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Abstract—Cloud applications perform rich and complex tasks,
with time-varying demands for multiple types of resources
(CPU, memory, disk I/O and network). However, multi-resource
allocation is APX-Hard and, consequently, providers simplify it
by (i) allocating computing resources according to slots (which
leads to fragmentation); and (ii) allowing the network to be
shared in a best-effort manner (which leads to performance
interference among applications). Recent efforts cannot minimize
multi-resource fragmentation and, at the same time, provide
guaranteed network performance. In this paper, we introduce
Packer, a scheme that aims at minimizing multi-resource frag-
mentation and providing predictable and guaranteed network
performance with work-conservation. Packer employs a novel
allocation strategy that (a) extends previous heuristics developed
for multi-dimensional bin packing; and (b) uses as input a new
abstraction, called Time-Interleaved Multi-Resource Abstraction
(TI-MRA), for specifying temporal multi-resource requirements
of applications. It also leverages Software-Defined Networking to
dynamically enforce bandwidth guarantees and to provide work-
conserving sharing. Since Packer brings more benefits if temporal
requirements are specified, it is better suited for applications that
present a predefined behavior, repeatedly running the same type
of tasks with similar input sizes and data sets (such as PageRank
and traffic analysis). Results show that, in comparison to the state-
of-the-art, acceptance ratio is increased, datacenter utilization is
improved (i.e., fragmentation is minimized), provider revenue is
augmented and applications achieve predictable and guaranteed
network performance with work-conservation, with the cost of
taking more (yet acceptable) time to allocate applications.

I. INTRODUCTION

Cloud applications often perform rich and complex tasks,
with different temporal demands for multiple types of re-
sources (CPU, memory, disk I/O and network) [1]. They
typically have multiple stages, where a subsequent stage can
only start after the previous stage finishes [2]. Consequently,
any resource that becomes a bottleneck and delays a stage may
slow down the entire application.

In this context, multi-resource allocation is a key building
block of cloud datacenters. Because the allocation problem is
APX-Hard [3], state-of-the-art proposals typically simplify it
by (i) allocating computing resources according to slots [1];
and (ii) allowing the network to be shared in a best-effort
manner, which leads to performance interference among ap-
plications [4], [5]. The former (slot-based allocation) usually
causes over-allocation, leading to wastage (as applications do
not use all of their allocated resources) and fragmentation
(the sum of available resources would be enough to accept
an incoming application, but these available resources are
scattered throughout the infrastructure) [6]. In particular, frag-
mentation results in less applications being accepted in the
infrastructure and in lower datacenter utilization. The latter

(performance interference) results in poor and unpredictable
network performance for applications.

Allocating resources to applications in datacenters has
been the main focus of several recent efforts [1], [4], [6].
Tetris [6] considers multiple resources at allocation time,
but does not provide bandwidth guarantees along the entire
network. Dominant Resource Fairness (DRF) [1] also consid-
ers multiple resources, but focuses on fairness (which may
result in fragmentation [6]). Silo [4] offers predictable network
performance, but allocates computing resources according to
slots. In general, these approaches cannot minimize multi-
resource fragmentation and, at the same time, provide guar-
anteed network performance.

In this paper, we propose Packer, a scheme for large-
scale Infrastructure-as-a-Service cloud datacenters. Its design
is based on two observations: (i) applications have complemen-
tary demands across time for multiple resources [6]; and (ii)
utilization of different resources peaks at different times [7].
Packer has two objectives: minimizing multi-resource frag-
mentation (consequently, increasing datacenter utilization); and
providing predictable and guaranteed network performance
with work-conserving sharing. To achieve these goals, it takes
into account multiple types of resources to admit (allocate)
applications in the datacenter without considering slots, so
that tenants can request and receive the necessary amount of
resources that their applications need to correctly execute and
finish without delay and providers can avoid over-allocation.

Packer is designed with four aspects in mind: application
abstraction, multi-resource allocation, network sharing and
resource monitoring. First, Packer utilizes a novel abstrac-
tion for applications, called Time-Interleaved Multi-Resource
Abstraction (TI-MRA). Unlike previous abstractions [2], [8]–
[10], TI-MRA imposes no predefined structure for applications
and allows the specification of requirements for multiple re-
sources across time. Second, Packer employs a new allocation
strategy that extends previous heuristics developed for multi-
dimensional bin packing, in order to reduce multi-resource
fragmentation. Third, Packer leverages Software-Defined Net-
working (SDN) and OpenFlow [11] to dynamically configure
and enforce bandwidth guarantees for applications throughout
the entire network. Fourth, Packer employs a monitoring
mechanism to avoid resource wastage and to provide fast and
up-to-date information upon unexpected events (e.g., if an
application gets delayed due to a resource being congested).

Like Proteus [2] and the strategy in [7], Packer uses
temporal resource demands to achieve maximum benefits.
Consequently, it is better suited for applications that present
a predefined behavior, repeatedly running the same type of
tasks with similar input and data sets. This is common in
iterative data processing (e.g., PageRank, hypertext-inducedISBN 978-3-901882-94-4 c© 2017 IFIP



topic search, recursive relational queries, social network anal-
ysis and network traffic analysis), where much of the data
stays unchanged from iteration to iteration [2]. In this case,
applications are profiled periodically or on each run. Further-
more, other applications can also take advantage of Packer by
specifying only peak demands for multiple resources and, at
runtime, employing its monitoring mechanism not to waste
resources.

Overall, the major contributions of this paper are:

• A novel abstraction for applications, called Time-
Interleaved Muti-Resource Abstraction (TI-MRA). In
contrast to previous abstractions [2], [8]–[10], TI-
MRA allows the specification of demands for multiple
resources without a predefined structure for applica-
tions.

• A novel admission control algorithm that, by extend-
ing existing heuristics for multi-dimensional bin pack-
ing, minimizes resource fragmentation. The algorithm
uses TI-MRA as input to coordinate requirements of
applications in different resource dimensions across
time.

• Packer, a scheme that combines TI-MRA and the
novel admission control algorithm to provide pre-
dictable and guaranteed network performance with
work-conserving sharing. Evaluation results show that
it provides network performance guarantees, and im-
proves datacenter utilization and provider revenue in
comparison to related work, with the cost of taking
more (yet acceptable) time to allocate applications.

II. PACKER

Packer implements a novel strategy for minimizing multi-
resource fragmentation and for providing predictable and
guaranteed network performance in large-scale cloud datacen-
ters. Figure 1 shows an overview of Packer. The scheme is
composed of three components: datacenter resource manager
(DRM), OpenFlow-enabled switches and one local controller
(i.e., a controller that integrates Open vSwitch and Algo-
rithm 2) per server. They are discussed next.

Datacenter Resource Manager

OpenFlow-enabled Switches Local Controllers

Report network usage

Send rules and 
rate-limiters

Report computing 
resource usage

Send tasks to be 
executed in servers

Fig. 1: Packer overview.

Datacenter resource manager (DRM). It is responsible
for (i) allocating applications in the datacenter; and (ii) han-
dling global events (e.g., bandwidth enforcement throughout
the entire network for applications). More specifically, it
receives an application request (in the form of a TI-MRA
specification) and employs a novel resource allocation strategy
(described in § II-B) to determine the set of resources to be
used by the application. Then, it sends the application tasks to
the servers that will execute them (as determined by the allo-
cation strategy) and, via OpenFlow, configures switches (with
rules and rate-limiters) to provide connectivity and network
performance guarantees for the application. Furthermore, the
DRM periodically receives up-to-date information regarding

TABLE I: Notations adopted throughout the paper.

Symbol Description

A Set of application requests
Ga

TI−MRA TI-MRA graph of application a ∈ A
V a Set of nodes of application a ∈ A (V a = Ka ∪ Ca)
Ka Set of tasks of application a ∈ A (Ka ⊆ V a)
Ca Set of cloud services used by app a ∈ A (Ca ⊂ V a)
Ea Set of edges (dependencies between nodes) of app a ∈ A
Ta Discrete time instants of application a ∈ A (Ta ⊆ T )
wa Weight of application a ∈ A

N Set of all infrastructure nodes (N = S ∪ J )
S Set of servers in the datacenter infrastructure (S ⊆ N )
J Set of services available in the datacenter (J ⊂ N )
L Set of links in the datacenter network
T Discrete time instants of the infrastructure
P Set of all paths available in the network

P(n1, n2) Set of paths from src node n1 ∈ N to dest node n2 ∈ N
wr Weight of r ∈ {CPU, MEM, IO_WRITE, IO_READ, BAND}

δ(v, r, t) Amount of resource r ∈ {CPU, MEM, IO_WRITE, IO_READ}
required by node v ∈ V a at time t ∈ Ta for app a ∈ A

σ(e = (u, v), t) Bandwidth for communication between nodes u, v ∈ V a |
e = (u, v) ∈ Ea at time t ∈ Ta for application a ∈ A

Mn(v) Node n ∈ N that holds the node v ∈ V a of app a ∈ A
Me(u, v) Infrastructure path (P (Mn(u),Mn(v))) used for com-

munication between nodes u, v ∈ V a of app a ∈ A
A(n) Tasks running at infrastructure node n ∈ N
B(l) Total capacity (bandwidth) of link l ∈ L
C(l) Communications (edges in the TI-MRA) using link l ∈ L
D(u) Application that task u belongs to
E(v) Nodes that node v ∈ V a | a ∈ A depends on

Q(n, r, t) Amount of available resource r on n ∈ N at time t ∈ T
R(n, r) Capacity of infrastructure node n ∈ N for resource type r

resource usage from local controllers at servers and from
OpenFlow switches.

OpenFlow switches. These devices are responsible for for-
warding traffic according to the instructions received from the
DRM. They receive rules and rate-limiters to correctly handle
traffic and enforce bandwidth for applications. Moreover, they
periodically report resource usage statistics to the DRM.

Local controllers (LCs) at servers. They are part of the re-
source monitoring mechanism utilized in Packer (described in
§ II-D). LCs are responsible for (i) monitoring multi-resource
usage at servers and reporting it to the DRM; (ii) enforcing
allocations; and (iii) reacting to local events (e.g., dealing with
congested resources inside their respective server).

We detail Packer in the following manner. We first present
the novel abstraction (called TI-MRA) used for applications
in § II-A. Then, we utilize TI-MRA as input for the new
allocation algorithm (§ II-B) and describe the strategy used
for providing predictable and guaranteed network performance
(§ II-C). Finally, we detail the resource monitoring mecha-
nism in § II-D. The notations used throughout the paper are
presented in Table I.

A. Time-Interleaved Multi-Resource Abstraction (TI-MRA)

Prior work has designed abstractions expressed as physical
network models (i.e., the hose model) [2], [4], [8], two-level
trees (hierarchical hose) [8], [10] or based on communication
patterns (TAG) [9]. However, they focus on the network
and neglect other resources. In particular, the hose model
(used by most related work) does not accurately capture the
network requirements of applications with complex traffic
interactions [9].



An effective abstraction is expected to consider two pur-
poses. The first is to allow tenants to specify their application
requirements in a simple and accurate manner. The second is to
allow providers to minimize over-allocation (i.e., allocating the
correct amount of resources required by applications), which
may increase the percentage of allocated applications and,
consequently, may improve datacenter throughput.

Based on these purposes and the limitations of prior work,
we propose a novel abstraction for applications, called Time-
Interleaved Multi-Resource Abstraction (TI-MRA). TI-MRA
allows the specification of not only network demands but also
other types of resources. TI-MRA leverages tenants’ knowl-
edge of their applications to yield a flexible representation
of the applications’ resource consumption. It uses the same
principle of (a) temporal bandwidth requirements in TIVC [2],
but extends it to all kinds of resources; and (b) communication
patterns in TAG [9]. Furthermore, it also takes into account
dependencies other than among tasks (such as between tasks
and cloud services), in order to optimize the use of resources.
The intuition is that TI-MRA allows a flexible representation
of application requirements rather than imposing a predefined
abstraction (e.g., the hose model) for applications to map their
requirements to.

TI-MRA extends the concept of time-varying graphs
(TVGs) [12] to represent temporal demands of multiple re-
sources. A TI-MRA graph of application a ∈ A is represented
as GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉, with the terms being
defined as follows: V a = Ka ∪ Ca is the set of application
nodes, composed of tasks (Ka) and cloud services required
by the application (Ca); Ea is the set of edges, representing
the dependencies between nodes; T a is the set of discrete
time instants, from the time the first node of application a
begins its computation to the time the last node finishes;
wa ∈ [0, 1] indicates the weight of application a, so that
residual resources (unallocated, or reserved resources for an
application and not currently being used) can be proportionally
shared among applications with more demands than their
guarantees (work-conservation); and δ(v, r, t) ∈ R+ returns
the demand of node v ∈ V a at time t ∈ T a for resource
r ∈ {CPU, MEM, IO_WRITE, IO_READ}. The last function, σ(e =
(u, v), t) ∈ R+, denotes the bandwidth necessary for commu-
nication between nodes u ∈ V a and v ∈ V a | u 6= v at time
t ∈ T a, for e = (u, v) ∈ Ea. Note that we do not consider
moving nodes and edges across time. This does not impact
the generality of TI-MRA because when a node or edge has
no demand for a given resource, the call for the respective
function (δ(v, r, t) or σ(e = (u, v), t)) returns zero.

An example of TI-MRA is shown in Figure 2. The figure
depicts a simple application composed of five tasks and tem-
poral resource requirements for CPU, memory, disk I/O write,
disk I/O read and bandwidth. In this example, tasks T1 and T2

get their input data from storage service STS1; T3 depends
on tasks T1 and T2 and on data sent from cloud service
CS1; T4 reads data from storage service STS2 to perform
its computation; and T5 depends on tasks T3 and T4 and
stores the final result in STS3. Moreover, note that edges (links
representing the exchange of data) are unidirectional (different
amounts of bandwidth for sending and receiving data). Having
two links instead of a single bidirectional link avoids over-
allocation and bandwidth wastage.

Producing TI-MRA models. TI-MRA can be used not
only by tenants who have a deep understanding of their
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Fig. 2: TI-MRA of a simple application composed of five tasks
(T1 to T5), where tasks read and write data from/to storage
services (STS1, STS2 and STS3) and use cloud service CS1.

application demands, but also by users who do not know it in
advance. The former can tune resource demands according to
the application requirements, possibly reducing costs (avoiding
over-allocation) without impact on performance. The latter,
in turn, can specify only peak demands for resources (i.e., a
constant temporal function). This would be similar to the hose
model specification. Alternatively, the same strategy employed
in CloudMirror [9] for generating TAG models could be used
here: application templates for TI-MRA could be provided as
a library for users through the extension of cloud orchestration
systems like OpenStack Heat and AWS CloudFormation.

B. Allocation Strategy

The problem of allocating applications considering multi-
ple types of resources in datacenters can be reduced to multi-
dimensional bin packing (also called vector bin packing –
VBP) [6], which is NP-Hard for every dimension d and APX-
Hard for d ≥ 2 [3]. Given balls (application tasks) and bins
(servers) with sizes for each property (resource) considered,
VBP assigns the balls to bins according to an optimization
objective. In our case, the goal is to reduce fragmentation and
over-provisioning and, consequently, improve the percentage
of allocated applications and their tasks.

In case applications are constrained by a single resource
(e.g., network), the problem becomes, in essence, a one dimen-
sional bin packing [3]. However, cloud applications are typi-
cally constrained by multiple resources, including network [4]
and CPU [13]. Moreover, the network is a distributed resource
(composed of several links); therefore, the amount of resources
consumed depends on bandwidth demands of tasks as well as
their location in the infrastructure (the whole path used for
communication must be taken into account), which increases
the difficulty in efficiently optimizing the use of resources.

Problem definition. The process of multi-resource allo-
cation is formally defined as follows. The TI-MRA speci-
fication of application a ∈ A is given by GaTI−MRA =
〈V a, Ea, T a, wa, δ, σ〉. A node v ∈ V a can be either a task or
a cloud service and is mapped to an infrastructure node n ∈ N .
Each task k ∈ Ka | Ka ⊆ V a is assigned to an infrastructure
server (s ∈ S | S ⊆ N ) by mapping Mn : Ka → S, ∀a ∈ A
(Equation 1). Each cloud service c ∈ Ca | Ca ⊂ V a required
by application a ∈ A, in turn, is part of the set of services
(J | J ⊂ N ) available in the platform (offered by either the
provider or a tenant) and is assigned to a node j ∈ J that runs
the requested service by mapping Mn : Ca → J , ∀a ∈ A
(Equation 2).

Mn(k) ∈ S | k ∈ Ka or (1)



Mn(c) ∈ J | c ∈ Ca (2)

Each dependency between nodes (i.e., edges in the TI-
MRA graph, specified in set Ea) is mapped to a single path be-
tween the corresponding infrastructure nodes (servers for tasks
and cloud services for services needed by the application). The
assignment is defined by mapping Me : Ea → P, ∀a ∈ A,
where P denotes the set of all available paths in the network,
such that for all e = (u, v) ∈ Ea, ∀a ∈ A:

Me(u, v) ∈ P (Mn(u),Mn(v)) (3)

The nodes in V a run for at most T a discrete time units
to perform the computation required by application a ∈ A
and communicate among themselves using links e ∈ Ea.
Each node v ∈ V a presents temporal demands for comput-
ing resource r ∈ {CPU, MEM, IO_WRITE, IO_READ} (δ(v, r, t)),
∀t ∈ T a. Furthermore, each edge e = (u, v) ∈ Ea between
communicating nodes u and v (such that u 6= v) presents
temporal bandwidth demands: σ(e = (u, v), t),∀t ∈ T a.

A valid allocation is constrained by the amount of available
resources. More specifically, a cloud service j ∈ J will
only perform the task required by node c ∈ Ca | a ∈ A
if it has enough available resources to satisfy the demands.
Similarly, a task can only be allocated in a server if the
server has enough available capacity for each type of resource
being considered. Given A(n) a function that returns all tasks
running at infrastructure node n ∈ N , R(n, r) a function that
returns the capacity of infrastructure node n ∈ N for resource
r and T the discrete time instants of the infrastructure, the
constraint for computing resources is defined as follows:∑

v∈A(n)

δ(v, r, t) ≤ R(n, r)

∀n ∈ N, ∀r ∈ {CPU, MEM, IO_WRITE, IO_READ}, ∀t ∈ T (4)

The network is a special case, since it is a distributed
resource. Specifically, bandwidth must be taken into account
at the entire path used for each communication between
application nodes and the amount of allocated bandwidth at
a link l must not exceed the total capacity of l (Equation 5).∑
e=(u,v)∈C(l)

σ(e, t) ≤ B(l) ∀l ∈ L, ∀t ∈ T (5)

where L represents the set of links in the datacenter network,
C(l) returns the set of communications (edges in TI-MRA
graphs of applications) using link l and B(l) returns the total
capacity (bandwidth) of link l.

Note that the above constraints are non-linear, in particular
functions A and C (since they depend on the allocation of
application nodes in infrastructure nodes). Efficient solvers
are known only for some non-linear problems, such as the
quadratic assignment problem. However, even when placement
considerations are eliminated, the problem of VBP is APX-
Hard [14] and re-solving it whenever new applications arrive
worsens the process. Consequently, finding the optimal solu-
tion is expensive and requires a lot of time. Unfortunately,
large-scale cloud datacenters require the allocation process to
be performed as fast as possible, since they typically have high
rate of application arrival and departure.

Algorithm. VBP has several proposed heuristics [3]. How-
ever, those heuristics cannot be used in datacenters without
substantial modification, as they (i) assume that all input (i.e.,
applications) is known a priori, whereas we need to cope with
online arrival of applications; (ii) consider “balls” of a fixed

size, while applications have time-varying demands; and (iii)
do not consider a distributed resource such as the network
(with paths composed of multiple links). Therefore, we design
a novel algorithm to efficiently allocate applications in cloud
datacenters. The key principle is minimizing multi-resource
fragmentation, thus improving the ratio of allocated applica-
tions and, consequently, maximizing datacenter utilization and
provider revenue.

Algorithm 1 allocates applications as they arrive, in an
online manner. It receives as input the datacenter infrastructure
(〈N,L, T ,P〉) and the TI-MRA specification of an application
a ∈ A (GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉). First, it calculates
available resources (CPU, memory, disk I/O write and disk I/O
read) in servers (lines 1 – 2) and available bandwidth in links
(lines 3 – 4). Since each node of application a may have a
different duration, available resources in the infrastructure are
calculated for T a time units (the duration of a).

After that, nodes in V a are sorted sequentially according to
their initial execution time and the nodes they depend on (line
5). Based on the sorted list of nodes (sNodes), the algorithm
gets one node v at a time (line 6), initializes as empty the
list of infrastructure nodes with enough available resources to
hold node v (line 7) and calculates, based on our novel metric
shown in Equation 6, the score of v on infrastructure nodes
(lines 8 – 11). The metric extends the ones in Panigrahy et
al. [3] and works as follows. Equation 6 seeks to maximize
the score achieved by both computing and network resources
according to their current utilization level (calculated in Equa-
tions 7 and 8, respectively) in case there are enough available
resources (i.e., node n ∈ N and link l ∈ L, which v would use
for communication with the application nodes it depends on if
it were allocated on n, have enough available resources at all
times t ∈ T a). Otherwise, it returns −∞. For each computing
resource R = {CPU, MEM, IO_WRITE, IO_READ} (Equation 7)
and for bandwidth BAND (Equation 8), the metric subtracts
the resource demand from the respective available resource,
raises the resulting value by the power of 3, multiplies it by
the amount of the respective available resource and multiplies
it again by the weight associated to the resource (wr). In
particular, wr is dynamically defined as being inversely pro-
portional to the current utilization level of r and is calculated
as wr = 1−( util(r)∑

s∈R∪{BAND} util(s)
),∀r ∈ R∪{BAND}. That is, the

higher the current utilization of r, the lower its weight. This
way, the metric prioritizes resources with lower utilization.

S[n, v] =


δ(v, r, t) ≤ Q(n, r, t) and

SC[n, v] + SB[n, v] σ((u, v), t) ≤ Q(l, BAND, t),
∀r ∈ R, ∀u ∈ E(v), ∀t ∈ Ta,
∀l ∈Me(u, v);

−∞ otherwise.

(6)

SC[n, v] =
∑
t∈Ta

∑
r∈R

wr ∗ (Q(n, r, t) − δ(v, r, t))3 ∗ Q(n, r, t) (7)

SB[n, v] =
∑
t∈Ta

∑
u∈E(v)

∑
l∈Me(u,v)

wBAND ∗ (Q(l, BAND, t)− σ((u, v), t))3 ∗ Q(l, BAND, t) (8)

Note that the metric described here uses normalized values
(for resource requirements of applications as well as residual
resources in the datacenter infrastructure) by the capacity of
the node/link being considered.

The next step is the allocation of v and its communication



dependencies (edges with v as the destination node in the
TI-MRA graph) in lines 12 – 17, according to Equations 1
– 5. Function GetNodeWithBestScore returns the infras-
tructure node with the best (maximum) score in the list
FeasibleNodes for holding node v (line 12). In case no in-
frastructure node has enough available resources to hold v, the
algorithm returns a failure code and application a is discarded
(line 13). Otherwise, node v is allocated at infrastructure node
n (line 15) and, since nodes that v depends on are already
allocated (i.e., dependencies are allocated first, according to the
sorted list of nodes), bandwidth for communication between v
and its dependencies is also allocated (lines 16 – 17). When
all nodes and edges in the TI-MRA graph of application a are
successfully allocated, the algorithm returns a success code
and finishes (line 18).

Algorithm 1: Multi-Resource Allocation Algorithm.
Input : Datacenter infrastructure 〈N,L, T ,P〉, Application a represented by

Ga
TI-MRA = 〈V a, Ea, Ta, wa, δ, σ〉

Output: Success/Failure code

1 foreach Infrastructure node n ∈ N do
2 Q[n, r, t] ← R(n, r)−

∑
v∈A(n) δ(v, r, t), ∀r ∈

{CPU, MEM, IO_WRITE, IO_READ}, ∀t ∈ Ta | Ta ⊆ T ;
3 foreach Infrastructure link l ∈ L do
4 Q[l, BAND, t] ←

B(l)−
∑

e=(u,v)∈C(l) σ(e, t), ∀t ∈ T
a | Ta ⊆ T ;

5 sNodes ← SortNodes (V a);

6 foreach v ∈ sNodes do
7 FeasibleNodes ← ∅;
8 foreach n ∈ N do
9 S[n, v] ← calculate score according to Equations 6, 7 and 8;

10 if Score[n, v] 6= −∞ then
11 FeasibleNodes ← FeasibleNodes ∪ {n};
12 n ← GetNodeWithBestScore(FeasibleNodes);

13 if n is null then return failure code;
14 else
15 Mn(v) ← n;
16 foreach u ∈ E(v) do
17 Me(u, v) ← p | p ∈ P (Mn(u),Mn(v));
18 return success code;

C. Network Sharing Strategy

The network sharing strategy has two objectives: (i) pro-
viding predictable and guaranteed network performance for
applications, in order to avoid performance interference [4];
and (ii) achieving work-conserving sharing, so that appli-
cations have the possibility of using more bandwidth than
their guarantees when needed and providers can achieve high
network utilization.

To achieve these goals, we leverage the paradigm of SDN
to dynamically configure the network, in order to enforce
bandwidth guarantees and to provide work-conserving sharing.
The strategy works as follows. According to the output of
Algorithm 1 for application a ∈ A, the DRM performs two
actions. First, it sends each task of a to the local controller
of its selected server (as LCs manage and enforce resource
allocation at servers). Second, it installs rules and rate-limiters
in forwarding devices to guarantee connectivity and bandwidth
for communication between these nodes.

In addition to ensuring a base level of guaranteed rate for
applications, the strategy can proportionally share available
bandwidth among applications with more demands than their
guarantees. Towards this end, local controllers run an algorithm
to periodically set the allowed rate for each allocated applica-
tion node. Algorithm 2 aims at enabling smooth response to

bursty traffic (since traffic in DCNs may be highly variable
over short periods of time [15]). It receives as input the
infrastructure node n ∈ N that it belongs to, the current
time t ∈ T , current bandwidth demands of application nodes
allocated at n (which are determined by monitoring socket
buffers, similarly to Mahout [16]) and temporal bandwidth
requirements of these nodes (specified in the request). First,
the algorithm initializes as empty the list of application nodes
with more bandwidth demands than the value specified in the
request (line 1). Then, for each application node v allocated
at n (line 2), the minimum rate between (i) the specified
demand at time t (σ(

∑
(v, ∗), t), which represents the sum

of bandwidth required by node v for communication with all
nodes that depend on v at time t) and (ii) the current demand
of v (d[v]) is assigned to nRate (line 3). If the current demand
is higher than the specified demand, the node is added to the
list of nodes with more demands than their guarantees (called
hungryNodes, in line 4).

Algorithm 2: Work-conserving algorithm.
Input : Infrastructure node n, Time t ∈ T , Current bandwidth demands of

applications nodes d, Temporal bandwidth requirements of application
nodes σ

Output: Rate nRate for each application node

1 hungryNodes ← ∅;
2 foreach v ∈ A(n) do
3 nRate[v] ← min (σ(

∑
(v, ∗), t), d[v]);

4 if σ(
∑

(v, ∗), t) < d[v] then hungryNodes ← hungryNodes ∪ v;

5 Q(n, BAND, t) ← B(link)−
∑

v∈A(n) nRate[v], at time t;

6 while Q(n, BAND, t) > 0 and hungryNodes not empty do
7 foreach v ∈ hungryNodes do
8 value ←

min

(
d[v]− nRate[v],

(
wD(v)∑

u∈hungryNodes wD(u)
×Q(n, BAND, t)

))
;

9 nRate[v] ← nRate[v] + value;
10 Q(n, BAND, t) ← Q(n, BAND, t) − value;

11 if nRate[v] == d[v] then hungryNodes← hungryNodes \ {v};
12 return nRate;

Then, the algorithm calculates the residual bandwidth
(Q(n, BAND, t)) of the wired link connecting server n to its top-
of-rack (ToR) switch at time t (line 5). The residual bandwidth
is calculated by subtracting from the link capacity the rate
assigned to the application nodes (in line 3). The last step
establishes the bandwidth rate for application nodes with more
demands than their guarantees, if there is available bandwidth
(lines 6 – 11). The rate of each node v ∈ hungryNodes (in
line 9) is determined by adding nRate[v] (initialized in line
3) and the minimum bandwidth between (i) the difference of
the current demand (d[v]) and the rate (nRate[v]); and (ii) the
proportional share of residual bandwidth the application node
can receive according to its weight wD(v) (calculated in line
8), where D(v) indicates the application that node v belongs
to. The residual bandwidth is updated in line 10 and, in case
the demands of node v were satisfied, it is removed from the
list hungryNodes (line 11). Note that there is a “while” loop
(lines 6 – 11) to guarantee that all residual bandwidth is used
or all demands are satisfied. If this loop were not used, there
could be occasions when there would be unsatisfied demands
even though some bandwidth would be available.

In summary, if the demand of an application node exceeds
its guaranteed rate (the rate specified in the request – σ),
data can be sent and received at least at the guaranteed
rate. Otherwise, if it does not, the unutilized bandwidth will
be shared among co-resident application nodes whose traffic



demands exceed their guarantees (work-conservation).

Finally, note that SDN has scalability challenges on
DCNs [11]: (i) elevated flow setup time, as forwarding devices
ask the controller for appropriate rules when they receive the
first packet of a new flow; and (ii) large flow tables in switches,
since DCNs may have millions of flows per second [17]
and, thus, the number of entries needed in TCAMs may be
significantly higher than the amount of resources available
in commodity switches. We adopt the strategy proposed in
Marcon et al. [18] to address these challenges. The interested
reader may refer to [18] for more details.

D. Resource Monitoring Mechanism

Packer is designed with scalability and high multi-resource
utilization (i.e., minimizing fragmentation of multiple re-
sources) in mind. This implies that the resource monitoring
mechanism (i) should not incur significant overhead (espe-
cially to scarce resources such as the network [2]); and
(ii) needs to be able to acquire real-time information about
resource usage, so that idle resources can be allocated to
applications that need them. Moreover, the mechanism is
expected to provide fast and up-to-date information upon
unexpected events (e.g., in case an application gets delayed
due to a resource being congested).

We designed a two-level strategy for resource monitoring,
composed of (i) the DRM and (ii) local controllers at servers
and OpenFlow switches. First, a local controller runs at each
server and coordinates the allocation of the server’s resources
to application tasks. LCs have two objectives, described as
follows. The first objective is to observe aggregate resource
usage and periodically report it to the DRM (so that the DRM
gets updated information about the infrastructure utilization).
The second objective is related to handling local events: since
LCs have no interconnection among themselves (in order to
reduce management traffic in the network) and no knowledge
of infrastructure-wide state, they are allowed to handle only
local events (e.g., dealing with local congested resources and
enforcing allocations to tasks). This is important for relieving
the load on the DRM and for reducing the amount of band-
width used for communication between LCs and the DRM.

Second, the DRM maintains infrastructure-wide state, as
it periodically receives resource usage statistics from local
controllers at servers and from switches (via the OpenFlow
protocol). With the information received from servers and
switches, it reacts to global events such as the allocation of
applications and bandwidth enforcement throughout the entire
network for applications.

III. EVALUATION

In this section, we focus on showing that Packer (i) min-
imizes multi-resource fragmentation; (ii) improves provider
revenue; (iii) incurs acceptable overhead; (iv) provides pre-
dictable and guaranteed network performance with work-
conserving sharing; and (v) outperforms existing state-of-the-
art schemes (Tetris [6] and slot-based allocation [19], [20]).

A. Setup

Environment. We have implemented a simulator that
models computing and network resources of a multi-tenant
datacenter. For computing resources, we follow Tetris [6] and
use a similar server configuration: 16 CPU cores, 32 GB of

memory, 4 disks operating at 50 MBps each for read and write
operations and a 1 Gbps NIC. For the slot-based scheme, we
follow related work [8] and divide each server into four equal
slots for VMs. The network, in turn, is defined as a tree-like
topology, similar to current DCNs and related work [4]. It is
composed of a three-tier topology with 1,200 servers at level
0. Every 40 machines form a rack, and every 10 ToRs are
connected to an aggregation switch. Finally, all aggregation
switches are connected to a core switch. Unless otherwise
specified, the capacity of each link is defined as follows:
1 Gbps for server-ToR links, 10 Gbps for ToR-aggregation
links and 100 Gbps for aggregation-core links.

Workload. We built a workload suite composed of in-
coming application requests (to be allocated in the datacenter)
arriving over time. We consider a heterogeneous set of applica-
tions, including MapReduce and Web Services. As defined in
§ II-A, each application a is represented by a TI-MRA graph
GaTI-MRA = 〈V a, Ea, T a, wa, δ, σ〉. Given the lack of publicly
available traces for DCNs, the workload was generated in line
with related work [2], [6], [17], [21], [22]. First, like Tetris [6],
computing resources of tasks were picked uniformly at random
between 0 and the maximum value of a slot. Note that we limit
the demand for computing resources of each task from each
application to the maximum size of a slot in order to provide a
fair and accurate comparison (otherwise, since we use the same
workload for all schemes, some tasks would never be allocated
with the slot-based approach). Second, bandwidth demands
were generated based on the measurements from Benson et
al. [17] and Kandula et al. [22]. Finally, the weight wa of each
application a is uniformly distributed in the interval [0, 1].

B. Results

We compare Packer with Tetris [6] and the slot-based
allocation [19], [20]. For all experiments comparing different
strategies, we plot the percentage improvement (or reduction)
between Packer and the related work being compared as
Packer−related_work

Packer
∗100%. Hence, positive values mean Packer

has achieved a higher value than the approach being compared,
while negative values mean Packer has achieved a lower value.
In general, higher values are better, with the sole exception
being the overhead of the allocation algorithm (Figure 6).

Increased acceptance ratio. Figure 3 shows the proportion
of application tasks that were allocated between Packer and
Tetris and Packer and slot-based according to the time. Higher
values are better, as they mean that Packer allocates more
tasks than the respective proposal being compared. At first,
the gains of Packer in comparison to the other proposals
have high variability because there are ample resources and,
therefore, most incoming applications are allocated. As time
passes and the cloud-load increases (less available resources),
the gains tend to stabilize (around time 1,000), because new
applications are allocated only when already allocated appli-
cations conclude their execution and are deallocated (which
releases resources). In general, we observe that Packer con-
sistently outperforms Tetris (≈30%) and slot-based allocation
(≈67%). Although the amount of available resources in the
infrastructure is the same, the allocation ratio differs for each
approach. This happens because each scheme uses a different
allocation strategy. More specifically, Tetris seeks to minimize
computing resource fragmentation, while only penalizing the
bandwidth used. This may not result in good choices for
allocation because of network fragmentation (as the network



is an important bottleneck in datacenters [2]). The slot-based
allocation, in turn, is constrained by the static number and
size of slots in the servers, which limit the feasible choices
for allocating tasks to servers. In contrast to both proposals,
Packer employs our novel algorithm described in § II-B and
better explores the trade-off between using local computing
resources (CPU, memory and disk I/O) and remote distributed
resources (the network).
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Fig. 3: Acceptance ratio of application tasks.

Maximized resource utilization. Figure 4 depicts the
percentage difference between Packer and Tetris and Packer
and slot-based allocation for the utilization of different types of
resources. Positive values indicate that Packer achieves better
utilization than the respective proposal being compared (the
higher the value, the better), while negative values denote
that the proposal being compared achieves better results than
Packer. Figures 4(a), 4(b), 4(c) and 4(d) show results for
CPU, memory, disk I/O write and disk I/O read, respectively.
We see that, during most of the time, Packer allows better use
of available resources, improving utilization by a significant
percentage. Nonetheless, Packer has lower utilization of some
types of resources at some periods of time (negative values in
the plots, e.g., at time 500s). This happens because, with dif-
ferent allocation strategies, different applications are accepted
and rejected in each scheme. Therefore, despite allocating
significantly more application tasks than Tetris and slot-based
(Figure 3), there are some small periods of time when the tasks
allocated in Packer consume less resources.

Figure 4(e), in turn, shows the percentage difference of
bandwidth utilization. We verify that Packer can maintain sig-
nificantly higher utilization of the network than Tetris (≈76%
more) and slot-based (≈87% more). Moreover, during the
experiments, Packer never achieved lower network utilization
than the proposals being compared. In general, Figures 3 and 4
show that Packer accepts more applications and, consequently,
maximizes utilization, which indicates that fragmentation is
minimized.

Increased provider revenue. We follow related work [2],
[8] and adopt a simple pricing model to quantify provider
revenue for Packer, Tetris and slot-based allocation, which
effectively charges both computation and networking. A
tenant running application a pays:

∑
t∈Ta

∑
v∈V a (

∑
r

δ(v, r, t) ∗ kv +
∑
u∈E(v) σ((u, v), t) ∗ kb), where r ∈

{CPU, MEM, IO_WRITE, IO_READ}, kv is the unit-time comput-
ing resource cost and kb is the unit-volume bandwidth cost.
Figure 5 depicts the revenue of Packer in comparison to Tetris
and slot-based allocation (error bars show 95% confidence
interval). Higher values are better, as they mean that Packer
provides more revenue than the respective proposal being
compared. We see that, by improving the allocation ratio of
application tasks (Figure 3) and resource utilization (Figure 4),

Packer can significantly increase provider revenue (≈29% and
≈60% in comparison to Tetris and slot-based, respectively).

Acceptable overhead. Figure 6 quantifies the overhead
introduced by Packer in comparison to Tetris and slot-based
(error bars show 95% confidence interval). The overhead
is given by the mean time taken to allocate an incoming
application in the infrastructure. Here, positive values indicate
that Packer takes more time to allocate applications than the
respective proposal being compared, while negative values
would indicate that Packer takes less time (i.e., lower values
are better). We see that Packer takes more time to allocate
applications than the other two proposals (≈53% more time
than Tetris and ≈81% more than slot-based). This is justified
by three factors (i) the complexity of the allocation metric
(§ II-B); (ii) the fact that Packer considers the whole network
(as opposed to Tetris that only penalizes network use); and
(iii) the fact that Packer verifies each computing resource
(CPU, memory and disk I/O) according to the applications’
requirements (as opposed to slot-based that statically divides
computing resources into slots). Nonetheless, while the per-
centage is high, the median time taken to allocate applications
(observed in our experiments) is small for all three proposals:
≈15.4s in Packer, ≈3.5s in Tetris and ≈0.3s in slot-based
allocation. Thus, considering the benefits provided by Packer
(shown in Figures 3, 4 and 5), it is acceptable to take some
additional seconds to allocate applications.

Now, we turn our focus to the challenge of performance
interference. In particular, we show that Packer provides (i)
minimum bandwidth guarantees for applications; and (ii)
work-conserving sharing, achieving both predictability for ten-
ants and high utilization for providers. To show the results in a
clear way, here we consider the requested temporal bandwidth
guarantees of application tasks (σ) as a constant function
(while the actual requirements vary over time).

Minimum bandwidth guarantees for applications.
Packer adopts the following definition of minimum bandwidth
guarantees: the task rate should be (a) at least the guaranteed
rate if the demands are equal or higher than the guarantees; or
(b) equal to the demands if they are lower than the guarantees.
To illustrate it, we show, in Figure 7, a task allocated on a given
server during a predefined time period of an experiment. We
see that the task may not get the desired rate to satisfy all of its
demands instantaneously (when its demands exceed its guaran-
tees) because (i) the link capacity is limited; and (ii) available
bandwidth is proportionally shared among tasks. In summary,
we verify that Packer provides minimum bandwidth guarantees
for tasks, since the actual rate is always equal or higher than the
minimum between the demands and the guarantees. Therefore,
applications have minimum bandwidth guarantees and, thus,
can achieve predictable network performance.

Work-conserving sharing. Work-conservation is the abil-
ity to use more bandwidth if the task has higher demands than
its guarantees and there is available bandwidth in the network.
In other words, bandwidth which is not allocated, or allocated
but not currently used, should be proportionally shared among
tasks with more demands than their guarantees (according to
the weights of each application – wa, using Algorithm 2).
Figure 8 shows the aggregate bandwidth1 on the server holding

1Note that Packer considers the temporal bandwidth guarantees requested
(σ) when allocating tasks. Therefore, although the sum of the actual demands
of all tasks allocated on a given server may exceed the server link capacity, the
sum of bandwidth guarantees of these tasks will not exceed the link capacity.
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(a) CPU.
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(b) Memory.
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(c) Disk I/O write.
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(d) Disk I/O read.
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(e) Bandwidth.

Fig. 4: Resource utilization (positive values in the y-axis indicate that Packer achieves better utilization than the respective
proposal being compared, while negative values denote that the proposal being compared achieves better utilization than Packer).
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the task in Figure 7. In these two figures, we verify that Packer
provides work-conserving sharing in the network, as tasks can
receive more bandwidth (if their demands are higher than their
guarantees) when there is spare bandwidth. Thus, providers can
achieve high utilization.
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IV. DISCUSSION

We discuss here some questions that have arisen during the
design of Packer.

TI-MRA pros and cons. This abstraction considers tem-
poral demands of resources. There are advantages and draw-
backs of adopting this approach. The main advantage is to
minimize multi-resource underutilization, which significantly
improves datacenter utilization (i.e., reduces wastage). The
main drawback is the need for fine-grained specification of
applications, which may be a burden on some tenants (the
ones with less knowledge of their applications). Hence, TI-
MRA also allows the specification of only peak demands
for multiple resources, minimizing the burden of application
specification. While this may reduce infrastructure utilization,
it does not impact provider revenue, as tenants are allocating
such resources and paying for them.

Profiling application demands for specifying TI-MRA.
Datacenter application demands are often known [23] or can
be obtained from tenants [4], [8]. Alternatively, we employ the
techniques described by Grandl et al. [6], Chen and Shen [7]
and Lee et al. [9]. First, according to Chen and Shen [7],
the same task (i.e., the same program with the same options)
running on different servers tends to have similar resource
utilization patterns. In this context, recurring applications are
common in datacenters [24]; for instance, analytic applications
repeat hourly or daily to perform the same computation on
new data [6]. Therefore, Packer can use statistics measured in
prior runs of the same application. Second, according to Lee et
al. [9], orchestration systems like OpenStack Heat and AWS
CloudFormation could be used to generate abstract models.
They use templates (provided as a library for tenants) that
explicitly describe the structure of applications and their re-
source demands. In this sense, these systems could be extended
with temporal multi-resource requirements to generate TI-
MRAs. Third, Packer can use the pattern detection algorithm
for resource demands developed by Chen and Shen [7]. The
algorithm utilizes logs of resource usage recorded by the cloud
datacenter from previous runs of the same application and,
thereby, can estimate utilization patterns for the requested
application. Fourth, in case none of the previous methods can



be used, we follow Grandl et al. [6] and over-estimate resource
demands (by considering a constant temporal function). Note
that over-estimation is better than under-estimation, as the
former does not slow down applications. Furthermore, Packer’s
resource monitoring mechanism verifies idle resources and
reports them to the DRM, so that they can be allocated to
applications.

Employing existing abstractions in the literature for
Packer. Packer could use existing abstractions for application
specification, with the constraint that those abstractions take
into account multiple types of resources. Adapting other ab-
stractions for Packer could be performed with the development
of a module that reads the specification and converts it to a TI-
MRA, so that the use of other abstractions would be seamless
to Packer’s allocation process.

V. RELATED WORK

Proposals related to Packer are divided in two categories,
as follows.

Multi-resource allocation. On one hand, schemes such as
[19], [20] allocate computing resources based on slots. How-
ever, this leads to wastage and fragmentation, as the amount
of resources in each slot is statically defined. On the other
hand, Tetris [6], Dominant Resource Fairness (DRF) [1] and
the spatial/temporal strategy [7] propose to dynamically adjust
the allocation according to resource demands. Nonetheless,
they present the following drawbacks: Tetris may result in
starvation (depending on the workload) and may not provide
guarantees in oversubscribed networks; DRF may result in
fragmentation [6], as it focuses solely on fairness; and the
strategy in [7] considers only temporal demands of CPU
and memory, but neglects the network. Packer, in contrast,
minimizes fragmentation (unlike slot-based schemes and DRF)
and provides bandwidth guarantees even in oversubscribed
networks (unlike Tetris and the strategy in [7]).

Network performance in DCNs. There is an extensive
body of literature that addresses network performance in
DCNs. We focus on the most important proposals related to
Packer. Oktopus [8], CloudMirror [9] and Silo [4] provide
network guarantees for applications. However, they focus only
on network resources and may result in underutilization, as
they statically reserve resources for applications based on
their peak bandwidth demands. Proteus, in turn, allocates
applications according to their temporal network demands.
Despite reducing network underutilization, it neither considers
other types of resources nor provides work-conserving sharing
among applications (i.e., it uses rigid network models for
each allocated application). Unlike Oktopus, CloudMirror, Silo
and Proteus, Packer considers multiple types of resources and
provides work-conserving sharing.

VI. FINAL REMARKS

In this paper, we introduced Packer, a scheme that ad-
dresses the challenges of multi-resource allocation and per-
formance interference in the network. It employs a novel
abstraction called Time-Interleaved Multi-Resource Abstrac-
tion (TI-MRA) and a new algorithm for allocating multiple
types of resources with reduced fragmentation. Furthermore,
Packer uses (a) SDN to dynamically configure and manage
the network according to available resources and requirements
of applications; and (b) a monitoring mechanism to avoid
wastage and congested resources. Evaluation results show that

(i) acceptance ratio of applications is increased; (ii) datacenter
utilization is maximized (i.e., fragmentation is minimized);
(iii) provider revenue is augmented; and (iv) applications
achieve predictable and guaranteed network performance with
work-conserving sharing.
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