
Efficient Multipath Flow Monitoring

Samuel Micka, Sean Yaw, Brittany Terese Fasy, Brendan Mumey, Mike Wittie

Gianforte School of Computing, Montana State University

Bozeman, Montana, USA

{samuel.micka, sean.yaw}@msu.montana.edu {brittany.fasy, brendan.mumey, mike.wittie}@montana.edu

Abstract—Network administrators and traffic management
tools need up-to-date traffic metrics to monitor and balance
traffic load. Recording and reporting flow information is costly
in terms of control plane traffic and router memory. Prior
work mitigates these costs by limiting the number of monitor-
ing devices, sampling, or only reporting constraint violations.
However, these techniques are limited to single-path routing,
do not address multiple network flows, and do not guarantee
network coverage. We propose strategies to minimize the cost of
placing a sufficient number of logical monitors on edges (called
turnstiles) so as to monitor all (possibly multipath) flows. Our
main result is an (lnm+1)(ln k+1)-approximation algorithm for
the general Turnstile Placement problem, for a network with m

edges and k flows (commodities). We also show achieving an
o(ln k) approximation ratio is NP-hard. We examine a simple
heuristic algorithm for the problem as well as a method to
adapt existing single path solutions. Simulations show that our
approximation algorithm achieves near optimal performance and
outperforms existing approaches. The proposed methods reduce
monitoring costs in multipath networks, enabling more agile and
more accurate load balancing of network flows.

I. INTRODUCTION

With the increasing prevalence of Internet-connected de-

vices, delivering data promptly continues to be an important

challenge. Software defined networks (SDNs) reduce net-

work management complexity through a simple, yet pow-

erful control model. A logically centralized controller with

a global view of the network state installs forwarding rules

on routers, which match and apply them to arriving packets.

Flow volumes, collected by router hardware counters, are

a crucial source of network data for the controller. Based

on this information, the controller alters forwarding rules to

balance network load.

As SDN controllers become integrated with application

delivery controllers (ADCs) to meet application and even flow-

level quality of service (QoS) requirements, they require flow

volume information of increasing spatial and temporal resolu-

tion [1], [12]. These flow-specific metrics can be collected

from routers configured to monitor flow traffic, which we

simply refer to as monitors in this paper. Such detailed network

state, if recorded and reported naı̈vely, creates control plane

congestion and limits the scalability of the centralized control

model in dynamic network scenarios.

Optimizing the placement of monitors is necessary to

observe all flows in a network, and will help reduce the

amount of control plane reporting overhead. This cost re-

duction will allow for up-to-date, low-cost, and complete

reporting of flow volumes to the SDN centralized controller.

Accurate reporting of flow specific metrics will help traffic

management tools make load balancing decisions to improve

network performance through congestion reduction. Perhaps

most importantly, less costly monitoring enables SDNs to take

on more load balancing functions and assures the scalability

of centralized network control in dynamic networks.

We update existing theoretical work on minimum monitor

placement to include the multipath flows present in modern

networks. We call the monitors we use turnstiles, and place

them logically on edges in the network. Physically, these mon-

itors are not additional hardware, but rather traffic recording

on specific router interfaces. The Turnstile Placement (TP)

Problem looks for minimum cost turnstile placements to

monitor multiple multipath flows in a network. The TP Prob-

lem formulation supports general turnstile cost functions for

customized performance metric optimization (e.g., minimize

the number of turnstiles, minimize the distance to controller).

We establish a polynomial time solution to the TP Problem

when there is only a single commodity by relating it to the

cycle-transversal problem [18], [19]. We show the general TP

Problem is NP-hard to approximate within a bound of o(ln k),
and introduce a novel (lnm + 1)(ln k + 1)-approximation

algorithm for the TP Problem, where m is the number of

edges in the graph and k is the number of commodities. We

also present a spanning tree based algorithm for the general

TP Problem that leverages the relationship between the single

commodity TP Problem and the cycle-transversal problem.

Finally, we develop a method for adapting existing single path

flow monitoring solutions to multipath TP instances.

To evaluate the efficacy of our approaches, we compare the

monitor placement costs of our algorithms on real Internet

topologies with realistic traffic patterns. The simulations show

that the approximation algorithm placements are within 1% of

optimal, on scenarios for which the optimal solution could be

computed. On larger examples, the approximation algorithm

outperforms the other methods proposed.

The rest of this paper is organized as follows. Section II

discusses related work. Section III formalizes the TP Problem,

details its relationship to other fundamental graph problems,

and discusses its complexity. Section IV presents an approxi-

mation algorithm, a maximum spanning tree approach, and a

method to apply existing single path solutions to TP instances.

Section V presents experimental results, and we conclude in

Section VI. The Appendix includes a proof of the complexity

results reported in Section III.ISBN 978-3-901882-94-4 c© 2017 IFIP

II. RELATED WORK

We classify previous efforts to reduce the overhead of

control traffic in network monitoring into three categories:

(1) sampling or stopping monitor placement after covering

a portion of the network, (2) utilizing heuristics, and (3)

considering a simplified problem formulation in which flows

have a single path.

The first category of related work deals with monitor

placement using sampling techniques [10], [17], [20], [22].

Jackson et al. focus on capturing a high percentage of network

traffic data by using a minimum number of monitors on

autonomous system boundaries [10]. However, considering

different autonomous systems as single entities results in a

loss of flow monitoring precision at the router level. Another

common approach to reduce monitoring load is to sample only

a fraction of packets at a router [17], [20], [22]. Suh et al., in

one problem formulation, consider the problem of monitoring

flows by maximizing the coverage without violating the de-

ployment and operating costs of monitors, while optimizing

sampling rates [17]. Cantieni et al. also optimize monitor

placement and sampling strategies to achieve high monitoring

coverage [2]. However, sampling approaches result in a proba-

bilistic coverage of the network flows, which can lead to lower

accuracy of flow volume estimation and increase the likelihood

of missing smaller flows. Probabilistic and redundant coverage

of sampling is also a drawback of monitoring tools available

on routers such as NetFlow, or CMON [5], [8].

The second type of solution uses heuristics to place

monitors [3], [7], [14], [20], [21]. Zang et al. propose greedy

heuristics that monitors flows on each edge [20]. Huang et al.

optimize monitor placement in dynamic routing scenarios

using one Mixed Integer Linear Program (MILP) and two

heuristics [7]. The authors later introduce a framework,

LEISURE, that balances monitoring tasks equally between

different monitors in the network [3]. Heuristic solutions,

however, do not offer performance guarantees.

Third, previous work considers single path routing for

each flow [2], [4], [17]. Chaudet et al. consider minimizing

monitoring overhead with passive monitors by minimizing the

number of monitors needed to observe the network edges [4].

Assuming fixed path routing allows the authors to show the

problem’s equivalence to Set Cover as well as allowing for a

reduction from their problem to the Minimum Edge Cost Flow

problem. In one formulation of the problem, Chaudet et al.

consider the multipath version of the problem but only intro-

duce an ILP with no additional complexity results. Suh et al.

define several variations of network monitoring problems,

without sampling, show them to be NP-Hard, and propose

approximation algorithms and Integer Program solutions [17].

The shortcoming of single path routing is that they are not

compatible with multipath forwarding of equal-cost multipath

routing (ECMP), or multipath TCP (MPTCP).

Our work takes two approaches to addressing these gaps.

First, we provide an approximation algorithm for multipath

flow instances that achieves a performance guarantee and a

a

e

db

c

Fig. 1. Sample TP instance including a directed network and two multipath
commodities. Three turnstiles (shown as green triangles) suffice to monitor
all commodity flows.

novel heuristic. Second, we provide a method to adapt existing

single path flow monitoring solutions in a multipath context.

Our solutions also use a flexible cost function able to minimize

the overhead of monitoring control traffic.

One final related work category monitors vertices in the

network, rather then edges [6], [13], [14], [21]. Gupta et al.

develop techniques to reduce overall monitoring overhead in

wireless mesh networks [6]. One of the techniques that they

utilize is minimizing the number of routers used as monitors

with a modified vertex cover approximation algorithm that

prioritizes vertices with a high degree. Park and Lee also

maximize network coverage while reducing the number of

monitors, placed on vertices, to detect DDoS attacks in net-

works [13]. Zeng et al. and Qin et al. focus on minimizing the

number of vertex monitors in a network using heuristics [14],

[21]. These approaches have the cost equivalent to monitoring

traffic on all the edges at a vertex – a solution subsumed by

our approach and avoided in practice due to its high cost.

III. PROBLEM FORMULATION

We consider a network, comprised of a set of vertices V and

directed edges E. Each of the k flows in the network consists

of a source sk and destination tk vertex, along with a set of

edges, Ek ⊂ E, hosting the flow. Flow instances (sk, tk, Ek)
are known, but traffic volumes on each edge are unknown.

Additionally, a weight c(e) is associated with each edge e

in E, reflecting the cost of monitoring the traffic on that edge.

This monitoring cost function enables optimization of various

performance metrics (e.g., minimize the number of monitors

placed, minimize distance between monitors and controllers).

By monitoring traffic patterns on a select set of edges,

we seek to determine the flow volumes on all edges of the

network. The network is subject to the normal conservation of

flow assumption: The amount of flow into each vertex equals

the amount out, except at sources and destinations. We aim

to identify the amount of traffic traversing each edge in the

network by utilizing turnstile monitors to disambiguate traffic

volume on each edge. A turnstile on an edge e logs all traffic

through e and is able to determine which flow the traffic

belongs to. The placement of a turnstile incurs the cost of the

edge weight associated with monitoring that edge. The goal is

to place a minimum cost set of turnstiles so as to determine

the traffic volume on every edge in the network. The Turnstile

Placement Problem is formally defined below, and a sample

instance is presented in Figure 1.

Definition 1 (Turnstile Placement Problem). Given a

weighted, directed graph, G = (V,E, c), where c : E → R is a

turnstile placement cost function, and a set of commodity flows

{(sk, tk, Ek)}k, where sk is the source, tk is the destination,

and Ek are the edges used for the kth commodity, the Turnstile

Placement (TP) Problem seeks a subset M ⊆ E of minimum

total cost, such that knowing the commodity flow volumes

on the edges in M uniquely determines all commodity flows

on all edges.

A. Turnstile Placement for a Single Commodity

The special case of the TP Problem with a single commodity

(one multipath flow) is called the Single Commodity TP (SC-

TP) Problem. Given an undirected graph, G = (V,E), a cycle

transversal of the graph is a set of edges, S ⊂ E, such that

every cycle in the graph includes at least one edge from S [18],

[19]. Establishing the equivalence between the SC-TP and the

cycle transversal problem requires a slight modification to the

SC-TP input. We add a back-edge from the destination to

the source vertex to complete a source-destination cycle. This

modified graph is represented as G = (V,E ∪ {(tk, sk)}k, c),
where (tk, sk) ranges over all destination-source pairs in V .

With the back-edge in place, we insist on conservation-of-flow

at each each vertex in G, as the back-edge carries the total flow

from sk to tk, and back to sk.

Lemma 1. Given an instance to the SC-TP Problem, G =
(V,E ∪ {(tk, sk)}k, c) and a single flow, the set T ⊂ E is a

feasible solution to the SC-TP instance if and only if T is a

cycle transversal for G with undirected edges.

Proof. Suppose that T ⊂ E is a feasible solution to an SC-TP

Problem instance. Then, the traffic values for each edge in E

can be determined from the turnstiles in T , but the cost of T

need not be optimal. Consider, for the sake of a contradiction,

a cycle in the undirected version of G that did not have an

edge in T . If such a cycle exists, then an arbitrary amount of

traffic r could be added to each edge e of the cycle, where the

flow on e is increased by r if the edge points in the direction of

the cycle and decreased by r otherwise. Hence, edges can host

unrestricted traffic values, and contradicts T being a solution to

the SC-TP Problem. Thus, T must provide a cycle transversal

of the undirected version of G.

Suppose that S ⊂ E is a cycle transversal for the undirected

version of G. For the sake of a contradiction, further suppose

that S is not a valid solution to the SC-TP Problem. This

means that there exists some edge, (u, v), whose flow value

cannot be determined from knowing the flows on the edges

in S. Since conservation of flow holds at each vertex, there

must be at least one other edge incident to v whose flow is

also not determined. Without loss of generality, say this is

the edge from v to w. Again, we can find an edge starting

at w and going to some vertex other than v on which the

flow is also undetermined. Note that this edge is necessarily

not in S. Since G is finite, continuing to follow a path of

undetermined edges in this manner must ultimately create

a cycle without any edges in S. Existence of this cycle

contradicts the assumption that S provides a cycle transversal.

Thus, S must be a valid solution to the SC-TP Problem.

As a consequence to this lemma, a minimum cost cycle

transversal solution equates to a minimum cost SC-TP solu-

tion, and vice versa. The equivalence of the SC-TP and cycle

transversal problems provides a solution to SC-TP instances,

as the minimum cycle transversal problem can be solved by

determining a maximum cost spanning tree (easily computed

using a standard minimum-weight spanning tree algorithm and

negating all edge costs).

Lemma 2. Given an undirected graph with edge costs,

G = (V,E, c), and a spanning tree, T ⊂ E, of maximum

cost, the remaining edges, E \ T , form a minimum cost cycle

transversal of G.

Proof. Suppose that T is a maximum cost spanning tree of G.

Since T is a tree, any cycle in G must have at least one edge

in E \T ; otherwise, the entire cycle would be contained in T .

Therefore, the set E \ T forms a cycle transversal of G.

Since T is a spanning tree of maximum cost, the re-

maining edges in E \ T form a minimum cost span-

ning tree complement, and therefore, a minimum cost cycle

transversal of G.

We note here that placing turnstiles on the artificially

inserted back-edges is undesirable, as those edges are not

physically present in the network. To avoid this, we set the

cost of turnstile placement on these edges to be much greater

than the cost of any ‘real’ edge in the SC-TP instance. By

doing so, the back-edges will be included in the maximum

cost spanning tree, thereby ensuring they will not be selected

for turnstile placement.

B. Turnstile Problem Complexity

Lemma 1 and Lemma 2 show how the SC-TP Problem can

be solved optimally in polynomial time. However, The general

TP Problem is inapproximable within a bound of w ln k for

some w > 0, where k is the number of commodities in the TP

instance. This result is obtained via a reduction from the SET-

COVER problem and details are included in the Appendix as

part of Lemma 5. Due to the complexity of the TP Problem,

in Section IV we introduce an approximate solution in lieu of

pursuing optimal approaches.

IV. ALGORITHMS

In this section, we provide three algorithms for the TP

Problem. The first is an approximation algorithm that greedily

selects turnstile locations to minimize total solution cost. The

second algorithm leverages the relationship between the SC-

TP Problem and the complement of maximum spanning trees

detailed in Lemma 1 and Lemma 2. The third is a method that

enables using existing single path solutions for a multipath

TP instance. In Section V, performance of these solutions

are demonstrated with a constant valued turnstile placement

cost function, resulting in the objective of minimizing the

number of turnstiles placed. However, the algorithms detailed

in this section are able to handle any generalized turnstile

placement cost function.

A. Approximation Algorithm

In this section, we introduce an approximation algorithm,

TP-Approx, for the TP Problem with a general turnstile

placement cost function, which achieves an approximation

ratio of (lnm + 1)(ln k + 1), where k is the number of

commodities and m is the number of edges in the network.

(Theorem 1 below actually proves a slightly tighter bound.)

Each edge in a TP instance hosts some number of flows.

A turnstile placed on an edge is said to help a commodity

if that turnstile lies on at least one cycle in that commodity

not already containing a turnstile. In this way, a proposed

turnstile location only helps a commodity if that turnstile

will reduce the number of additional turnstiles required

for that commodity.

TP-Approx makes iterative turnstile placements, where the

turnstile placed in each iteration is on the edge that minimizes

the cost per commodity helped. This process continues until

all cycles in commodity flows are monitored. The turnstile

cost function determines the cost of a candidate turnstile. The

number of commodities helped by an edge (u, v) is calculated

by checking, for each commodity, if any undirected path exists

from u to v besides the direct edge (u, v) in each commodity’s

subgraph. If a such a path exists, then (u, v) belongs to an

uncovered cycle, and thus placing a turnstile on (u, v) helps

that commodity. Once edge e is determined to be the best

turnstile location, it is added to the set of selected turnstiles

τ , and removed from all commodity graphs. This ensures that

cycles discovered in subsequent iterations are not covered by

any turnstile selected up to that point. An outline of TP-

Approx is presented in Algorithm 1 and its running time is

analyzed in Lemma 3.

Algorithm 1 TP-Approx

τ = ∅
c(e) = cost of placing turnstile on edge e

helps(e) = set of commodities helped by a turnstile on e

while ∃e ∈ E : helps(e) 6= ∅ do

Determine e′ = argmine
c(e)

|helps(e)|
τ = τ ∪ {e′}
Remove e′ from G

Update helps(e) for remaining edges e ∈ G

end while

return τ

Lemma 3. TP-Approx returns a set of turnstiles that resolves

all traffic flows on each edge in the network and has a running

time of O(km3), where k is the number of commodities and m

is the number of edges in the network.

Proof. Lemma 1 shows that a cycle transversal provides a

valid turnstile solution for a single commodity. Since the

algorithm runs until all intra-commodity cycles have at least

one turnstile on them, all traffic for each commodity is

monitored, and thus the turnstiles selected provide a valid

solution for the entire network.

In each iteration of the algorithm, the number of commodi-

ties helped must be calculated for each edge. This amounts

to, for each edge, searching for a cycle in each commodity’s

subgraph, which can be done with depth first search in a total

of O(km2). The number of iterations needed is maximized

when the algorithm places a turnstile on each edge. Therefore,

the running time of Algorithm 1 is in O(km3).

Theorem 1. TP-Approx achieves a (lnRmax + 1)(ln k + 1)-
approximation ratio, where k is the number of commodities

and Rmax is the maximum number of turnstiles needed by

any single commodity, considered in isolation as an SC-TP

instance. Rmax = maxi(mi −ni +1) where ni is the number

of vertices and mi is the number of edges in the subgraph

hosting commodity i.

Proof. Let Rt
i be the number of remaining turnstiles needed

for commodity Ki, just after TP-Approx places the t-th

turnstile, Tt. Note that for each commodity Ki, we have

R0
i = mi − ni + 1 since the spanning tree has exactly ni − 1

edges and the complement of the spanning tree are the edges

that break all cycles, as detailed in Lemma 2. We say that

commodity Ki is finished when Rt
i reaches zero. We define

the function helps on a turnstile T at iteration t as,

helpst(T) = {Ki : R
t
i = Rt−1

i − 1, if T is chosen at t} (1)

Let OPT = {T ∗
1 , . . . , T

∗
p } be an optimal placement of turn-

stiles. Suppose the TP-Approx algorithm chooses turnstiles,

ALG = {T1, . . . , Ta}, in this order. Consider Ki ∈ helpst(Tt).
Just prior to TP-Approx selecting Tt, recall that Rt−1

i more

turnstiles are needed for commodity Ki. Moreover, we can

select these turnstiles from OPT (but note that this subset

of turnstiles need not be unique). Let OPT(t, i) be one such

subset of Rt−1
i turnstiles from OPT.

Note that the per-commodity cost of Tt is at most the per-

commodity cost of the aforementioned OPT turnstiles (since

TP-Approx makes a greedy choice). Observe that

c(Tt)

|helpst(Tt)|
≤

1

Rt−1
i

∑

T∗∈OPT(t,i)

c(T ∗)

|helpst(T
∗)|

.

We have

c(ALG) =
a∑

t=1

c(Tt)

=

a∑

t=1

∑

Ki∈helps
t
(Tt)

c(Tt)

|helpst(Tt)|

≤
a∑

t=1

∑

Ki∈helps
t
(Tt)

1

Rt−1
i

∑

T∗∈OPT(t,i)

c(T ∗)

|helpst(T
∗)|

=
∑

T∗∈OPT

c(T ∗)

a∑

t=1

∑

Ki∈helps
t
(Tt)

T∗∈OPT(t,i)

1

Rt−1
i |helpst(T

∗)|
(2)

Notice that Rt
i = Rt−1

i − 1 for each commodities helped

by Tt (and Rt
i = Rt−1

i otherwise). If Rt−1
i > Rt

i = 0 and

Ki ∈ helps1(T
∗), then |helpst(T

∗)| < |helpst−1(T
∗)|. Order

the commodities in helps1(T
∗) by increasing R0

i values; say,

the list is K1∗ , . . .Kk∗

0
. The above sum over t is maximized

if TP-Approx helps the commodities in this order (so that the

first commodity, K1∗ , is finished before any others are helped,

etc.). In this case, we have:

a∑

t=1

∑

Ki∈helps
t
(Tt)

T∗∈OPT(t,i)

1

Rt−1
i |helpst(T

∗)|

=

k0∑

k=1

1

k0 − k + 1

1∑

h=R0

k∗

1

h

≤
k0∑

k=1

1

k0 − k + 1
(lnR0

k∗ + 1)

≤
k0∑

k=1

1

k0 − k + 1
(lnRmax + 1)

= (lnRmax + 1)

k0∑

k=1

1

k0 − k + 1

≤ (lnRmax + 1)(ln k + 1), (3)

where Rmax = maxi R
0
i . Substituting (3) into (2) yields

c(ALG) ≤
∑

T∗∈OPT

c(T ∗)(lnRmax + 1)(ln k + 1)

= (lnRmax + 1)(ln k + 1)c(OPT),

as was to be shown.

Corollary 1. Since Rmax ≤ m, the TP-Approx algorithm

trivially achieves an (lnm+1)(ln k+1) approximation ratio.

B. Maximum Spanning Tree Approach

In this section, we introduce another approach to solve

the TP problem based on the relationship between the turn-

stile problem and the cycle transversal problem detailed in

Section III-A. Lemma 2 showed that placing turnstiles on

the complement of a maximum spanning tree (MaxST) for

a single commodity instance, SC-TP, provides an optimal

turnstile placement for that instance.

Given an instance of the TP problem, the weight of each

edge is set to be its cost, w(e) = c(e). The commodities are

considered in an arbitrary order and for each commodity k,

a MaxST is found for the subgraph containing k. The edges

not included in the MaxST are added to the set of turnstile

locations, τ , so ensuring that commodity k is monitored. After

an edge is added to τ its weight is set to 0 so that it will be

reused by subsequent commodities, if possible. TP-MaxST is

detailed in Algorithm 2.

Algorithm 2 TP-MaxST

τ = ∅
for e ∈ E do

w(e) = c(e)
end for

for commodities k in TP instance do

Find a MaxST Tk that spans Ek

τ = τ ∪ (Ek \ Tk)
for e ∈ Ek \ Tk do

w(e) = 0
end for

end for

return τ

a

db

c

(a) s− t path decomposition

a

db

c

(b) Pathlet decomposition

Fig. 2. The multipath flow on all edges shown in 2(a) from a to d requires at
least two turnstiles. However, if this multipath flow were to be decomposed
into s− t paths, blue and red, a turnstile placed on edge (b, d) would cover
the two single path flows, but not the original multipath flow with undirected
cycle (a, b, c). The pathlet decomposition shown in 2(b) avoids this issue.

C. Multipath to Single Path Translation

In this section, we detail a process for adapting existing

multicommodity, single path, flow monitoring approaches to

multipath TP instances. One naı̈ve approach would be, given

an instance with a multipath commodity, decompose its flow

into a collection of single path s-t flows. Aggregate solutions

for the single path flows could then be used as a solution

for the multipath flow. This approach can lead to situations

where all cycles in the single path flows are monitored, but

where cycles remain in the underlying multipath flow, and is

illustrated in Figure 2(a).

To successfully decompose a multipath TP instance, we

segment each multipath flow into a set of sub-paths (pathlets),

such that a turnstile anywhere on each pathlet will provide a

valid turnstile placement for the original multipath flow. These

pathlets can then be treated as their own single path flows, and

the same monitors placed by existing multicommodity single

path monitoring approaches for the set of pathlets will suffice

to monitor the original TP instance.

The translation from multipath TP instances into single path

commodities involves decomposing each multipath flow into a

set of pathlets. For each multipath flow from the TP instance,

the decomposition begins by marking the source and sink ver-

tices in the flow. Unmarked pathlets are then iteratively added

to the set. An unmarked pathlet is a simple path constructed

between marked vertices such that only unmarked edges and

vertices are traversed. One way to generate this is by using

breadth first search from some marked vertex over unmarked

edges until the first marked vertex is reached. The pathlet is

added to the set of pathlets, and each vertex and edge in the

pathlet is marked. This process is continued until all edges in

the flow are marked. Once a flow is decomposed into pathlets,

all marks are disregarded and the next flow is decomposed.

The set of pathlets resulting from the decomposition of all

multipath flows in the TP instance is returned as a set of single

path flows, ready for existing single path sensor placement

algorithms. This translation is detailed in Algorithm 3 and

shown in Figure 2(b).

Algorithm 3 Multipath Flows to Single Path Flows

P = set of pathlets = ∅

for commodities (sk, tk, Ek) in TP instance do

Mark sk and tk
while unmarked edges remain in Ek do

Find unmarked path between marked vertices

Add path to P and mark all its vertices and edges

end while

end for

return Set of pathlets, P

Lemma 4. A turnstile placed anywhere on each pathlet in

the set of pathlets returned by Algorithm 3 will form a valid

turnstile placement for the multipath TP input.

Proof. By Lemma 1, a placement of turnstiles is valid if each

cycle in the graph has a turnstile on at least one edge. We

aim to show that each cycle in the graph must have one

pathlet from P totally contained within that cycle. If that

were the case, then any turnstile placement along that pathlet

would sufficiently cover that cycle, thereby providing a valid

placement as each cycle has such a pathlet.

Consider a cycle in the graph. Because each pathlet in P
is simple, this cycle must consist of multiple pathlets. Select

some pathlet on the cycle that also contains edges off the

cycle (if no such pathlet exists, then the pathlets are fully

contained in the cycle and any turnstile placement will suffice).

The vertices of that pathlet that lie on the cycle cannot

be intermediate vertices of any other pathlet, since pathlet

building ends as soon as a marked vertex is encountered.

This means that those vertices must be endpoints for one or

more pathlets. Thus, the remaining pathlets composing the

rest of the cycle cannot all include edges off the cycle, as

otherwise, some pathlet must include a vertex from another

pathlet as an intermediate vertex.

V. EVALUATION

In this section, we detail the process, and present the results,

of evaluating the algorithms presented in Section IV. We

apply the multipath to single path translation described in

Section IV-C and then employ a greedy Set-Cover motivated

by the solution introduced in [4] to compare our solutions to

existing single path solutions. We label this hybrid algorithm

the Greedy Single Path (GSP) algorithm. To minimize the

total number of turnstiles placed, a constant valued turnstile

placement cost function is employed.

To conduct our experiments, we use five network topologies

from the Internet Topology Zoo [11]: GEANT, a European

backbone network, UUNET, a United States backbone net-

work, DFN, a German backbone network, Viatel, a European

backbone network, and Tinet, a global backbone network. We

choose these topologies as representative examples of large

real-world networks that support multipath flows.

Network traffic is generated on a per-commodity, per-

instance, basis. We sample from a set of vertices in each

topology to serve as sources and destinations. The Fast Net-

work Simulation Setup (FNSS) is used to generate flow vol-

umes [16]. Two methods are used for generating commodity

edge sets. The first process uses a standard approach for deter-

mining multipath routing by having flows, volumes, and edge

sets generated by solving an instance of the multicommodity

flow problem with the linear program solver CPLEX. In the

second method, edge sets are generated for flows by choosing

edges in the k-shortest paths from source to destination

where k varied between one, three, and five. This method

was used to reduce instance variability favoring one algorithm

over another by explicitly controlling the number of paths

accessible to each flow. Both methods result in a network with

a defined topology and a set of commodities with multipath

routes from their sources to destinations. The algorithms are

tested on topologies containing four commodities and 100
commodities. The instances containing 100 commodities are

the result of merging 25 instances of four commodities on the

same topology. The volumes of these commodities make these

instances representative of a topology with a 100 commodities

that has the capacity to support four of them transmitting

at full volume at any given time. We look at the number

of turnstiles placed using different topologies and different

algorithms, noting here that the standard deviation remained

less than three across most experiments.

A. Number of Turnstiles Placed

The first simulation aims to determine the number of

turnstiles placed by the algorithms on instances small enough

for optimal turnstile placements to be computed. Figure 3

shows the results of these simulations. Four commodities are

generated, per instance, using the technique described above

on the five Internet Topology Zoo topologies using the CPLEX

LP-Solver to generate the commodity edge sets. The graph

shows the average number of turnstiles needed to monitor

each instance over 50 simulations, on each topology. OPT and

TP-Approx average around four turnstiles for each topology

with TP-Approx placing, on average, fewer than 1% more

turnstiles than OPT. The number of turnstiles chosen by the

optimal solution to be necessary for the topologies averages

at 3.91. GSP and TP-MaxST place about 2% and 20% more

turnstiles than OPT respectively. We suspect that the Viatel

topology requires fewer turnstiles than the other topologies

evaluated because there are fewer distinct paths through the

Viatel network than the others.

GEANT UUNET DFN Viatel Tinet

Network

T
u

rn
st

il
es

 p
la

ce
d

0
1

2
3

4
5

6

OPT TP−Approx GSP TP−MaxST

Fig. 3. The average number of turnstiles placed by each algorithm over 50
instances, on each topology, with four commodities per instance.

The second simulation aims to determine the number

of turnstiles placed by the algorithms on the five Internet

Topology Zoo topologies, with larger traffic patterns which

contain too many flows to solve optimally. To generate an

instance with 100 commodities, the instances are generated,

four commodities at a time using the CPLEX LP-Solver to

generate commodity edge sets, and merged into a single graph.

Figure 4 shows the average number of turnstiles required

by each algorithm over 50 iterations on each topology. TP-

Approx places, on average across the five topologies, 21.5
turnstiles in each simulation, whereas GSP places 22.6, and

TP-MaxST places 29.512. As a result, TP-Approx places

about 5% fewer turnstiles than GSP and about 27% fewer

turnstiles than TP-MaxST. Increasing the number of com-

modities results in more of the underlying network being

utilized, leading to a larger number of turnstiles being placed

by all solutions. The relative number of turnstiles required

between the various algorithms also increases due to TP-

Approx and, to a lesser extent, GSP making better use of

inter-commodity collaborative placements.

The third simulation aims to determine the number of

turnstiles placed by the algorithms on the five Internet Topol-

ogy Zoo topologies, with commodity edge sets determined

using the k-shortest path algorithm on each source destination

pairing. Like the previous simulation, 100 commodities are

generated on each instance. To determine the commodity edge

sets, we use k-shortest paths with k equal to one, three, and

five, to explore the effectiveness of the different algorithms

as the commodities contain more paths. Figure 5 shows the

average number of turnstiles required by each algorithm over

50 iterations on the Tinet topology. TP-Approx places fewer

turnstiles in every instance, even when k is set to one. This

result confirms that TP-Approx is a viable solution for the

single path version of the problem, as well as the multipath

formulation. Increasing the value of k highlights the reduced

number of turnstiles placed by TP-Approx compared to the

GEANT UUNET DFN Viatel Tinet

Network

T
u
rn

st
il

es
 p

la
ce

d

0
1
0

2
0

3
0

4
0

TP−Approx GSP TP−MaxST

Fig. 4. The average number of turnstiles placed by each algorithm over 50
instances with 100 commodities each, on each topology.

k=1 k=3 k=5

k−shortest path routing

T
u

rn
st

il
es

 P
la

ce
d

0
1
0

2
0

3
0

4
0

5
0

6
0

TP−Approx GSP TP−MaxST

Fig. 5. The average number of turnstiles placed by each algorithm over 50
instances with 100 commodities on the Tinet topology.

other solutions. TP-Approx places 34.3 turnstiles on average

while GSP and TP-MaxST place 39.78 and 46.76 respectively

when k is set to three. In this case, the GSP solution places

about 16% more turnstiles than TP-Approx. TP-Approx places

38.84 turnstiles on average and GSP and TP-MaxST place

47.56 and 52.12 when k is set to five. This results in GSP

placing about 22% more turnstiles than TP-Approx.

B. Placement Effectiveness

In certain scenarios (e.g. large topologies, restricted moni-

toring budget, loose monitoring requirements), placing fewer

turnstiles than necessary makes sense, accepting that the entire

network may not be covered. In this scenario, it is advanta-

geous to employ an algorithm that provides the highest rate of

return, in terms of network coverage, per turnstile placed. The

fourth simulation explores this scenario by investigating the

rate at which the algorithms cover the network. Specifically,

the Monitoring Benefit for placing a turnstile on an edge is

0 10 20 30 40 50

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Turnstiles Placed

M
o

n
it

o
ri

n
g

 B
en

ef
it

TP−Approx GSP TP−MaxST

Fig. 6. The monitoring benefit provided by the placement of each sequential
turnstile for each algorithm. Shown, is the Tinet topology with 100 com-
modities with commodity edge sets generated using 3-shortest paths between
each s,t pairing. Monitoring benefit is defined as the number of commodities
helped (defined in equation 1) as each turnstile is placed.

the number of flows that have a cycle covered as a result

of the placement.

Figure 6 shows the total number of turnstiles placed,

in the order that they are placed, versus the number of

commodity-required turnstiles covered. Note that the num-

ber of commodity-required turnstiles is just the sum of the

number of turnstiles each individual commodity requires,∑k

i=0 mi − ni +1, where k is the number of commodities as

detailed in the beginning of the proof to Theorem 1. Using the

Tinet topology, with 100 commodities, we obtain the results

shown in Figure 6. The commodity edge sets are generated

using k-shortest paths with k set to three.

TP-Approx achieves 95% of the total number of

commodity-required turnstiles after placing 26 turnstiles,

whereas GSP requires 30 and TP-MaxST requires 44 to cover

95% of the commodity-required turnstiles. In this scenario,

TP-Approx requires almost 14% fewer turnstiles than GSP

and about 40% fewer turnstiles than TP-MaxST for cover

95% of the commodity-required turnstiles. TP-Approx is not

only able to place a fewer number of total turnstiles for full

coverage, but is capable of placing turnstiles that benefit a

large number of flows from the beginning. Figure 6 shows

that this trend holds steady for any percent of the total

number of commodity-required turnstiles. Interestingly, initial

turnstiles placed by GSP are close to benefiting the same as

TP-Approx, but the effectiveness of the placements diverge

slightly around 90% coverage.

VI. CONCLUSIONS

The turnstile placement techniques introduced in this paper

provide a new and efficient way to monitor multipath traf-

fic flows, in settings such as software defined networks, to

improve load balancing and network efficiency. Minimizing

the number of turnstiles reduces the cost of monitoring; we

have developed several efficient algorithms that minimize

the number of turnstiles needed to monitor traffic flows. In

particular, the TP-Approx algorithm achieves near optimal

performance in simulations on real Internet topologies. Several

interesting open questions regarding flow monitoring with

turnstiles remain: First, besides the cost of turnstile placement,

one may consider be additional costs related to the volume

of the flows monitored. Although flow volumes are initially

unknown, once turnstiles are placed and edge-flow volumes

calculated, the turnstile costs could be updated to reflect

current flow volumes. Second, the network is dynamic and new

flows will be added while old flows are removed. If the existing

turnstiles are insufficient (or redundant), then a new turnstile

solution should be found, that accrues the least changeover

cost. Finally, turnstile monitoring may be of use for flow

monitoring in other types of networks, e.g., transportation

networks, social networks, etc.

APPENDIX

Lemma 5. Consider the TP Problem with k commodities.

There exists a constant, w > 0, such that no polynomial time

w ln k-approximation algorithm exists, unless P = NP .

Proof. This result is via an approximation-preserving reduc-

tion from the SET-COVER Problem: Given a collection S of

subsets of a finite sized universe, U , find a minimum sized

S′ ⊂ S such that for all u ∈ U , u is contained in some

set in S′. Let S = {S1, ..., Sn}, where Si ⊂ U for all i,

be an instance of SET-COVER. Reduce this instance to a TP

instance as follows:

Create a graph component with a line topology having n+1
vertices and n edges, where vertex j shares a directed edge

to vertex j + 1. These n edges will each be sequentially

associated with a unique member of S (i.e., the edge from j

to j+1 corresponds to the set Sj). Let the turnstile placement

cost function be unit valued for all edges in the graph,

thereby making the objective to minimize the total number

of turnstiles placed.

Each element of the universe, U , will be represented by a

single-path commodity flow. Do this by first creating, for each

element in U , two new vertices to serve as that commodity’s

source and destination. For each commodity, i, consider the

ordered list of sets, Si ⊂ S that its corresponding element

of the universe is a member of. Create a source-to-destination

path for each commodity by beginning at that commodity’s

source and making a directed edge to the vertex corresponding

to the source vertex of its first element of Si. So, if Sj is the

first element of Si, an edge will be made from commodity i’s

source to vertex j. Now, take the existing edge to that set’s

destination vertex and create a new directed edge to the source

vertex of the next element of Si, unless the destination of the

current element and source of the next element is the same.

Continue this process until there are no remaining elements in

Si, and then terminate at that commodity’s destination vertex.

See Figure 7 for an example reduction.

A solution to the SET-COVER instance provides a solution

to the TP instance of the same size since a subset of S that

src2

src1

src3 dest3

dest1

dest2

{1} {2} {1,3} {1,2} {2,3}

Fig. 7. Sample reduction of SET-COVER instance to a TP instance. The
SET-COVER instance shown has universe, U = {1, 2, 3}, and sets, S =
{{1}, {2}, {1, 3}, {1, 2}, {2, 3}}.

contains all elements of the universe will correspond to a set

of edges that are cumulatively traversed by each commodity.

Since each commodity is a single path, requiring a single

turnstile to monitor its traffic, these edges provide a valid

solution to the TP instance.

Given any solution to the TP instance, this solution is

equivalent to one with turnstiles placed only on edges gener-

ated by elements of S, as opposed to the commodity specific

edges. This solution corresponds to an equally sized solution

to the SET-COVER instance, as a subset of S is selected that

must cover all elements of the universe, since the turnstiles

cover all commodities.

Since the turnstiles placed and the set cover elements

are in one-to-one correspondence, the number of turnstiles

placed for the TP instance is the same as the size of the

set cover, thereby making the costs equal and the reduc-

tion approximation-preserving. Since there exists a constant,

w > 0, such that SET-COVER cannot be approximated within

a factor of w lnn, where n is the size of the universe U ,

unless P = NP [15]. Therefore, TP cannot be approxi-

mated within a factor of w ln k, where k is the number of

commodities, unless P = NP .

ACKNOWLEDGEMENT

We thank Schloss Dagstuhl, as this line of research

stems from problems posed during a working group at

Dagstuhl Seminar 16022 [9]. We also thank National Science

Foundation for supporting this work via grants CNS-1555591,

CNS-1527097, CCF-1618605, and ABI-0435060.

REFERENCES

[1] KEMP SDN Adaptive, powered by the HP VAN SDN Con-
troller. https://kemptechnologies.com/sdn-adaptive-load-balancing/, Ac-
cessed Jul 2016.

[2] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran.
Reformulating the monitor placement problem: Optimal network-wide
sampling. In ACM CoNEXT, Dec 2006.

[3] C.-W. Chang, G. Huang, B. Lin, and C.-N. Chuah. LEISURE: Load-
balanced network-wide traffic measurement and monitor placement.
Parallel and Distributed Systems, 26(4):1059–1070, Apr 2015.

[4] C. Chaudet, E. Fleury, I. G. Lassous, H. Rivano, and M.-E. Voge.
Optimal positioning of active and passive monitoring devices. In ACM

conference on Emerging network experiment and technology, Oct 2005.
[5] B. Claise. Cisco systems netflow services export version 9. 2004.
[6] D. Gupta, P. Mohapatra, and C.-N. Chuah. Efficient monitoring in

wireless mesh networks: Overheads and accuracy trade-offs. In IEEE

Mobile Ad Hoc and Sensor Systems (MASS), Sep 2008.
[7] G. Huang, C.-W. Chang, C.-N. Chuah, and B. Lin. Measurement-

aware monitor placement and routing: a joint optimization approach
for network-wide measurements. IEEE Transactions on Network and

Service Management, 9(1):48–59, Mar 2012.
[8] G. Iannaccone, S. Bhattacharrya, N. Taft, and C. Diot. Always-

on monitoring of IP backbones: requirements and design challenges.
Technical report, Sprint ATL, July 2013.

[9] G. F. Italiano, M. van Kreveld, B. Speckmann, and G. Theraulaz.
Geometric and Graph-based Approaches to Collective Motion (Dagstuhl
Seminar 16022). Dagstuhl Reports, 6(1):55–68, Jan 2016.

[10] A. W. Jackson, W. Milliken, C. A. Santivánez, M. Condell, and W. T.
Strayer. A topological analysis of monitor placement. In IEEE Network

Computing and Applications, Jul 2007.
[11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.

The internet topology zoo. IEEE Journal on Selected Areas in Commu-

nications, 29(9):1765–1775, Oct 2011.
[12] R. G. Little. F5 SDN: Why ADCs are relevant in a programmable

world. http://searchsdn.techtarget.com/news/2240226557/F5-SDN-
Why-ADCs-are-relevant-in-a-programmable-world, Aug. 2014.

[13] K. Park and H. Lee. On the effectiveness of route-based packet
filtering for distributed dos attack prevention in power-law internets.
In SIGCOMM CCR, volume 31, pages 15–26, Aug 2001.

[14] Y. Qin, D. G. Feng, K. Chen, and Y. F. Lian. Research on monitor
position in network situation assessment. In IEEE Industrial Control

and Electronics Engineering (ICICEE), Aug 2012.
[15] R. Raz and S. Safra. A sub-constant error-probability low-degree test,

and a sub-constant error-probability PCP characterization of NP. In
ACM Symposium on Theory of Computing (STOC), May 1997.

[16] L. Saino, C. Cocora, and G. Pavlou. A toolchain for simplifying network
simulation setup. In International Conference on Simulation Tools and

Techniques (ICST), SIMUTOOLS, Mar 2013.
[17] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors:

Complexity, heuristics, and coverage. Computer Communications,
29(10):1564–1577, Jun 2006.

[18] G. Xia and Y. Zhang. On the small cycle transversal of planar graphs.
Theoretical Computer Science, 412(29):3501 – 3509, Jul 2011.

[19] G. Xia and Y. Zhang. Kernelization for cycle transversal problems.
Discrete Applied Mathematics, 160(7):1224–1231, May 2012.

[20] H. Zang and A. Nucci. Traffic monitor deployment in IP networks.
Computer Networks, 53(14):2491–2501, Sep 2009.

[21] Y. Zeng, D. Wang, W. Liu, and A. Xiong. An approximation algorithm
for weak vertex cover problem in IP network traffic measurement. In
IEEE Network Infrastructure and Digital Content (IC-NIDC), Nov 2009.

[22] Y. Zhang. An adaptive flow counting method for anomaly detection in
SDN. In ACM CoNEXT, Dec 2013.

