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Abstract—In order to maintain certain quality of Wi-Fi
services even in the congested, uncoordinated ISM bands
in urban areas, mobile Wi-Fi clients (i.e. smartphones of
pedestrians and vehicle passengers) must be intelligent to
carefully choose appropriate access points (APs). For such
purpose, Wi-Fi radio map would be of great help to them to
make proper AP selections (e.g. vertical handover) along with
their movement. However, crowdsourcing-based approaches
require a large number of volunteers to monitor and report
signals on streets, and war driving is too coarse for accurate
map construction in complicated urban building environment.
In this paper, we propose a Wi-Fi radio map construction
mechanism using both crowdsourcing and highly-precise
simulation. Once some cooperative smartphone users collect
Wi-Fi beacon data with RSS information, it estimates “tx-
tile” for each AP, which is “virtual” transmission source on
a wall of the building where AP is inside. Then using this
tx-tile with estimated tx-power, it executes online Wi-Fi radio
propagation simulations with 3D city models to complement
RSS information in many other areas that are not covered by
the limited number of cooperative users. We have evaluated
the tx-tile localization error and the quality of the radio map.
Also we demonstrate our Wi-Fi radio map system for Osaka
city.

I. INTRODUCTION

The Japanese government has a national policy of en-
hancing Wi-Fi availability by the Tokyo Olympic in 2020.
This is mainly because Wi-Fi can be a monetary-cost-
effective solution for foreign tourists. For the realization of
the world’s highest level ICT environment, the Ministry of
Internal Affairs and Communications issued an action plan,
called “SAQ2 JAPAN Project” in June 2014. Likewise,
Softbank Group Corp. provided nationwide 400,000 APs
(Access Points) for foreigners. The movement toward
increasing availability and usability of Wi-Fi in public
areas have become more active. In addition, Wi-Fi has
also been important as alternative infrastructure of low-
cost smart city foundation. For example, in Barcelona, the
information from the urban infrastructure like street light
illuminance, human flow and noise levels is aggregated
through a Wi-Fi-based platform. Wi-Fi is now becoming
indispensable infrastructure.

However, in urban areas, Wi-Fi APs have been deployed
densely to increase spatial coverage, which leads to a
chaotic and disorderly environment. For such dense Wi-
Fi environment, many efforts have been dedicated to in-
crease the performance. For example, the IEEE802.11ax
task group reports that Wi-Fi throughput can be nearly
doubled using Dynamic Sensitivity Control (DSC) and
Transmit Power Control (TPC) [1]. Our research group
has been developing the channel selection technique for au-
tonomous and efficient frequency reuse of each AP with the
IEEE802.11a/g/n architecture [2]. Besides those researches
that consider the throughput improvement of single AP, it is
necessary to take the impact of multiple APs into account.
For example, interference signals from surrounding APs
are likely to incur the performance degradation of clients
at the edge of Wi-Fi cells. Careless selection of APs in
horizontal handover causes serious quality degradation or
disconnection, which finally affects TCP throughput.

As seen, to provide a certain quality even in crowded,
unconditioned ISM bands in the city, Wi-Fi clients should
intelligently select appropriate APs. Wi-Fi radio map is a
promising way of allowing the clients the fast recognition
of the surrounding APs and their signal intensity. Recently,
the rapid spread of smartphones has made Wi-Fi beacon
data sensing much easier [3], [4]. In these approaches,
radio information observed by smartphones is stored in
a database with geographical coordinates, and the infor-
mation is used to provide Wi-Fi radio conditions to Wi-
Fi clients. However, the naive crowdsensing approaches
that simply map the observed signal strength with SSID
onto the 2D coordinates have several drawbacks. Most
significantly, crowdsensing generally requires a number
of cooperative users to cover wide region of urban city,
but recruiting them is not easy. Designing and deploying
incentive mechanisms is not always successful. Moreover,
the signal samples reported by those users may not cover
minor streets and spaces often seen everywhere in com-
plicated urban areas. Radio map construction should be
supplemented to increase the availability and accuracy.

In this paper, we present a Wi-Fi radio map constructionISBN 978-3-901882-94-4 c⃝ 2017 IFIP



Fig. 1. Wi-Fi Radio Map Visualization (around Yodoyabashi, OsakaCity)

scheme. Similar to several existing approaches, we rely on
a crowdsourcing approach where smartphone users help to
collect Wi-Fi beacon data. We assume most of APs are
inside the buildings in urban environments. To construct
Wi-Fi radio map outdoors based on RSS reports from those
cooperative users, it is necessary to estimate the exact AP
position inside building, which often difficult due to several
factors. Therefore, this scheme estimates “tx-tile” for each
AP, which is a “virtual” transmission source as if the AP
is on the wall of the building in which the AP exists.
Then using this virtual location and estimated tx power,
it executes online Wi-Fi radio propagation simulations
with 3D city models to complement RSS information of
uncovered areas. We construct the Wi-Fi radio map from
this simulation result.

We evaluated the tx-tile localization error and the quality
of the radio map of this scheme in Osaka University cam-
pus environment. The localization mean error is 14.65[m]
and the simulated RSS samples that the RSS errors were
5[dBm] or smaller were about 65%.

We implemented our crowdsensing and radio map con-
struction scheme and our constructed Wi-Fi radio map
of Osaka City by large-scale crowdsourcing data. We are
constructing the Wi-Fi radio map of Osaka City as shown
in Fig. 1.

II. RELATED WORK

In order to alleviate interference due to the dense de-
ployment, a large amount of effort has been dedicated in
different ways. [5] addresses the fact that the transmission
power of most Wi-Fi APs is configured to maximum in the
factory settings. Therefore, cross-layer control is recom-
mended where the carrier-sense threshold is coordinately
controlled with transmission power.

The existing techniques to avoid interference between
APs aim to efficiently utilize the space and frequency [5],
[6]. They are basically location-independent approaches
for resource optimizations. Meanwhile, there are location-
dependent (i.e., map-based) approaches that build prior
knowledge such as radio database and provide it to APs

and clients to assist their decisions and strategy for fre-
quency use. We target such map-based approaches.

One of the significant information for Wi-Fi database
is AP location, and there are several methods to estimate
it using signal observations. [7] investigates the AP po-
sition estimation error that comes from the difference of
the Wi-Fi devices used for Wi-Fi scanning. The method
proposed in [8] gets radio wave incoming direction using
the directional antennas and estimates AP location. [9]
and [10] estimate the direction of arrival of radio wave
from the change of the receive signal strength with the
movement of the observer, and [11] estimates the direction
of arrival using a smartphone by rotating the observer at
the observation points. [12] uses Channel State Information
(CSI) which is information including the phase of Wi-Fi
radio waves, which is difficult for ordinary smartphones
to obtain. These methods can estimate the location of APs
with sufficient accuracy, but they require special devices or
special actions to collect the data, which is not suitable for
crowdsourcing. Instead, we conduct range-free localization
to determine virtual AP location using simple observation
samples from smartphones.

Many studies on Wi-Fi handover have been done so
far. SyncScan [13] presents handover methods which a
separate AP selection and actual handover to minimize the
handover delay. [14] and [15] set the common SSID and
channel frequency for all APs to eliminate association and
authentication process at client side.

There are some methods to survey large scale Wi-
Fi radio status by crowdsourcing, war-walking and war-
driving [16]. Radio maps generated by these methods
are mainly used for smartphone localization in an indoor
environments [16]–[18]. Place Lab [16] collects Wi-Fi
fingerprints for client localization by war-driving. The
difference between scan data by war-driving and war-
walking is addressed in [3]. A localization method as
well as an indoor and radio map construction indoor is
proposed in [17], which estimates the relative positions of
APs using multidimensional scaling. Similar to the others,
the radio map is used for both Wi-Fi positioning and Wi-Fi
network optimization. In [19], smartphones are used for AP
spectrum management leveraging their channel scanning
capabilities.

Considering the contributions of the prior work, this
paper has the following contributions. Firstly, we consider
urban Wi-Fi radio map construction with a limited number
of cooperative users. In highly-populated urban areas with
a lot of minor streets, half-outdoor space where war-
driving is not possible, we should rely on war-walking,
but coverage becomes a serious issue. We leverage the
highly-precise simulations to complement the missing data.
Although, there are some techniques to interpolate RSS
values based on kriging [20], [21], it is difficult to consider
reflection of radio waves by buildings with those methods.



Fig. 2. System Architecture

Secondly, for such purpose, we present a new concept of
AP localization in 3D urban model. From the beacon sam-
ples from a limited number of smartphones, we estimate
virtual tx sources of APs (called tx-tiles) for simulations.
Thirdly, we have built the complete system including Wi-
Fi sensing android App, Wi-Fi database, online simulation
system on 3D map and visualization, which is open to
public [22] (http://www.wifibigdata.org).

III. SYSTEM OVERVIEW

Our system architecture is shown in Fig. 2. The system
consists of three major components, (i) a radio map that
is composed of a Wi-Fi database with 3D city street and
building models, (ii) a cloud server containing our AP
localization, simulation and web API engines, and (iii)
cooperative users called observers with our smartphone
App.

Our radio map contains Received Signal Strength (RSS)
values from APs at any points of outdoor spaces such
as major and minor streets, public spaces and parks in
urban areas. Using this map, Wi-Fi clients, Wi-Fi APs
and Wi-Fi service providers can know how strongly the
desired/undesired signals reach from the surrounding APs.
This information can be used for multiple purposes such as
autonomous AP selections by clients, autonomous channel
selection by APs and channel optimization by service
providers. We note that there are two types of RSS values,
monitored and simulated. The monitored RSS values are
those actually observed by the observers’ smartphones
while the simulated RSS values are the estimated values
by our online radio propagation simulations. Both types of
values are on the same radio map to accomplish a sort of
data assimilation. The radio map also contains the virtual
positions of APs called tx-tiles. These are calculated by our
simple range-free 3D localization algorithm using the data
sent by the observers’ smartphones. The observers are re-
quired to install our smartphone app and run it background
to sense ESSIDs (SSID texts), BSSIDs (MAC addresses),

Fig. 3. Tx-tiles for an AP

RSS, channels and bandwidth (20MHz/40MHz etc.) by
beacon advertisement from APs. They just walk with their
phones in hands and our app detects and estimates the
observers’ walking behavior to report those information
with GPS locations, with appropriate timing and intervals.

Using the data by observers, our localization algorithm
engine estimates “tx-tile” for each AP by range-free lo-
calization with 3D city models. A tx-tile is a “virtual”
transmission source on the wall of the building where
the AP is inside (Fig. 3). Considering the fact that most
APs that are observable from streets are inside buildings
in urban environments and radio propagation is affected
by many things like walls, rooms, windows and their
materials, it is not a good approach to exactly estimate
the physical AP locations. Accordingly, we estimate the
information which is necessary for our simulation, and
we believe the tx-tile localization is a reasonable solution.
Besides, we adopt a range-free localization method because
the measured RSS values by smartphones fluctuate due to
attitude of smartphones or other environmental factors such
as humans, trees and moving vehicles.

Then using tx-tile information, the system executes
online Wi-Fi radio propagation simulations with 3D city
models to complement RSS information in many other ar-
eas that are not covered by the observers. Finally, for each
observed AP, all the information about ESSID, BSSID,
the estimated location and transmission power of the tx-
tile, RSS values at each location, channel frequency and
bandwidth are aggregated in the Wi-Fi database.

The Wi-Fi AP information in the database can be
accessed by Wi-Fi clients via the REST API server and
the clients can get APs information by providing their
locations. The radio map is visualized on the 3D city map
through Web browsers. Such visualization is helpful for
AP placement and deployment that needs AP density and
channel frequency occupancy information.



Fig. 4. AP Locations and Observation Points in Preliminary Survey

IV. CONSTRUCTION OF WI-FI RADIO MAP

In this section, assuming that we obtain the observation
data from the observers, we explain how to localize tx-
tiles and how to determine their transmission power. It
is done in the following three steps; (i) estimate tx-tile
candidates using the observation data for each AP, (ii)
estimate the location of each tx-tile by fitting the simulated
RSS values to the observed RSS values, and (iii) determine
the transmission power of tx-tiles for final calibration.

We let o denote each point of reception (PoR) of an AP’s
beacons and O denote a set of such points. Similarly, each
non-PoR is denoted as o and O is a set of such points. A
non-PoR is an observation point where no beacon from a
target AP is observed.

A. Step 1: tx-tile candidates estimation

Basically, tx-tile candidates are determined by range-
free localization with multiple observation points. We
consider the maximum range of beacon transmission from
an AP, and consider the sphere centered at a PoR with the
maximum transmission range. Ideally, each tx-tile should
be contained in this sphere, but the observations of RSS
values by smartphones are not always accurate due to their
antenna design limitations. Therefore, we adopt majority-
voting by multiple observations where the tile on each wall
of a building which is contained by the largest number of
spheres is regarded as tx-tile.

To justify our strategy, we conducted a preliminary sur-
vey to design the maximum transmission range mentioned
above to determine the sphere diameter. The survey setting
is shown in Fig. 4 and Table. I. We installed two APs (AP1
and AP2) and measured RSS of beacons received from the
two APs at 258 points. Consequently, beacons from AP1
were observed at 115 points and those from AP2 were at
27 points. Fig. 5(a) shows the observed RSS values and
the distance between the PoR and the APs.

Then we consider the maximum transmission range
based on the free-space propagation model. The model
calculates RSS in free space without obstacles between the
transmitter and the receiver. In Eq. (1), Pr is the received
power [mW], L is the free space path loss, Pt is the

TABLE I
PRELIMINARY SURVEY

Setting
Wi-Fi AP Model Buffalo AirStation WHR-300HP
AP Protocol 802.11g
AP Channel Bandwidth 20MHz
Observation Client LG Nexus 5X
Number of Observation Point 258

transmission power [mW], Gt is transmission gain and Gr

is reception gain.

Pr[W ] =
PtGtGr

L
(1)

Free space path loss is calculated in (2) where d[m] is
distance between the PoR and the AP and λ is wave length.

L =

(
4πd

λ

)2

(2)

Then, the distance from PoR to the APs can be estimated
by RSS in (3), where P0 is transmission power of the AP.

d =
λ

4π

√
P0

Pr
(3)

In the urban environment, the actual path loss is likely
to be larger than the free space path loss due to a variety
of noises and obstacles. Therefore, it is considered that the
distance calculated by the free-space model is longer than
the actual distance to the AP and accordingly, we adopt
the distance calculated from the free-space model as the
sphere diameter.

The remaining issue is how to estimate the transmission
power P0. Fig. 5(c) shows the percentage that the APs are
actually included in the spheres, changing the transmission
power of APs from -50[dBm] to -10[dBm] in the above
experiment. If the transmission power is -20[dBm], about
90% of spheres include APs. Hence we empirically set
−20[dBm] as the transmission power of APs. Fig. 5(b)
shows the actual distance and estimated distance to the
APs assuming -20[dBm] as the transmission power.

In summary, for each PoR o where beacons from an AP
are observed with ov[mW], we calculate the sphere s(o)
centered at the PoR with radius r calculated in Eq. (4).
The wave length λ is 300×106

24000×106 = 0.125[m] if the AP
uses 2.4GHz band, and λ is 300×106

5000×106 = 0.06[m] in case
of 5GHz band.

r =
λ

4π

√
0.001

ov
(4)

In addition, in order to fully utilize observations, we
consider another type of sphere where a target AP is not
included (we call it negative sphere). Negative spheres can
be obtained based on the fact that a beacon is not observed



(a) RSS vs Actual Distance to APs from Obser-
vation Points

(b) Actual Distance vs Estimated Distance to
APs

(c) Percentage of Spheres that include APs

Fig. 5. RSS Observation Results

Fig. 6. Tiles of Buildings

at a certain point. If we do not observe any beacon from
an AP just beside a building wall, the probability that the
AP is near the observation point on that side of building
is low. According to this, for each non-PoR o where no
beacon from a target AP is observed, the negative sphere
s(o) is defined as that centered at the point with radius
r, which is empirically defined as 10[m]. Compared with
the positive sphere defined earlier, the number of negative
spheres tends to be large since beacons are not observed
at such observation points that are apart from the AP. So
we may limit the non-PoRs that create negative spheres to
those within 200[m] from the centroid of the observation
points of the AP.

Next, we will explain a method for estimating tx-tile
candidates based on the set {s(o)|o ∈ O} of positive
spheres and the set {s(o)|o ∈ O} of negative spheres.
Firstly, we divide each wall of building into square tiles
like Fig. 6, and for each tile t in the grid, we calculate the
likelihood L(t) that the AP’s tx-tile exists on the tile. The
likelihood L(t) is calculated in (5). We set the tile size to
5[m]×5[m].

L(t)

TABLE II
SIMULATION PARAMETERS

Parameters Values
Simulator Scenargie
Propagation Module Fast Urban Propagation Module
Pathloss Calculation Model VPUP
AP’s Phy Protocol 802.11g or 802.11ac
Transmission Power -10 [dBm]
Max Signal Propagation 100,000 [km]

=
∑
o∈O

f(ov) · intersects(c, o)−
∑
o∈O

intersects(c, o)

(5)

where

intersects(t, o) =

{
1 (if t is within o)
0 (otherwise)

f(ov) =

 9.2 (ov ≥ −75)
3.5 (−75 > ov ≥ −83)
1.6 (ov < −83)

f(ov) in (5) is a weight function. We give more weights
to the PoRs with larger RSS values, i.e., positive spheres
with smaller radius. So we classify the positive spheres
according to the RSS values into three levels. The PoR
with -75[dBm] or larger are in Level1, those with values
between -75[dBm] and -85[dBm] are in Level2, and those
with -85[dBm] or smaller are in Level3. We note that we
refer to [17] to determine the thresholds. The weight for
each level is calculated based on the real observation data
in Osaka City. Based on the 1,906,339 observations in Os-
aka City, the number of observations classified into Level1,
Level2 and Level3 is 207,668, 531,598 and 1,167,073,
respectively. We use each ratio of the observations as the
weight for the level, and we choose the tiles with the
highest likelihood as the tx-tile candidates.

B. Step 2: tx-tile location estimation

In the second step, we select one tx-tile for each wall
from the tx-tile candidates in the first step. For this purpose,
we execute several simulations using different tx-tiles and



Fig. 7. Radio Propagation Simulation

select the best one that gives the best-fit simulation to the
actual observations.

Simulation settings are shown in Table II. We use
the Scenargie simulator and the Fast Urban Propagation
module. In the simulation scenarios, we place APs at the
center of the tx-tile and obtain the simulated RSS values
in surrounding area as shown in Fig. 7.

The detailed algorithm to find the best-fit tx-tile is shown
in Algorithm 1 where B = {b} is a set of buildings within
500[m] from the center of the observation points and bH
is the number of vertical tiles in building b. For example,
when the size of each tile is 5×5 and the height of b is 30,
bH is 6. T is the set of tx-tile candidates and Tb,w,h ∈ T
is the set of h-th tx-tile candidates from the bottom, which
are on the wall w of building b. Simulation is a function
that takes tiles as inputs and returns RadioMap generated
by a radio propagation simulation with APs installed at
the center of each tx-tile in tiles. RadioMap is also a
function that takes a point as input and returns simulated
RSS values at the point. Error is defined in (6). If the tx-
tile candidates exist on more than one wall of the building,
we select one tile from each wall, and execute simulations
with all the combinations of the selection. We consider the
tiles that output the radio map with the least error as the
tx-tiles of the AP.

Error(RadioMap,O) =
1

|O|
∑
o∈O

|RadioMap(o)− ov|

(6)

C. Step 3: Transmission Power Estimation

In the 3rd phase, we estimate the transmission power
of the tx-tile. As in the second step, we execute several
simulations with different transmission power using the tx-
tile estimated in the second step. Transmission power is
selected from -20, -10, 0 and 10 [dBm]. Using (6), we
calculate the error of radio maps generated by simulation
for each transmission power and select the radio map with
the least error. Then we adopt this map as the Wi-Fi radio
map of the AP.

Algorithm 1 Txtile Selection by Simulation Fitting
Input: B,O, T
Output: txtiles

for b in B do
txtiles← {}
min error ←∞
h← 0
while h < bH do
h← h+ 1
tile combinations← ⊓wTb,w,h

for tiles in tile combinations do
RadioMap← Simulation(tiles)
error ← Error(RadioMap,O)
if error < minerror then

txtiles← tiles
min error ← error

end if
end for

end while
end for

TABLE III
EXPERIMENT ENVIRONMENT

Parameters
Wi-Fi AP1-AP4 Model Buffalo AirStation WHR-300HP
Wi-Fi AP5 Model Buffalo AirStation WZR-600DHP
Wi-Fi AP6 Model Buffalo NFINITI WZR-AMPG300NH
AP Protocol 802.11g
AP Channel Bandwidth 20MHz
Observation Client LG Nexus 5X
Number of Observation Point 246

V. EXPERIMENT

To evaluate the tx-tile localization error and the quality
of a radio map constructed by the proposed scheme, we
experimented in Osaka University campus environment.
We installed 6 APs (AP1 to AP6) near the windows
of department buildings. APs’ positions and observation
points are shown in Fig. 8. Some other settings are shown
in Table. III. We could not observe the beacon of AP4 at
any points.

We evaluated the tx-tile localization error. We estimated
the tx-tile based on the proposed scheme. Figure. 14 shows
the actual AP locations and estimated tx-tile locations. Tx-
tile localization errors are shown in Table. IV. AP2 has two
tx-tiles as AP2’s tx-tile candidates exist on multiple walls.
The average error is 14.65[m]. For each AP except AP6,
the building which the estimated tx-tile is in matched with
the building the AP is in.

A. Quality of Radio Map RSS

We constructed the radio map using 246 of the 296
observation points and using the left 50 points, we com-
pared actual RSS and estimated RSS on the radio map



Fig. 8. AP Location and Observation Points

TABLE IV
TX-TILE LOCALIZATION ERROR

Tx-tile Error[m]
AP1 18.7
AP2 tx-txtile-1 10.1
AP2 tx-txtile-2 17.4
AP3 2.7
AP5 12.3
AP6 26.7

for the 6 APs installed. Fig. 9 shows the actual RSS
and estimated RSS in the constructed radio map at the
evaluation points. Among the 50 points, the number of
points that observed AP1...AP6 was 5, 1, 8, 0, 9 and 6,
respectively, therefore and the number of observation is 29.
At 19 of the 29 observations, the error remained within
±5[dBm]. The error of RSS of the AP5 is relatively large.
This is because AP5 has a large tx-tile localization error.
Hence, we can assume that the tx-tile localization error has
a great influence on the accuracy of the radio map.

VI. BEST CHANNEL SELECTION USING WI-FI RADIO
MAP OF OSAKA CITY

We have built the system of large-scale crowdsensing
and radio map construction. Also, using this system, we
have constructed a radio map of Osaka City [22]. The ar-
chitecture of the entire system is shown in Fig. 10. We have
constructed the system including Wi-Fi sensing android
App and 3D visualization application with Amazon Web
Service. We use 3D city models of OpenStreetMap for tx-
tile localization and propagation simulation.

We collected observation data in Osaka City using our
system. The target area of observation is about 5[km2].
Fig. 12 shows the area where observation data have been
collected. The observers holding the smartphones (Nexus
5) in their hands walked to cover almost all the roads in
this area. We got observations covering all areas on three
different days.

Fig. 9. RSS Estimation Error

Fig. 10. System Implementation with Amazon Web Service

The number of total observation points is 42,022, and the
number of observed APs is 78,170. From those observation
data of the 1st day and the 2nd day, we construct the radio
map using the simplified proposed method. In the simpli-
fied method, to reduce the simulation patterns, the size of
tiles is 10[m]×10[m]. Moreover, the transmission power
estimation in the 3rd step is skipped and the transmission
power of each tx-tile is fixed to -10[dBm]. By excluding
common APs that appeared on all day observations, mo-
bile AP can be excluded from the targets. We evaluated
the quality of the map comparing RSS information in
constructed radio map and the actual RSS of 3rd day
observation. Fig. 11 shows the evaluation in Yodoyabashi
of Osaka city, where the number of observations is 870,
and the number of target APs is 343.

This map would be a great help for mobile Wi-Fi clients
to know the best channel at an arbitrary point. In [2], our
research group has proposed a prediction function to select
the best channel for channel migration based on IEEE
802.11 MAC frame monitoring, large simulation dataset,
and machine learning techniques. By using the radio map,
mobile clients can know RSS information of any points
without sensing and can estimate channel delay with the
RSS information and the prediction function.

Using the assumed traffic of each channel used in [2],



Fig. 11. Yodoyabashi Evaluation: RSS comparison

Fig. 12. Osaka City Wi-Fi Database Usage

and RSS information in the Osaka city radio map, we
confirmed, in a simulation, that we can estimate the best
channel set from our function at a point. Fig. 13(a) shows
the target point and the simulation environment and Fig.
13(b) shows the comparison of the function output and
ground truth from simulation at the point. In this way, it
is possible to estimate the channel situation of any point
using the Wi-Fi radio map at the point. The map is also
helpful for those who want to install a new AP in urban
areas to know channel state at an arbitrary point. Moreover,
combining the radio map and the prediction function, 3D
visualization application of the radio map become more
useful for considering a channel and position of a new AP.

VII. CONCLUSION

A. Tx-tile Localization Error

In this paper, we have considered urban Wi-Fi radio
map construction with a limited number of cooperative
users and presented a new concept of AP localization
in 3D urban model. From the beacon samples from a
limited number of smartphones, we estimate virtual tx
sources of APs (called tx-tiles) for simulations. We have

built the complete system including Wi-Fi sensing android
App, Wi-Fi database, online simulation system on 3D
map and visualization, which is open to public [22]. We
evaluated the tx-tile localization error and the quality of
the radio map of this scheme in Osaka University campus
environment, and mean localization error is 14.65[m] and
the observations with 5[dBm] or smaller errors were about
65%. We have built the crowdsensing and radio map
construction system and constructed the Wi-Fi radio map
of Osaka city by large-scale crowdsourcing data. In future,
it will be necessary to conduct more detailed experiments
on tx-tile localization and improve the accuracy of tx-
tile location estimation of tiles by using highly accurate
information such as public Wi-Fi spot location information
which is published on the Web or observation data from
indoor.
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