
Joint Backup Capacity Allocation and Embedding
for Survivable Virtual Networks

Nashid Shahriar∗, Shihabur Rahman Chowdhury∗, Reaz Ahmed∗, Aimal Khan∗, Raouf Boutaba∗,
Jeebak Mitra†, and Liu Liu‡

∗David R. Cheriton School of Computer Science, University of Waterloo
{nshahria | sr2chowdhury | r5ahmed | a273khan | rboutaba}@uwaterloo.ca

†Huawei Technologies Canada Research Center
jeebak.mitra@huawei.com

‡Huawei Technologies
liuliu1@huawei.com

Abstract—A key challenge in Network Virtualization is to
efficiently map a virtual network (VN) on a substrate network
(SN) while accounting for possible substrate failures. This is
known as the Survivable Virtual Network Embedding (SVNE)
problem. The state-of-the-art literature has studied the SVNE
problem from infrastructure providers’ (InPs) perspective, i.e.,
provisioning backup resources in the SN. A rather unexplored
solution spectrum is to augment the VN with sufficient spare
backup capacity to survive substrate failures and embed the
resulting VN accordingly. Such augmentation enables InPs to
offload failure recovery decisions to the VN operator, thus,
providing more flexible VN management. In this paper, we
study the problem of jointly optimizing spare backup capacity
allocation in a VN and embedding the VN to guarantee full
bandwidth in the presence of single substrate link failure. We
formulate the optimal solution to the joint optimization problem
as a quadratic integer program that we transform into an
integer linear program. We propose a heuristic algorithm to
solve larger instances of the problem. Simulation results show
that our heuristic allocates ∼21% extra resources compared to
the optimal, while executing several orders of magnitude faster.

I. INTRODUCTION

Infrastructure providers (InPs), such as data center network
operators, Internet service providers, and transport network
operators are leveraging Network Virtualization (NV) to offer
slices of their networks to service providers (SPs) [1], [2].
NV enables InPs to better utilize their infrastructure, i.e.,
substrate network (SN) and also to open new revenue streams.
However, the benefits from NV come with additional resource
management challenges, such as efficiently mapping the vir-
tual nodes and links of a virtual network (VN) request onto
substrate nodes and paths, respectively. This is known as the
VN embedding (VNE) problem [3]. If a VNE solution does
not take possible substrate failures into account, then such
failures can result in degraded Quality of Service (QoS) for
VNs, leading to Service Level Agreement (SLA) violations. A
VN embedding that can survive substrate failures is known as
the Survivable VNE (SVNE) [4], and has received significant
attention in the research community [5]–[13].

The SVNE research literature focuses primarily on pro-
actively (protection during embedding) or reactively (restora-
tion after failure) provisioning backup resources in the SN,

possibly disjoint from the VN’s primary resources. A rather
unexplored spectrum in SVNE is to augment a VN with
adequate backup capacity and to embed the VN on an SN
accordingly [14]. More recently, [7] has studied a weaker
version of the SVNE problem that augments the VN topology
to ensure connectivity under multiple substrate link failures.
However, [7] does not guarantee the affected virtual links’
bandwidth, and only allows the VN to operate with degraded
QoS. In this paper, we focus on the problem of augmenting
a VN with sufficient backup capacity and embedding the VN
on an SN in a way that ensures survivability with guaranteed
bandwidth under single substrate link failure.

The motivation for providing protection at the VN level
comes from the shift of control to SPs, as anticipated in future
Transport Software Defined Networks (T-SDNs) [15]. T-SDNs
are the next generation of transport networks that leverage
SDN technologies and promise to provide full fledged VN
instead of traditional end-to-end connectivity to SPs [2], [16].
SPs can thus have more control over their virtual slice and de-
ploy their own routing, traffic engineering, and failure recovery
solutions. InPs can offload some of the failure recovery tasks
to SPs by augmenting the VNs with sufficient spare capacity
for backup and embedding the VNs using necessary disjoint
paths in the SN. A recent study empirically evaluated the
impact of providing survivability at the SN level, compared to
that at the VN level, in a real testbed [15]. The study shows
that: (i) providing survivability at the VN level has similar
switching response time during a failure as compared to doing
the same at the SN level, and (ii) VN level survivability can
accommodate more VNs compared to doing the same at the
SN, hence, is more profitable for InPs. The intuition behind
the latter result is that InPs need to provision more disjoint
resources when ensuring survivability at the SN level [15].

Another motivating application for providing survivability at
the VN level is to ensure strong IP layer survivability in IP over
Wavelength Division Multiplexed (WDM) networks. Strong
survivability in this context means ensuring both connectivity
and bandwidth at the IP layer during failures in either the
IP or the WDM layer [17]. By equipping the IP layer with
necessary backup resources needed to recover from a failure,
part of the failure recovery tasks can be off-loaded to the IPISBN 978-3-901882-94-4 c© 2017 IFIP

layer. However, a major difference between NV and IP-over-
WDM is that IP routers are provisioned in fixed locations,
whereas the virtual nodes are not assumed to have been
already placed and the embedding algorithm determines their
placement. Therefore, solutions for IP-over-WDM networks
such as [17], [18] cannot be directly applied in NV context.
As a matter of fact, the problem in NV context is more general
than its instance in IP-over-WDM networks.

In this paper, we study the problem of jointly optimizing
spare backup capacity allocation within a VN and embedding
the VN on an SN to ensure survivability under single substrate
link failure, while minimizing resource provisioning cost in the
SN. We focus on the single link failure scenario since this is
the most common case [19], [20]. A major challenge in solving
the problem is to jointly optimize spare backup capacity
allocation and survivable embedding. Spare capacity allocation
and VN embedding, when performed independently of one
another, may lead to suboptimal or infeasible solutions. Hence,
we propose a joint optimization model to solve spare capacity
allocation and VN embedding simultaneously. Specifically, we
make the following contributions:
• We formulate the optimal solution to the joint optimiza-

tion problem as a Quadratic Integer Program (QIP). We
also present a transformation of the QIP into an Integer
Linear Program (ILP).

• We propose a heuristic solution to tackle the computa-
tional complexity of the ILP-based optimal solution.

• We perform extensive simulations to evaluate our solu-
tions. Simulation results show that our proposed heuristic
allocates ∼21% extra resources compared to the optimal.

The rest of this paper is organized as follows. We present
the related literature in § II and contrast our work with the
state-of-the-art. In § III, we present the system model and
problem statement followed by a discussion on how spare
backup capacity can be allocated along a virtual link. Then,
we present our QIP formulation for the joint optimization
problem and the ILP transformation in § IV. We present the
design of our heuristic in § V. The evaluation of our solutions
are presented in § VI. Finally, we conclude with some future
research directions in § VII.

II. RELATED WORK

First, we discuss the state-of-the-art in SVNE in § II-A.
Then, we present the works focused on providing protection
at the VN level in § II-B. Finally, we contrast our approach
with those from IP-over-WDM network survivability in § II-C.

A. SVNE with Protection at SN

Rahman et al., were the first to address the SVNE prob-
lem by formulating the problem as a mixed integer linear
program [4]. A number of subsequent research works have
addressed different aspects of SVNE such as substrate node
failure [5], [6], leveraging multi-path embedding [8], [9],
shared backup protection [10], [11], and dedicated VN topol-
ogy protection [12], [13]. However, these approaches address
the SVNE problem from an InP’s perspective, i.e., the InP

provisions backup resources in the SN, disjoint from the
primary embedding. They do not explore the solution space
where the VN can be augmented with sufficient resources to
survive substrate failures and embed the VN accordingly.

B. SVNE with Protection at VN

Recently, an empirical study by Wang et al., [15] compared
different protection schemes for NV in T-SDNs. The results
from [15] show that providing protection at the VN level can
increase VN acceptance ratio. However, [15] performed a two
step backup capacity allocation and embedding rather than
jointly optimizing them. We studied a weaker version of the
SVNE problem with VN level protection in [7]. This work
proposed to embed a VN on an SN in such way that VN
connectivity is ensured against multiple substrate link failures.
However, it does not guarantee any bandwidth in case of a
failure and only allow the VN to operate in a best effort
manner. Barla et al., proposed separate design models for
cloud services that provide resiliency either at the VN or at
the SN layer [14]. Their VN-based resiliency model employs
dedicated backup consisting of additional virtual links to reach
the recovery data center. In contrast, our model eliminates the
need for changing the VN topology and uses spare capacity
allocated to existing virtual links to survive link failures.

C. IP-over-WDM Network Survivability

A similar problem to our joint optimization has been stud-
ied in IP-over-WDM literature, namely, Strongly Survivable
Routing (SSR). The objective of the SSR is to ensure both
connectivity and bandwidth guarantee at the IP layer during a
failure in either IP or WDM layer. One approach for solving
the SSR is to provision spare bandwidth at the IP layer to
survive IP or WDM link failure [17], [18], [21]–[25]. However,
these solutions do not jointly optimize spare bandwidth alloca-
tion and routing. Moreover, IP-over-WDM networks assume
a fixed placement of IP routers in the network, whereas an
SVNE algorithm needs to determine both VNode and VLink
mappings. Therefore, solutions from IP-over-WDM cannot be
directly applied to our joint optimization problem.

III. SYSTEM MODEL AND BACKGROUND

We first present basic notations in § III-A and a formal
statement of the problem in § III-B. We explain the concept of
shared risk groups in § III-C. We then discuss how embedding
affects spare capacity allocation on virtual links in § III-D. A
glossary of notations used in the paper is provided in Table I.

A. Basic Notations

1) Substrate Network: We represent the substrate network
(SN) as an undirected graph, G = (V,E), where V and E
denote the set of substrate nodes (SNodes) and links (SLinks),
respectively. The set of neighbors of an SNode u ∈ V is
denoted by N (u). We associate the following attributes with
each SLink (u, v) ∈ E: (i) buv : bandwidth capacity of the
SLink (u, v), (ii) Cuv : cost of allocating unit bandwidth on
(u, v) for a VLink. We assume that the SNodes are network

TABLE I
NOTATION TABLE

G = (V,E) Substrate Network (SN)
buv Bandwidth capacity of SLink (u, v) ∈ E

Cuv Cost of unit bandwidth on SLink (u, v) ∈ E

Ĝ = (V̂ , Ê) Virtual Network (VN)

bûv̂ Bandwidth demand of VLink (û, v̂) ∈ Ê

L(û) Location constraint set for VNode û ∈ V̂

`ûu ∈ {0, 1} `ûu = 1 if u ∈ L(û), u ∈ V, û ∈ V̂

P̂ûv̂ A VPath between û and v̂, edge disjoint from (û, v̂)

Pûv̂ An SPath representing the mapping of (û, v̂) ∈ Ê

Sûv̂ Spare backup bandwidth allocated to (û, v̂) ∈ Ê

di ∈ D An SRG consisting of a set of VLinks from Ê

dûv̂i dûv̂i = 1 if (û, v̂) ∈ Ê belongs to SRG di ∈ D

Ĥûv̂ ⊆ Ê Set of VLinks that have (û, v̂) in their backup
VPaths

zûv̂x̂ŷ ∈ {0, 1}
zûv̂x̂ŷ = 1 if (û, v̂) ∈ Ê is on the backup VPath of
(x̂, ŷ) ∈ Ê

xûv̂
uv ∈ {0, 1}

xûv̂
uv = 1 if (u, v) ∈ E is on the embedded SPath

for (û, v̂) ∈ Ê

yûu ∈ {0, 1} yûu = 1 if û ∈ V̂ is mapped to u ∈ V

gûv̂x̂ŷ (i) ∈ {0, 1} gûv̂x̂ŷ (i) = 0 if zûv̂x̂ŷ = 1 and dx̂ŷi = 1

qûv̂uv ∈ {0, Sûv̂} qûv̂uv = Sûv̂ if xûv̂
uv = 1

nodes with sufficient capacity to switch traffic at peak rate
between any pair of ports. Therefore, we do not consider any
node mapping cost or node capacity constraint.

2) Virtual Network: We represent the virtual network (VN)
as an undirected graph Ĝ = (V̂ , Ê), where V̂ and Ê represent
the set of virtual nodes (VNodes) and virtual links (VLinks),
respectively. The set of neighbors of a VNode v̂ ∈ V̂ is
denoted by N (v̂). Each VLink (û, v̂) ∈ Ê has a bandwidth
demand bûv̂ . We also have a set of location constraints,
L = {L(û)|L(û) ⊆ V,∀û ∈ V̂ }, such that a VNode û ∈ V̂
can only be provisioned on an SNode u ∈ L(û). We use a
binary variable `ûu (1 if û ∈ V̂ can be provisioned on u ∈ V ,
0 otherwise), to represent this location constraint. We denote
the spare backup bandwidth allocated to a VLink (û, v̂) ∈ Ê
that serves as a backup for other VLinks by Sûv̂ . We assume
the VNs are 2-edge connected, i.e., at least two edge disjoint
paths exist between any two VNodes. 2-edge connectivity is
a necessary condition to ensure that an edge disjoint backup
virtual path always exists for each VLink (û, v̂) ∈ Ê [17].

B. Problem Statement

Given an SN G = (V,E), a VN Ĝ = (V̂ , Ê), and a set of
location constraints L:
• For each VLink (û, v̂) ∈ Ê, optimally allocate spare

backup bandwidth along a non-empty path P̂ûv̂ in the
VN (VPath), edge disjoint from (û, v̂) such that bûv̂
bandwidth is available between VNodes û and v̂ even
after (û, v̂) is affected by an SLink failure.

• Map each VNode v̂ ∈ V̂ to exactly one SNode, u ∈ V .
Multiple VNodes from the same VN request should not
be mapped to the same SNode.

• Map each VLink (û, v̂) ∈ Ê onto a non-empty sub-
strate path (SPath) Pûv̂ having sufficient bandwidth to
accommodate the primary demand of (û, v̂) and the spare
backup bandwidth provisioned on (û, v̂).

• A VLink (û, v̂) ∈ Ê and the VLinks on its backup VPath
P̂ûv̂ are edge disjointedly mapped to ensure a single
SLink failure does not affect them at the same time.

• The total cost of allocating bandwidth on the SN to embed
the VN along with the spare bandwidth is minimum.

C. Shared Risk Group

VLinks that share at least one SLink on their mapped SPaths
share the risk of failure since all of them can fail if the
shared SLink fails. In a context where only SLink failure is
considered, a set of VLinks belong to the same shared risk
group (SRG) iff they share at least one SLink on their mapped
SPaths. On the other hand, VLinks that do not share any SLink
on their mapped SPaths belong to different SRGs. To represent
the SRG memberships, we partition the VLinks into a number
of SRGs represented by the set D = {d1, d2, d3, . . . d|D|},
where |D| ≤ |Ê|. A VLink belongs to exactly one SRG
di ∈ D and shares at least one SLink on its mapped SPath with
other VLinks in di. We use the following decision variable to
decide on a VLink’s membership to an SRG:

dûv̂i =

{
1 iff (û, v̂) ∈ Ê belongs to SRG di ∈ D,
0 otherwise.

D. Spare Capacity Assignment Model

fe

a b

c d

hg

Fig. 1. VLink (a, b) on backup VPaths of VLinks (c, d), (e, f), (g, h)

Based on how the VLinks form different SRGs during
VN embedding, the requirement for spare backup capacity
on the VLinks can be different. We explain this fact with
a simple example illustrated in Fig. 1. In this figure, VLink
(a, b) is on the backup VPaths of three other VLinks: (c, d),
(e, f), and (g, h). We can assign different spare capacity on
(a, b) to protect (c, d), (e, f), and (g, h), based on how these
three VLinks are mapped. Consider the following scenarios
regarding their mappings:

All three belong to the same SRG. If all three VLinks
are in the same SRG, then they share at least one SLink on
their mapped SPaths (Fig. 2(a)). A single substrate failure can
affect all three VLinks. Therefore, spare backup capacity allo-
cated on (a, b) should be sufficient to support the bandwidth
requirement of all three VLinks, i.e., bcd + bef + bgh.

Shared Physical Link

(a) (c, d), (e, f), (g, h) in the same SRG

(b) (c, d), (e, f), (g, h) in different SRGs
Shared Physical Link

(c) (c, d), (e, f) in same SRG, (g, h) in a different SRG
Fig. 2. Different Physical Embedding of the VLinks in Fig. 1

All three belong to different SRG. If all three VLinks
belong to different SRGs, then they do not share any SLink
on their mapped SPaths (Fig. 2(b)). At most one of the VLinks
will be affected by a single SLink failure. Therefore, the spare
backup capacity allocated on (a, b) should be sufficient to
support the maximum bandwidth requirement of these three
VLinks, i.e., max(bcd, bef , bgh).

Two belong to the same SRG, the third in a different
SRG. The mapped SPaths can create multiple SRGs out of
these three VLinks. For example, in Fig. 2(c), VLinks (c, d)
and (e, f) belong to the same SRG, whereas VLink (g, h)
belongs to a different SRG. A single SLink failure will then
affect only one group. Therefore, spare capacity allocated
on (a, b) should be sufficient to support the group with the
maximum requirement. For the group with (c, d) and (e, f),
the bandwidth requirement is bcd + bef . For the other group,
the requirement is bgh. Therefore, spare backup bandwidth on
(a, b) should be max(bcd + bef , bgh).

More formally, if a VLink (û, v̂) ∈ Ê is present on the
backup VPaths of a set of VLinks Ĥûv̂ ⊆ Ê and VLinks
in Ê form a set of D = {d1, d2, d3, . . . d|D|} SRGs, we can
generalize the spare backup bandwidth allocated to (û, v̂) as:

Sûv̂ = max
∀di∈D

 ∑
∀(x̂,ŷ)∈Ĥûv̂

dx̂ŷi bx̂ŷ

 (1)

IV. PROBLEM FORMULATION

We first provide a Quadratic Integer Program (QIP) formu-
lation for the joint spare capacity allocation and survivable
embedding problem in § IV-A, followed by a discussion on
the complexity of the QIP in § IV-B. We then describe the
transformation of the QIP to an ILP in § IV-C.

A. Quadratic Integer Program Formulation

We first present our decision variables (§ IV-A1). Then we
introduce the constraints (§ IV-A2) followed by the objective
function of our formulation ((§ IV-A3).

1) Decision Variables: For each VLink (û, v̂) ∈ Ê, there
is a backup VPath P̂ûv̂ that provides protection to that VLink
from a single SLink failure. When any SLink on the VLink’s
mapped SPath fails, P̂ûv̂ provides the same bandwidth bûv̂
between the VNodes û and v̂. The following decision variable
defines whether a VLink (û, v̂) ∈ Ê belongs to the VPath
protecting a VLink (x̂, ŷ) ∈ Ê:

zûv̂x̂ŷ =

{
1 if (û, v̂) ∈ Ê is on the backup VPath of (x̂, ŷ) ∈ Ê,
0 otherwise.

Note that, zûv̂ûv̂ = 0, since a VLink’s backup VPath has to
be edge disjoint from itself.

The following decision variable indicates the mapping be-
tween a VLink (û, v̂) ∈ Ê and an SLink (u, v) ∈ E:

xûv̂uv =

{
1 if (û, v̂) ∈ Ê is mapped to (u, v) ∈ E,
0 otherwise.

The VNode to SNode mapping is denoted using the follow-
ing decision variable:

yûu =

{
1 if û ∈ V̂ is mapped to u ∈ V,
0 otherwise.

VLinks that share at least one SLink on their mapped SPaths
belong to the same SRG (§ III). SRG membership is defined
using the decision variable dûv̂i , defined in § III-C.

2) Constraints:
a) VNode Mapping Constraints: (2) and (3) ensure that

each VNode of a VN is provisioned on an SNode satisfying
the provided location constraints. Moreover, (4) constraints an
SNode to host at most one VNode from the same VN. Note
that VNode mapping follows from the VLink mapping, since
there is no cost associated with the VNode mapping.

∀û ∈ V̂ , ∀u ∈ V : yûu ≤ `ûu (2)

∀û ∈ V̂ :
∑
u∈V

yûu = 1 (3)

∀u ∈ V :
∑
û∈V̂

yûu ≤ 1 (4)

b) Backup VPath Continuity Constraints: A VLink in a
VN is protected by a VPath in the VN to survive a single SLink
failure. (5) ensures continuity of a backup VPath protecting a
VLink (x̂, ŷ) ∈ Ê:

∀(x̂, ŷ) ∈ Ê :
∑

∀v̂∈N (û)\{ŷ}

(zûv̂x̂ŷ − zv̂ûx̂ŷ) =

1 if û = x̂

−1 if û = ŷ

0 otherwise
(5)

c) VLink Mapping Constraints: First, we ensure that
every VLink is mapped to a non-empty set of SLinks using
(6). Then, we ensure that the in-flow and out-flow of each
SNode is equal, except for the SNodes where the endpoints of
a VLink are mapped using (7). (7) ensures that the non-empty
set of SLinks corresponding to a VLink’s mapping form a
single continuous SPath.

∀(û, v̂) ∈ Ê :
∑

∀(u,v)∈E

xûv̂uv ≥ 1 (6)

∀û, v̂ ∈ V̂ , ∀u ∈ V :
∑

∀v∈N (u)

(xûv̂uv − xûv̂vu) = yûu − yv̂u (7)

The binary nature of the VLink mapping decision variable
and the flow constraint prevents any VLink from being mapped
onto more than one SPaths, thus, restricting the VLink map-
ping to the Multi-commodity Unsplittable Flow Problem [26].

We also need to ensure that we do not over-commit the
bandwidth resources we have on the SLinks. To do so, we
first compute the spare backup bandwidth allocated to a VLink
(û, v̂) ∈ Ê using (1) as follows:

Sûv̂ = max
∀di

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

zûv̂x̂ŷ × d
x̂ŷ
i × bx̂ŷ (8)

Then, the following constraint prevents any over-commit of
the bandwidth resource in the SLinks:

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

xûv̂uv × (bûv̂ + Sûv̂) ≤ buv (9)

Note that (9) is a cubic constraint, since Sûv̂ is quadratic
according to (8). Therefore, we take the following steps to
linearize Sûv̂ in order to ensure that (9) remains quadratic.

First, we introduce a new variable gûv̂x̂ŷ (i), defined as fol-
lows:

gûv̂x̂ŷ (i) =

{
0 if zûv̂x̂ŷ = 1 and dx̂ŷi = 1,

1 otherwise.

Essentially, for a given VLink (û, v̂) ∈ Ê, the zero values of
gûv̂x̂ŷ (i) induce a set of VLinks such that they belong to the
same SRG and have (û, v̂) on their backup VPaths. The value
of gûv̂x̂ŷ (i) is set using the following constraint:

∀(û, v̂) ∈ Ê,∀(x̂, ŷ) ∈ Ê,∀di ∈ D : zûv̂x̂ŷ + dx̂ŷi + gûv̂x̂ŷ ≤ 2
(10)

We can use gûv̂x̂ŷ (i) to rewrite (8) in a linear form as follows:

Sûv̂ = max
∀di

∑
∀(x̂,ŷ)∈Ê\{(û,v̂)}

(1− gûv̂x̂ŷ (i))× bx̂ŷ (11)

Since our objective function will be a minimization func-
tion, we define gûv̂x̂ŷ (i) so that setting it to 1 minimizes the
value of Sûv̂ , unless it is constrained to be 0 according to
(10). This constrained case will only occur when both zûv̂x̂ŷ
and dx̂ŷi are 1, as defined by (10).

d) Disjointedness Constraints: The mapped SPaths of
the VLinks from an SRG di, must be edge disjoint from
the mapped SPaths of the VLinks from a different SRG dj
(∀j 6= i). This is ensured by (12). (13) ensures that two VLinks
from the same SRG share at least one SLink on their mapped
SPaths. Note that a VLink (û, v̂) ∈ Ê cannot be present in
more than one SRGs, which we ensure by (14).
∀(u, v) ∈ E,∀(û, v̂) ∈ di,∀(x̂, ŷ) ∈ dj s.t. i 6= j :

dûv̂i + dx̂ŷj + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu ≤ 3
(12)

∀di ∈ D,∀((û, v̂), (x̂, ŷ)) ∈ di × di s.t. (û, v̂) 6= (x̂, ŷ),

∃(u, v) ∈ E : dûv̂i + dx̂ŷi + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu = 4
(13)

∀(x̂, ŷ) ∈ Ê :
∑
∀di∈D

dx̂ŷi = 1 (14)

To ensure survivability of the VN under single SLink failure,
the mapped SPath of a VLink cannot share any SLink with the
mapped SPaths of the VLinks present on its backup VPath.
The following constraint ensures this disjointedness:

∀(u, v) ∈ E,∀((û, v̂), (x̂, ŷ)) ∈ Ê × Ê s.t. (û, v̂) 6= (x̂, ŷ) :

zx̂ŷûv̂ + xûv̂uv + xûv̂vu + xx̂ŷuv + xx̂ŷvu ≤ 2
(15)

3) Objective Function: As per the problem statement pre-
sented in § III-B, we do not consider any node mapping cost
in our VN embedding. Thus, our cost function minimizes the
total cost of provisioning the working and backup bandwidth
for the VLinks of a VN on the SLinks of an SN. This gives
us the following objective function:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × (bûv̂ + Sûv̂)

(16)

B. Complexity of the QIP
Our formulation for the joint optimization problem has a

quadratic constraint (9) and a quadratic objective function (16).
Therefore, the QIP presented in § IV-A is a Quadratically Con-
strained Quadratic Program (QCQP) and falls into the general
category of the Quadratic Assignment Problem (QAP) [27].
Solving a QAP is computationally expensive and is known to
be NP-hard [28]. Sahni et al., proved that even finding an
ε−approximate solution of QAP is NP-hard [29]. In the next
section, we present the steps to linearize the QIP by using a
technique similar to the one discussed in [30].

C. ILP Transformation
For the purpose of linearization, we first put a bound on the

spare backup bandwidth of a VLink (û, v̂) ∈ Ê, i.e., Sûv̂: 0 ≤
Sûv̂ ≤ λ, where λ is a very large integer. We also introduce a
new integer variable qûv̂uv , defined in terms of xûv̂uv as follows:

qûv̂uv =

{
Sûv̂ if xûv̂uv = 1,

0 if xûv̂uv = 0.

The following constraints enforce the relationship between
qûv̂uv and xûv̂uv:

∀(u, v) ∈ E,∀(û, v̂) ∈ Ê : qûv̂uv ≥ 0 (17)

∀(u, v) ∈ E,∀(û, v̂) ∈ Ê : Sûv̂ − λ× (1− xûv̂uv) ≤ qûv̂uv (18)

To elaborate, when xûv̂uv = 0, constraints (17) and (18)
become qûv̂uv ≥ 0 and Sûv̂−λ ≤ qûv̂uv , respectively. Since λ is a
very large number by definition, the constraints finally reduce
to qûv̂uv ≥ 0. On the other hand, when xûv̂uv = 1, constraint (17)
and (18) become qûv̂uv ≥ 0 and Sûv̂ ≤ qûv̂uv , respectively. In this
later case, constraint (18), i.e., Sûv̂ ≤ qûv̂uv dominates. Finally,
if we include qûv̂uv in the minimization objective function, the
smallest possible value of qûv̂uv will be used to minimize the
value of the objective function, yielding qûv̂uv = Sûv̂ .

We now rewrite the capacity constraint (9) as the following
linear constraint using qûv̂uv .

∀(u, v) ∈ E :
∑

∀(û,v̂)∈Ê

(xûv̂uv × bûv̂ + qûv̂uv) ≤ buv (19)

Similarly, the quadratic objective function can be written in
a linearized form as follows:

minimize

 ∑
∀(û,v̂)∈Ê

∑
∀(u,v)∈E

xûv̂uv × Cuv × bûv̂ + Cuv × qûv̂uv)

(20)

V. HEURISTIC DESIGN

There are several challenges in designing a heuristic for
the joint optimization of spare backup capacity allocation
and survivable embedding problem. We first discuss these
challenges in detail and briefly explain how we addressed them
in § V-A. Then, we present our heuristic algorithm in § V-B.

A. Challenges

1) Selection of Backup VPath: The first challenge is the
selection of a backup VPath from an exponential number
of VPaths. One of the most efficient shared backup path
protection schemes for single layer protection is p-cycle based
protection [31]. A p-cycle is formed by connecting the spare
capacity in a network in a ring like structure. For instance, a
Hamiltonian p-cycle that passes through all the nodes in a net-
work once, can provide recovery paths for either an on-cycle
VLink failure or a straddling VLink failure [32]. However,
finding a Hamiltonian cycle is NP-Complete. Additionally, a
longer p-cycle requires all the VLinks on the p-cycle to be
mapped on disjoint SPaths to ensure that the VLinks belong
to separate SRGs. Such constraints can lead to longer mapped
SPaths or even failure to embed the VN. We address this
issue by keeping an overlap between the backup allocations
and mapping phases. We first find a mapping using estimated
backup allocations and then re-optimize the backup allocations
using a p-cycle based technique.

2) VNode Mapping: The next challenge comes from node
mapping, a combinatorial optimization problem [33]. Al-
though we are not considering any cost for VNode mapping,
the order of VNode mapping and VNode mapping itself have
a profound impact on subsequent VLink mapping. Selection
of an SNode for mapping a VNode influences later VNodes’
mappings and the possible SPaths that can be chosen for the
VLinks. Such constraints subsequently impact the cost of a
solution. In our approach, we map the VNodes from the most
constrained to the least constrained, to minimize chances of
mapping failure at a later stage due to resource exhaustion.
We measure the constraint of a VNode û by its nodal degree
i.e., |N (û)|. To find the mapping of a VNode, we select the
SNode incurring the least cost from the location constraint set
of the VNode to minimize total cost of the embedding.

3) Disjoint SPath Computation: Finally, VLink mapping on
unsplittable SPath without the disjointedness constraints is at
least as hard as solving the NP-Hard Multi-commodity Un-
splittable Flow Problem [26]. Furthermore, finding the optimal
set of disjoint SPaths is an NP-Complete problem [34]. In
our solution, we iteratively compute the disjoint SPaths using
a modified version of Dijkstra’s shortest path algorithm [35].

B. Heuristic Algorithm
Our heuristic algorithm is presented as a pseudocode in

Alg. 1. Alg. 1 solves the joint optimization problem in two
steps: (i) it estimates the spare backup bandwidth on the
VLinks, determines the disjointedness requirements based on
this estimation, and performs a VN Embedding, (ii) it identifies
the longest cycle consisting of VLinks belonging to separate

Algorithm 1: Embed VN with Protection

1 function VNEmbedding(G, Ĝ, C, σ)
2 D ← {d1, d2, . . . d|Ê|} // Set of all SRGs

3 ∀û ∈ V̂ : nmapû ← NIL
4 ∀(û, v̂) ∈ Ê: Sest

ûv̂ ← 0, Λûv̂ ← σ, SRGûv̂ ← d1,
emapûv̂ ← φ, backupûv̂ ← φ

5 V̂ ← Sort û ∈ V̂ in decreasing order of |N (û)|
6 foreach û ∈ V̂ do
7 foreach v̂ ∈ N (û) do
8 backupûv̂ ← GetBackup(Ĝ, (û, v̂),Λ, emap)
9 foreach (x̂, ŷ) ∈ backupûv̂ do

10 Sest
x̂ŷ ← max(Sest

x̂ŷ , bûv̂)
11 if SRGûv̂ = SRGx̂ŷ then
12 Find dj ∈ D s.t.

SRGûv̂ 6= dj ,∀(û, v̂) ∈ Ê
13 SRGûv̂ ← dj
14 Ĥx̂ŷ ← {(â, b̂) ∈ Ê|(x̂, ŷ) ∈ backupâb̂}

foreach (â, b̂) ∈ Ĥx̂ŷ do
15 if SRGûv̂ = SRGâb̂ then
16 Find dj ∈ D s.t.

SRGûv̂ 6= dj ,∀(û, v̂) ∈ Ê
17 SRGûv̂ ← dj
18 bestû ← NIL, Qbest

û ← φ, cbest ←∞
19 foreach l ∈ L(û) do
20 foreach v̂ ∈ N (û) do
21 W ← C
22 ∀(m,n) ∈ {(u, v) ∈ E|SRGx̂ŷ 6=

SRGûv̂∧(u, v) ∈ emapx̂ŷ,∀(x̂, ŷ) ∈ Ê}:
Wmn ←∞

23 if nmapv̂ 6= NIL then
24 Qûv̂ ←CWSP(G, l, nmapv̂, bûv̂,W)
25 else Qûv̂ ←

min
∀m∈L(v̂)

{CWSP(G, l,m, bûv̂,W)}

26 if ∃v̂ ∈ N (û) : Qûv̂ = φ then c←∞
27 else c←

∑
∀v̂∈N (û)Qûv̂

28 if c < cbest then
29 bestû ← l, Qbest

û ← Qû, cbest ← c
30 if bestû = NIL then return {φ, φ, φ, φ}
31 nmapû ← bestû
32 foreach v̂ ∈ N (û) and nmapv̂ 6= NIL do
33 emapûv̂ ← Qbest

ûv̂ , Λûv̂ ← Cost(Qbest
ûv̂)

34 {backup, S} ← UpdateBackup(Ĝ, backup, SRG)
35 return {nmap, emap, backup, S}

SRGs and re-optimizes backup bandwidth allocations using
the cycle. Upon success, Alg. 1 returns nmap, emap, backup,
and S representing the VNode mapping, VLink mapping,
backup VPaths, and spare backup capacities, respectively.

Alg. 1 starts by initializing the estimated spare backup
bandwidth of each VLink, Sest

ûv̂ to 0 and by placing all the
VLinks into a single SRG d1. It then proceeds to map the
VNodes from the most constrained to the least constrained
ones, i.e., in decreasing order of their degrees. If two VNodes
have equal degrees then we arbitrarily select one of them. For
a VNode û, Alg. 1 first finds estimated backup VPaths for
each VLink incident to û by iteratively invoking GetBackup
procedure (Alg. 2). Alg. 2 invokes Constrained Weighted
Shortest Path (CWSP) procedure to compute a VPath with at

Algorithm 2: Compute Backup VPath of a VLink

1 function GetBackup(Ĝ, (û, v̂), Σ, emap)
2 foreach (x̂, ŷ) ∈ Ê do
3 if Sest

x̂ŷ ≥ bûv̂ then Weightestx̂ŷ ← 1

4 else if emapx̂ŷ = φ or min
(u,v)∈Qx̂ŷ

bresidualuv ≥ bûv̂
then Weightestx̂ŷ ← (bûv̂ − Sest

x̂ŷ)× Σx̂ŷ
5
6 else Weightestx̂ŷ ←∞
7 Weightestûv̂ ←∞
8 return CWSP(Ĝ, û, v̂, bûv̂,Weightest)

least bûv̂ bandwidth between û and v̂ in the VN Ĝ, according
to a provided weight function. Alg. 2 first computes the weight
function Weightest for all the VLinks and invokes CWSP to
obtain the backup VPath between û and v̂. Alg. 2 assigns lower
weights to VLinks with already assigned backups to enhance
the sharing of spare bandwidth by more VPaths (Line 3). The
weight function also takes the mapping cost of an already
mapped VLink (x̂, ŷ) into account and assigns (x̂, ŷ) a weight
proportional to the mapping cost Λx̂ŷ . In line 4, a special case
occurs when a VLink (x̂, ŷ) is not yet mapped. For this case,
we set Λx̂ŷ to use the average SPath length (σ) as an indicator
of future cost. Finally, an infinite weight is set to the VLinks
whose mapped SPaths do not have adequate residual capacity
to exclude them from the search space (Line 6).

After computing the estimated backup VPath backupestûv̂ ,
Alg. 1 updates Sest

x̂ŷ for all (x̂, ŷ) ∈ backupestûv̂ with the
maximum value of bûv̂ (Line 10). It then places (û, v̂) and
(x̂, ŷ) into different SRGs (Line 13). Finally, it places (û, v̂)
and all other VLinks that use (x̂, ŷ) in their backup VPaths
into different SRGs (Line 17). After finding the backup VPaths
and SRGs of all the incident VLinks of a VNode û, Alg. 1
finds the mapping of û and VLinks incident to û. It iterates
over all candidate SNodes l ∈ L(û) and selects the one that
results in the least cost mapping for all the VLinks incident to
û (Line 20− 29). For a specific l ∈ L(û) and v̂ ∈ N (û), if v̂
is already mapped to nmapv̂ , Alg. 1 computes CWSP from l
to nmapv̂ (Line 24), while satisfying capacity constraints and
SRG constraints in the SN (using the weights in W). To do so,
Alg. 1 identifies the set of SLinks that the mapping of (û, v̂)
should be disjoint from and assigns ∞ as their weights (Line
22). On the other hand, if v̂ is not mapped yet, it computes
CWSPs from l to the SNodes m ∈ L(v̂) and selects the CWSP
with the minimum cost (Line 25). After mapping a VNode û,
Alg. 1 maps the VLinks whose both endpoints have already
been mapped and updates Λ of the mapped VLinks (Line 33).

The last phase (Alg. 3) of our heuristic leverages the concept
of p-cycle based protection to optimize the spare backup
bandwidth Sûv̂ for each mapped VLink (û, v̂) ∈ Ê. Alg. 3
first finds the longest cycle R̂ in Ĝ such that any pair of
VLinks in R̂ do not share any SLink in their mappings (Line
3). Recall from § III-D that each (x̂, ŷ) ∈ R̂ belongs to distinct
SRGs for a single SLink failure. Therefore, Alg. 3 allocates
the maximum of the demands of all the VLinks in R̂ to each

Algorithm 3: Reconfigure Backup VPaths of all VLinks

1 function UpdateBackup(Ĝ, backup, SRG)
2 ∀(û, v̂) ∈ Ê : Sûv̂ ← 0
3 R̂← longest cycle in Ĝ such that no VLink pair in

R̂ shares an SLink on their mapped SPaths
4 ∀(x̂, ŷ) ∈ R̂ : Sx̂ŷ ← max∀(û,v̂)∈R̂{bûv̂}
5 foreach (û, v̂) ∈ Ê do
6 foreach (x̂, ŷ) ∈ Ê \ {(û, v̂)} do
7 if SRGûv̂ = SRGx̂ŷ then Weightx̂ŷ ←∞
8 else if Sx̂ŷ ≥ bûv̂ then Weightx̂ŷ ← 1
9 else Weightx̂ŷ ← (bûv̂ − Sx̂ŷ)

10 Weightûv̂ ←∞
11 backupûv̂ ← CWSP(Ĝ, û, v̂, bûv̂,Weight)
12 ∀(x̂, ŷ) ∈ backupûv̂ : Sx̂ŷ ← max(Sx̂ŷ, bûv̂)
13 return {backup, S}

Sx̂ŷ ∈ R̂ (Line 4). It then recomputes backup VPath backupûv̂
for each (û, v̂) ∈ Ê using a process similar to Alg. 2. However,
Alg. 3 utilizes the mapping information to better compute the
backup VPaths. It does so by setting ∞ as the weight of the
VLink (x̂, ŷ) if (û, v̂) and (x̂, ŷ) are in the same SRG (Line 7).
Alg. 3 also enhances the spare capacity sharing by setting unit
weights to the VLinks having already assigned spare capacities
(Line 8). Alg. 3 then invokes the CWSP procedure with the
weight function to compute backupûv̂ . Finally, Sx̂ŷ for each
(x̂, ŷ) ∈ backupûv̂ is updated accordingly (Line 12).

C. Running Time Analysis

The CWSP procedure is implemented using a modified
Dijkstra’s shortest path algorithm, taking into account the
constraints and weights. Dijkstra’s algorithm using a min-
priority queue on G runs in O(|E|+ |V | log |V |) time. CWSP
is invoked O(|V̂ |Lδ2) times in Alg. 1, where L and δ are
the maximum size of a location constraint set and maximum
degree of a VNode, respectively. Therefore, the overall running
time of the heuristic is O(|V̂ |Lδ2(|E|+ |V | log |V |)).

VI. EVALUATION

We evaluate our proposed solutions for the joint optimiza-
tion problem through extensive simulations. We briefly discuss
the compared approaches in § VI-A, simulation setup in
§ VI-B followed by the performance metrics in § VI-C. Finally,
we describe our evaluation results focusing on the following
aspects: (i) impact of SN (§ VI-D), (ii) impact of VN (§ VI-E),
and (ii) scalability of the solutions (§ VI-F).

A. Compared Approaches

We implemented the ILP-based optimal solution, Opt-ILP,
presented in IV-C using IBM ILOG CPLEX C++ libraries
and compare that with a C++ implementation of the heuristic.
However, Opt-ILP was unable to scale beyond very small
problem instances. Therefore, we implemented a simpler vari-
ant of Opt-ILP, called Max-ILP, to use as a baseline. Design
of Max-ILP is motivated by an observation from the results
that for a VLink (û, v̂), Opt-ILP places the VLinks in Ĥûv̂

into separate SRGs whenever possible, thus preferring more

 60

 90

 120

 150

 180

 210

 240

20 30 40 50 60 70 80 90

Co
st

(x
10

3)

SN Size (Number of SNodes)

Opt-ILP
Max-ILP

Heuristic

 0

 40

 80

 120

 160

 200

 240

 280

1.24 1.40 1.60 1.84 2.00 2.24 2.44 2.60

Co
st

(x
10

3)

SN LNR

Opt-ILP
Max-ILP

Heuristic

 1

 2

 3

 4

 5

 1.4 1.6 1.8 2 2.2 2.4 2.6
 1

 2

 3

 4

 5

M
ea

n
SP

at
h

Le
ng

th

M
ea

n
V

Pa
th

 L
en

gt
h

SN LNR

Opt-ILP-SPath
Opt-ILP-VPath

Max-ILP-SPath
Max-ILP-VPath

Heuristic-SPath
Heuristic-VPath

Fig. 3. Impact of SN Topology

 50

 100

 150

 200

 250

3 4 5 6 7 8 9 10 11

Co
st

(x
10

3)

VN Size (Number of VNodes)

Opt-ILP
Max-ILP

Heuristic

 40

 80

 120

 160

 200

 240

1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33

Co
st

(x
10

3)
VN LNR

Opt-ILP
Max-ILP

Heuristic

 1

 2

 3

 4

 5

 6

 1 1.2 1.4 1.6 1.8 2 2.2
 1

 2

 3

 4

 5

 6

M
ea

n
SP

at
h

Le
ng

th

M
ea

n
V

Pa
th

 L
en

gt
h

VN LNR

Opt-ILP-SPath
Opt-ILP-VPath

Max-ILP-SPath
Max-ILP-VPath

Heuristic-SPath
Heuristic-VPath

Fig. 4. Impact of VN Topology

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14

Ex
ec

ut
io

n
Ti

m
e

(s
)

VN Size

Opt-ILP Max-ILP Heuristic

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Ex
ec

ut
io

n
Ti

m
e

(s
)

VN LNR

Opt-ILP Max-ILP Heuristic

 0.25

 0.5

 1

 2

 4

 8

 16

 10 20 30 40 50 60 70 80 90 100

H
eu

ris
tic

 E
xe

cu
tio

n
Ti

m
e

(s
)

VN Size

SN-500 SN-1000

Fig. 5. Scalability Analysis

sharing of the spare capacity. Hence, we constrained any pair
of VLinks in Ĥûv̂ to be in separate SRGs during embedding.
Doing so allowed us to exclude the decision variable dx̂ŷi from
(8) and reduce complexity. For Max-ILP, (8) was modified to
take the maximum demand of the VLinks in Ĥûv̂ as Sûv̂ .

B. Simulation Setup
We evaluate the compared approaches on both small and

large scale settings. Since VNs are still not widely deployed,
the topological properties of VNs and SNs are not well
understood yet. Hence, we vary number of nodes (size) and
link to node ratio (LNR) of VNs and SNs. For each simulation
run, we generate an SN and 5 random VNs with the desired
property. In small scale, SN size is varied between 20 – 90
nodes, while VN size ranges from 3 – 11 nodes. For larger
scale, VN size ranges from 10 – 100 nodes on 500 and 1000
node SNs. We vary the connectivity of both SNs and VNs by
varying the LNR from 1.0 to 2.60. We set VLink demand 10%
of the SLink bandwidth. For each SN, the performance metrics
are measured by taking the mean over all 5 VNs. Simulations
are performed on a machine with 2×8-core 2.0 Ghz Intel Xeon
E5-2650 processors and 256GB of RAM.

C. Performance Metrics
1) Cost: The cost of embedding a VN computed using

(20). We set a unit cost for allocating bandwidth on an SLink,
therefore, (20) directly represents resource consumption.

2) Execution Time: The time required for an algorithm to
find an embedding of a VN.

3) Mean SPath Length: The mean length of the SPath used
to map a VLink of a VN.

4) Mean VPath Length: The mean length of the VPath used
as a backup path for a VLink in a VN.

D. Impact of SN Topology

Fig. 3(a) presents embedding costs for different SN sizes,
while keeping the VN size and SN LNR fixed at 5 and
1.8, respectively. We first observe that Max-ILP very closely
approximates Opt-ILP. Compared to Max-ILP, the heuristic
provisions ∼21% additional resources on average over all test
cases. For a fixed LNR, with increasing SN size, embedding
costs increase for all approaches. As SN sizes increase, can-
didate SNodes of the VNodes of a VN are placed far apart
from one another, thus, contributing to larger costs. However,
for a fixed SN size, with increasing SN LNR, costs decrease
for all three approaches as observed in Fig. 3(b). We explain
this behavior with the help of Fig. 3(c) in the following.

Fig. 3(c) presents mean SPath and VPath lengths by varying
SN LNR. At the lowest end of the LNR spectrum, Max-ILP
and heuristic fail to find sufficient disjoint SPaths, imposed by
the SRG constraints, resulting in infeasible solutions. However,
Opt-ILP is able to find a solution with a very high cost by
reducing the number of SRGs. Reducing the number of SRGs
is beneficial in SNs with lower LNRs, since it is hard to find
sufficient disjoint SPaths in such SNs. In addition, a disjoint
SPath becomes significantly longer than the corresponding
non-disjoint SPath between the same pair of SNodes in an SN
with lower LNR. As SN LNR increases, the number and length
of the disjoint SPaths increase and decrease, respectively. As
a consequence, cost decreases for all three approaches as
shown in Fig. 3(b). Fig. 3(c) shows that mean VPath lengths
for all three approaches increase initially with increasing SN
LNR. However, when VPath lengths get very close to the
VN diameter, they remain almost constant with increasing SN
LNR. The initial increase in mean VPath length is due to the

use of the same VLinks by more VPaths, leading to more
sharing of spare backup bandwidth. On the other hand, SNs
with lower LNRs cannot satisfy the disjointedness constraints
imposed by longer VPaths, hence, all the approaches select
shorter VPaths resulting in more spare bandwidth and more
cost (Fig. 3(b)).

E. Impact of VN Topology
Fig. 4(a) presents embedding costs for different VN sizes,

while keeping the SN size, SN LNR, and VN LNR fixed at 50,
1.82, and ∼ 1.4, respectively. Fig. 4(b) and Fig. 4(c) compare
embedding cost, mean SPath and VPath lengths by varying the
VN LNR. The key takeaway from these figures is that both
cost and mean SPath length increase with increasing VN size
and VN LNR. This is due to more disjointedness constraints
imposed by the higher number of SRGs and shorter VPaths
induced by both larger and denser VNs (Fig. 4(c)).

F. Scalability Analysis
Fig. 5 shows the execution times for the compared ap-

proaches to demonstrate their scalability. As the problem size
increases in terms of VN size, VN LNR, and SN size, the
execution time grows for all the approaches except for the case
of heuristic execution times against VN size. The decrease in
heuristic’s execution times with increasing VN size is due to
the reduction of the SN solution space imposed by the higher
number of SRG constraints. In contrast, the execution time
of Opt-ILP and Max-ILP increase exponentially, limiting their
applicability to smaller problem instances. As we can see from
Fig. 5(a) and Fig. 5(b), with our current hardware, both Opt-
ILP and Max-ILP hit a ceiling in terms of VN size or VN
LNR. Whereas, the heuristic can solve much larger problem
instances. Even for the successful cases, Opt-ILP and Max-ILP
require several orders of magnitude more time to solve similar
problem instances compared to the heuristic. Furthermore, the
heuristic is able to find solutions within a reasonable time limit
for much larger problem instances (Fig. 5(c)), i.e., VNs with
10–100 nodes and 21–285 links on 500 and 1000 node SNs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel solution to the
SVNE problem. Instead of addressing the problem at the SN
level, we have addressed the problem at the VN level, i.e.,
the VN is augmented with sufficient spare backup bandwidth
and embedded on the SN accordingly to ensure survivability
against single substrate link failure. We have formulated the
optimal solution to this joint optimization problem as a QIP
and transformed it into an ILP. We have also proposed a
heuristic to tackle the computational complexity of the optimal
solution. Simulation results show that our heuristic allocates
∼21% additional resources compared to the optimal solution,
while executing several orders of magnitude faster. In the
future, we plan to extend this work to virtual fabrics where
the bandwidth requirement is expressed as pairwise bandwidth
rather than as per link bandwidth requirement. We intend to
study the resource allocation challenges to ensure survivability
at the fabric level compared to doing the same at the VN level.

REFERENCES

[1] “Amazon Virtual Private Cloud,” http://aws.amazon.com/vpc/.
[2] “T-SDN Prototype Demonstration,” https://www.opennetworking.org/

images/stories/downloads/sdn-resources/technical-reports/oif-
p0105 031 18.pdf.

[3] N. M. M. K. Chowdhury et al., “A Survey of Network Virtualization,”
Computer Networks, Apr 2010.

[4] M. R. Rahman, I. Aib, and R. Boutaba, “Survivable virtual network
embedding,” in NETWORKING 2010. Springer, 2010, pp. 40–52.

[5] J. Xu et al., “Survivable virtual infrastructure mapping in virtualized
data centers,” in IEEE CLOUD. IEEE, 2012, pp. 196–203.

[6] H. Yu et al., “Cost efficient design of survivable virtual infrastructure
to recover from facility node failures,” in IEEE ICC, 2011, pp. 1–6.

[7] N. Shahriar et al., “Connectivity-aware virtual network embedding,” in
IFIP Networking Conference 2016, 2016, pp. 46–54.

[8] M. M. A. Khan et al., “Simple: Survivability in multi-path link embed-
ding,” in IEEE CNSM, 2015, pp. 210–218.

[9] R. R. Oliveira et al., “Dos-resilient virtual networks through multipath
embedding and opportunistic recovery,” in ACM SAC ’13, pp. 597–602.

[10] T. Guo et al., “Shared Backup Network Provision for Virtual Network
Embedding,” in IEEE ICC, Kyoto, Japan, Jun 2011, pp. 1–5.

[11] Y. Chen et al., “Resilient Virtual Network Service Provision in Network
Virtualization Environments,” in IEEE ICPADS ’10, pp. 51–58.

[12] Z. Ye et al., “Survivable virtual infrastructure mapping with dedicated
protection in transport software-defined networks [invited],” Journal of
Optical Comm. and Net., vol. 7, no. 2, pp. A183–A189, 2015.

[13] S. R. Chowdhury et al., “Protecting Virtual Networks with DRONE,” in
IEEE/IFIP NOMS, 2016, pp. 78–86.

[14] I. B. Barla et al., “Optimal design of virtual networks for resilient cloud
services,” in 9th International Conference on the Design of Reliable
Communication Networks (DRCN). IEEE, 2013, pp. 218–225.

[15] W. Wang et al., “First Demonstration of Virtual Transport Network
Services With Multi-layer Protection Schemes over Flexi-grid Optical
Networks,” IEEE Comm. Letters, vol. 20, no. 2, pp. 260–263, Feb 2016.

[16] “OpenFlow-enabled T-SDN,” https://www.opennetworking.org/images/
stories/downloads/sdn-resources/solution-briefs/sb-of-enabled-transport-
sdn.pdf.

[17] T. Lin et al., “Logical topology survivability in ip-over-wdm networks:
Survivable lightpath routing for maximum logical topology capacity and
minimum spare capacity requirements,” in IEEE DRCN, 2011, pp. 1–8.

[18] D. D.-J. Kan et al., “Lightpath routing and capacity assignment for
survivable ip-over-wdm networks,” in IEEE DRCN, 2009.

[19] P. Gill et al., “Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications,” in ACM SIGCOMM, vol. 41, Aug
2011, pp. 350–361.

[20] A. Markopoulou et al., “Characterization of Failures in an IP Backbone,”
in INFOCOM, vol. 4, Mar 2004, pp. 123–133.

[21] P. Demeester et al., “Resilience in multilayer networks,” IEEE Comm.
Magazine, vol. 37, no. 8, pp. 70–76, Aug 1999.

[22] C. Assi et al., “On the merit of ip/mpls protection/restoration in ip over
wdm networks,” in IEEE GLOBECOM ’01, pp. 65–69.

[23] E. Kubilinskas and M. Pioro, “Two design problems for the ip/mlps over
wdm networks,” in DRCN ’05, pp. 241–248.

[24] Y. Liu et al., “Spare capacity allocation in two-layer networks,” IEEE
JSAC, vol. 25, no. 5, pp. 974–986, 2007.

[25] O. Gerstel et al., “Multi-layer capacity planning for ip-optical networks,”
IEEE Communications Magazine, vol. 52, no. 1, pp. 44–51, 2014.

[26] S. Even et al., “On the complexity of time table and multi-commodity
flow problems,” in IEEE FOCS, 1975, pp. 184–193.

[27] E. L. Lawler, “The quadratic assignment problem,” Management science,
vol. 9, no. 4, pp. 586–599, 1963.

[28] E. Cela, The quadratic assignment problem: theory and algorithms.
Springer Science & Business Media, 2013, vol. 1.

[29] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM (JACM), vol. 23, no. 3, pp. 555–565, 1976.

[30] M. Oral and O. Kettani, “A linearization procedure for quadratic and
cubic mixed-integer problems,” Operations Research, vol. 40, no. 1-
supplement-1, pp. S109–S116, 1992.

[31] R. Asthana et al., “p-cycles: An overview,” IEEE Comm. Surveys &
Tutorials, vol. 12, no. 1, pp. 97–111, 2010.

[32] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed pre-
configuration: ring-like speed with mesh-like capacity for self-planning
network restoration,” in IEEE ICC, 1998, pp. 537–543.

[33] A. Fischer et al., “Virtual Network Embedding: A Survey,” IEEE
Communications Surveys and Tutorials, vol. 15, pp. 1888–1906, 2013.

[34] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Citeseer, 1996.

[35] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

