detecting a content migration event. Let us explain
our strategy by considering again the topology illustrated in Fig.
4. Assume that consumer CZ maintains CAI messages from
servers SA and SB in the PIT. If server SA migrates content
objects to server SB , these servers immediately propagate new
CAI messages in order to inform all the network nodes about
this event. However, servers SA and SB should not only update
the nodes with new CAI messages, but they should also signal
them to discard the CAI messages received before. For this
reason, we enable servers to do this by adding a new flag called
discardOldAdverts to the new CAI messages. Therefore, servers
SA and SB activate the discardOldAdverts flag for the new CAI
messages and propagate them. When consumer CZ receives
the new CAI messages in which the discardOldAdverts flag has
been activated, it removes all the CAI messages received in the
past, which have been issued by SA and SB from its PIT, and
stores the new CAI messages. When an origin server replicates
content objects to cache servers, cache servers also should
advertise their content objects. If the content advertisment BF
of a cache server is identical with a content advertisement



Fig. 5. Geant topology and connected endpoints

BF of an origin server, the nodes that receive these identical
BFs can aggregate them. Origin servers might add or remove
content objects to/from their repositories. If an origin server
adds content objects to the repository, it advertises the fresh
content objects at the next content advertisement round. If an
origin server removes content objects from the repository, the
removed content objects will not be inserted in the content
advertisement BF next time that the origin server advertises its
content objects. In case an origin server receives an Interest for
a content object that it has removed recently, the origin server
returns a “No Data” NACK [17] to announce the removal of
the demanded content object.

IV. PERFORMANCE EVALUATION

We compare BFR with two other routing approaches:
flooding, where an incoming Interest is forwarded to all the
faces except the incoming one and shortest path, where the
Dijkstra algorithm is employed to calculate the shortest paths,
in terms of least number of hops to the origin servers. We
do not disable in-network caching for any of the compared
routing strategies. Also, we adopt the multicast forwarding
strategy for BFR. We implemented the proposed BFR as well
as flooding and shortest path routing strategies in the ndnSIM2.1
[18] environment. We introduced in ndnSIM2.1 some ad-hoc
functionalities to reproduce the behaviour of BFR, i.e., BF-
based content advertisement, BF-based FIB population, etc.

A. Simulation settings

To evaluate all the schemes, we use the GEANT network
topology [19] illustrated in Fig. 5, which interconnects Europe’s
NRENs and provides research network services across the
continent. We distribute the endpoints, i.e., consumers and
origin servers, randomly in each simulation. As for the
consumers, we attach a variable number of nodes (between
three to six nodes) to each randomly selected router. Our
topology contains in total 56 consumers. There are five origin
servers, which we randomly place in the topology for each
simulation. Thus, the considered topology has 101 nodes.

We test and validate all the schemes based on URLs from
real traces of HTTP requests [16]. The content universe, i.e.,
the set of offered content objects, consists of 1000 files. Each

of the files is divided into 100 segments. Therefore, we obtain
105 unique segments in total. Each node has limited storage
space and can cache up to 100 segments in its content store. In
NDN, content objects are divided into segments. Since ndnSIM
does not permit fragmentation, we consider the payload of each
segment to be fixed. We assume that the content popularity
follows the Zipf-Mandelbrot law, which is shown in (2), where
M denotes the cardinality of a content catalogue and is used
to characterize content popularity and α is the skewness of
the popularity function (larger α values correspond to fewer
popular content objects).

P (x = i) =
1/iα∑M
j=1 1/j

α
(2)

The comparative analysis of BFR with flooding and shortest
path routing strategies is done using α in the [0.8, 1.4]
interval. All the results are averaged over ten simulations (each
simulation lasts 100′000 seconds). The reported mean values
have 95% confidence intervals.

We use the BF parameter set {N = 200, pfpp = 0.02}.
N denotes the inserted element count and pfpp denotes the
false positive probability for BFs. The size of each content
advertisement BF is 203.5 bytes for advertising 200 URLs.

B. Results

We evaluate all the schemes based on the following perfor-
mance metrics: 1) average round-trip delay, 2) robustness to
topology changes, 3) communication overhead, and 4) mean
hit distance. Further, we present results concerning the impact
of false positive reports from BFs on BFR routing for different
levels of the false positive error. In the following, we discuss
results for these metrics.

1) Average round-trip delay: We evaluate the performance of
all the schemes under comparison in terms of average round-trip
delay, i.e., the average delay from the time instant consumers
send Interests until the time they retrieve the demanded content
objects. To better show the behaviour of all the considered
schemes in the presence of topology changes, we also measure
the average round-trip delay in presence of link failures for all
the schemes. We schedule three link failures at time instants
5′000 s, 15′000 s, and 25′000 s. These links recover at time
instants 10′000 s, 20′000 s, and 30′000 s respectively. Fig. 6a
illustrates the results for average round-trip delays. From this
figure, we observe that flooding shows the highest delay in
absence of link failures. The reason is that flooding all the
Interests creates bottlenecks and results in high delays. The
shortest path approach has lower average delay compared to
flooding. The reason is that it forwards each Interest only
through the face that has the shortest path to the origin server.
This is not always efficient as the shortest path is not always the
“best” path. In [21], the authors show that the “best” path is the
one with the highest throughput, or the least congested path in
other words. BFR benefits from multipath communication and
hence forwards Interests through all the faces that the demanded
content object can be reached with high probability. When the
shortest paths are congested, BFR also exploits longer, but less



(a) (b) (c)

Fig. 6. Results for different values of α : (a) Average round-trip delay without and in presence of link failures ; (b) Impact of link failure on Interest
unsatisfaction; (c) Normalized communication overhead

(a) (b) (c)

Fig. 7. Results for : (a) Total Interest overhead for different values of α; (b) A comparison of content advertisement overhead for different levels of false
positive errors and the needed overhead for calculating shortest paths; (c) Mean hit distance for different values of α

congested paths for sending the Interests and thus performs
better than shortest path routing in terms of delay.

In presence of link failures, Fig. 6a confirms the resilience of
flooding to the link failures because it broadcasts the Interests
and forwards them over all the paths. This figure shows that
BFR is also resilient to link failures in terms of delay. This is
due to the fact that BFR benefits from the existence of multiple
paths towards origin servers and does not forward the Interests
over a single path. From Fig. 6a, we also observe that shortest
path routing is the less resilient approach to link failures. This
is because it always relies on a single path and forwards the
Interests over this path to the origin server of the demanded
content objects, while a link failure might occur on that path.

2) Robustness to topology changes: In Fig. 6a, we illustrated
the impact of link failures on average round-trip delay for all
the schemes under comparison. In Fig. 6b, we compare the
performance of all the considered schemes in terms of the
impact of link failures on the percentage of unsatisfied Interests
for different values of α. Fig. 6b shows that all the Interests
are satisfied in presence of link failures when flooding is used
because it broadcasts the Interests and does not rely only on
the paths on which links have failed. Using BFR, the maximum
rate of unsatisfied Interests is only 0.93%. This is attributed
to the fact that BFR forwards Interests over all the paths en-
route to the origin servers of demanded content objects. Also
from Fig. 6b, we can see that maximum rate of unsatisfied
Interests for shortest path routing is approximately 6.4%. The
performance of shortest path routing degrades in the presence
of link failures because it always relies on the shortest path
towards the origin server of the demanded content object on
which links might fail.

3) Communication overhead: Fig. 6c illustrates results con-
cerning the normalized communication overhead for retrieving
a Data packet, i.e., the summation of the total communication
overhead for forwarding all the Interests and Data packets
divided by the number of retrieved Data packets. From Fig. 6c,
we observe the very high communication overhead for flooding.
This is due to the forwarding of each incoming Interest to
all the available faces except from the incoming one. This
forwarding strategy wastes an enormous amount of bandwidth
and also has unnecessary storage overhead for nodes that are
not situated towards the origin servers or will not receive
a copy of the demanded content object in the foreseeable
future. We also see from Fig. 6c that BFR and shortest path
have quite close normalized communication overhead. Fig. 7a
illustrates results in terms of total communication overhead
needed for forwarding Interests for different values of α. As
Fig. 7a shows, BFR and shortest path need on average only
6.9% and 6.5% of the communication overhead that flooding
requires for boradcasting Interests, respectively.

Fig. 7b illustrates the total communication overhead needed
for propagating content advertisements in BFR for different
levels of false positive error probability as well as the required
communication overhead for calculating shortest paths in the
shortest path approach. For BFR, we consider four sets of
parameters for content advertisement BFs as shown in Table II.
From this Table, it is evident the trade-offs between different
numbers of hash functions (k), different overhead values
per inserted element (m/n), and different values of false
positive error probability. As Fig. 7b shows, the communication
overhead required for calculating shortest paths in shortest path
routing is on average approximately three times more than



TABLE II
FALSE POSITIVE ERROR PROBABILITY UNDER VARIOUS m/n AND k

COMBINATIONS

m/n k pfpp
3 2 28.3%
3 2 23.7%
4 3 16.0%
6 4 6.38%
8 5 2.29%

the communication overhead required for propagating content
advertisements in BFR.

4) Mean hit distance: We present results in Fig. 7c con-
cerning the mean hit distance, i.e., the number of hops that
an Interest has to travel to reach the demanded content object.
As Fig. 7c shows, all the considered schemes perform very
close to each other in terms of mean hit distance. The flooding
approach has a slightly better performance for α = 0.8 and
α = 1. However, for α = 1.2 and α = 1.4, all the schemes
perform approximately equal in terms of mean hit distance.
This is due to the fact that when the value of α grows, a
smaller set of content objects are popular that most of them
are cached close to the consumers.

Shortest path routing using Dijkstra algorithm requires
accurate information regarding the topology of the network to
determine the shortest paths. On the other hand, BFR operates
without having any information about the network topology.
Further, the shortest path scheme uses the best path forwarding
strategy. This strategy requires routing protocols to calculate
the shortest paths towards origin servers. One possibility is
to employ an IP-based routing protocol for such a purpose as
a fall-back mechanism to work in parallel with name-based
routing. Employing classical IP-based routing protocols in NDN
entails scalability issues [3] and imposes significant signalling
overhead even for intra-domain scenarios. This is another
advantage of BFR compared to the shortest path approach.

5) Impact of false positive errors on BFR operation: We
present results concerning the impact of false positive errors
on BFR operation in terms of percentage of Interests that have
been routed towards both correct and wrong origin servers for
different values of pfpp shown in Table II.

Fig. 8 shows that the higher the probability of false positive
error is, the higher are the number of Interests that not only have
been routed towards correct origin servers, but have reached
wrong origin servers as well. Further, Fig. 8 shows the impact
of increasing the value of α on the percentage of Interests
that are also routed towards wrong origin servers. We note
that when the value of α is higher, a smaller set of content
objects are popular and this results in measuring less false
positive reports in practice. We observe the highest impact of
false positive reports on BFR routing for pfpp = 28.3% and
α = 0.8, when only 1.73% of Interests are routed also towards
wrong origin servers. Note that all the Interests are satisfied
in the presence of false positive reports and the only practical
impact of false positive reports is that a very small number
of Interests reach wrong origin servers, i.e., the origin servers

Fig. 8. Impact of false positive reports on BFR routing for different values
of pfpp and α

that do not provide the demanded content objects, while all
the Interests are routed towards correct origin servers, i.e., the
origin servers that provide the demanded content objects.

V. RELATED WORK

Content discovery using routing in Information-Centric
Networks has been previously proposed in [3]–[6], [10]–[12].
In [10], nodes store so-called breadcrumbs, i.e., the traces left
from already retrieved content objects along the downstream
path towards content requesters to perform routing. Thus,
breadcrumbs can be used by routers to route repetitive Interests.
Inspired by [10], in [6], it is proposed to use one Stable Bloom
Filter (SBF) per face to record the traces of Data packets
passed through each face. SBF is a Counting Bloom Filter
(CBF). CBFs are represented by an array of n− bit counters
rather than a bit table. The advantage of CBFs over BFs is
that deleting an element is allowed by decreasing the counters
associated to it, while it is not possible to delete elements from
a BF. In SBF, each counter is composed of d bits. When an
element is inserted, P counters are randomly selected, and
their values are decreased. Further, the K cells associated with
the inserted element are set to the maximum value, 2d − 1.
Taking these two actions in parallel keeps the proportion of 0’s
and 1’s constant, and automatically removes the stale content
objects from the SBF. The schemes in [6] use this property
to maintain only the traces for effective content objects that
are still retrievable through a face in the SBF associated to it.
The disadvantage of the approaches in [10] and [6] is that they
end up in flooding the Interests issued for the first time in the
network because there are no stored breadcrumbs for them.

In [14], it has been proposed to collect in a BF all the
content objects resolvable by each router to avoid flooding of
Interests. This approach is similar to the well-known “summary
cache” scheme [22], in which BFs are exchanged between web
caches as content summaries. This method, however, still does
not avoid flooding, since each Interest issued for the first time
in the network has to reach the nodes that have permanent
copies of the demanded content object and cannot retrieve the
demanded content object from temporary caches. Therefore,
spreading information about content objects cached at routers
does not prevent flooding the network completely. Furthermore,
the approach presented in [14] has not been implemented and
evaluated. In [4], [5], [12], BFs are used to compress FIBs.
In [23], [24], hybrid data structures has been designed using
CBFs, tries, and tree-bitmaps to conduct efficient name lookups



in ICNs. Jerzak et al. [25] have proposed a BF-based routing
scheme for content-based publish/subscribe systems.

In [5], SCAN is proposed as a routing scheme for content-
aware networks. The main disadvantage of SCAN is that it
uses IP routing as a fall-back solution, meaning that cache
routers perform both content and IP routing, i.e., they maintain
content routing tables as well as IP routing tables. Therefore,
SCAN is not a fully content-oriented routing scheme.

NLSR [3] is considered as one of the most prominent
routing-based solutions for NDN. It is a link state routing
protocol, which requires frequent pulling of routing updates.
NLSR routing updates contain information about both topology
and content name prefixes. In NLSR, nodes run the Dijkstra
algorithm to find the shortest path from each of the faces for
any incoming Interest using full information about the topology
and the content prefixes that exist in the network. Compared
to NLSR, our scheme does not require any knowledge about
the topology, while it permits the origin servers to propagate
compact content advertisements using BFs.

VI. CONCLUSION

In this work we proposed BFR, a BF-based, fully distributed,
content oriented, and topology agnostic routing approach at
the intra-domain level for NDN. Our approach is based on
propagation of content advertisements from origin servers using
BFs. BFR incurs small storage overhead as well as reasonable
signalling overhead. BFR outperforms flooding and shortest
path approaches in terms of communication cost and average
round-trip delay. In terms of robustness to topology changes,
our scheme strongly outperforms the shortest path approach. In
contrast to schemes based on shortest path routing, BFR does
not require any auxiliary routing protocols for calculating best
paths. Our scheme does not adopt IP-based routing protocols
as a primary or fall-back mechanism.

Our future work includes designing storage management
strategies for CAI messages based on BF aggregation, espe-
cially when the content universe size increases. Further, we
aim at examining BFR with other forwarding strategies and
compare its performance with other NDN routing protocols.
We also intend to evaluate BFR using other realistic content
catalogues, topologies, and scenarios as described in [26].

REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, Jul. 2012.

[2] Z. Gao, A. Venkataramani, J. F. Kurose, and S. Heimlicher, “Towards a
quantitative comparison of location-independent network architectures,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp.
259–270, Oct. 2015.

[3] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NLSR: named-data link state routing protocol,” in Proc. of the 3rd ACM
SIGCOMM workshop on Information-centric networking, Aug. 2013, pp.
15–20.

[4] Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee, and
S. Yang, “Advertising cached contents in the control plane: Necessity
and feasibility,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 286–291.

[5] M. Lee, K. Cho, K. Park, T. T. Kwon, and Y. Choi, “SCAN: Scalable
content routing for content-aware networking,” in Proc. of the IEEE Int.
Conf. on Communications (ICC), Jun. 2011, pp. 1–5.

[6] M. Tortelli, L. A. Grieco, G. Boggia, and K. Pentikousisy, “COBRA:
Lean intra-domain routing in ndn,” in Proc. of the IEEE 11th Consumer
Communications and Networking Conference (CCNC), Jan. 2014, pp.
839–844.

[7] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (NetInf)–an information-centric
networking architecture,” Computer Communications, vol. 36, no. 7,
pp. 721–735, Apr. 2013.

[8] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT: a
hierarchical name resolution service for information-centric networks,”
in Proc. of the ACM SIGCOMM workshop on Information-centric
networking, Aug. 2011, pp. 7–12.

[9] D. Trossen, G. Parisis, K. Visala, B. Gajic, J. Riihijarvi, P. Flegkas,
P. Sarolahti, P. Jokela, X. Vasilakos, C. Tsilopoulos et al., “Pursuit con-
ceptual architecture: pinciples, patterns and sub-components descriptions,”
Tech. Rep., May 2011.

[10] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort
content location in cache networks,” in Proc. of the IEEE INFOCOM,
2009, pp. 2631–2635.

[11] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini,
“Inform: a dynamic interest forwarding mechanism for information
centric networking,” in Proc. of the ACM 3rd SIGCOMM workshop
on Information-centric networking, Aug. 2013, pp. 9–14.

[12] H. Liu, X. De Foy, and D. Zhang, “A multi-level DHT routing framework
with aggregation,” in Proc. of the ACM 2nd edition of the ICN workshop
on Information-centric networking, Aug 2012, pp. 43–48.

[13] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in Proc. of the ACM 2nd
Int. Conf. on Information-Centric Networking, Sep. 2015, pp. 9–18.

[14] A. W. Kazi, “Prefetching bloom filters to control flooding in content-
centric networks,” in Proc. of the ACM CoNEXT Student Workshop, Nov.
2010, p. 22.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[16] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Transactions on
Networking (TON), vol. 5, no. 6, pp. 835–846, Dec. 1997.

[17] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, Apr. 2013.

[18] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” Tech. Rep., Jan. 2015.

[19] “The geant network, 2012,” http://www.topology-zoo.org/dataset.html,
accessed: 2016-07-25.

[20] R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: Hamlet-like doubts in ICN,”
in Proc. of the ACM 2nd edition of the ICN workshop on Information-
centric networking, Aug. 2012, pp. 7–12.

[21] M. Badov, A. Seetharam, J. Kurose, V. Firoiu, and S. Nanda, “Congestion-
aware caching and search in information-centric networks,” in Proc. of
the ACM 1st international conference on Information-centric networking,
Sep. 2014, pp. 37–46.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 3, pp. 281–293, Jun. 2000.

[23] W. Quan, C. Xu, J. Guan, H. Zhang, and L. A. Grieco, “Scalable name
lookup with adaptive prefix bloom filter for named data networking,”
IEEE Communications Letters, vol. 18, no. 1, pp. 102–105, Jan. 2014.

[24] W. Quan, C. Xu, A. V. Vasilakos, J. Guan, H. Zhang, and L. A. Grieco,
“TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name
lookup in content-centric networking,” in IFIP Networking conference,
Jun. 2014, pp. 1–9.

[25] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-based
publish/subscribe,” in Proc. of the 2nd ACM international conference on
Distributed event-based systems, Jul. 2008, pp. 71–81.

[26] “Information-centric networking: Baseline scenarios draft-irtf-icnrg-
scenarios-01,” https://www.ietf.org/proceedings/88/id/draft-irtf-icnrg-
scenarios-01.txt, 2016-07-16.


