
Available Bandwidth Estimation from Passive TCP

Measurements using the Probe Gap Model

Sukhpreet Kaur Khangura and Markus Fidler

Institute of Communications Technology

Leibniz Universität Hannover

Abstract—The Internet relies on congestion control proto-
cols and adaptive applications that adjust their data rate to
achieve good performance while avoiding network congestion.
An essential prerequisite is the estimation of available network
resources: implicitly like prevailing TCP versions that adapt
their data rate iteratively; or explicitly by available bandwidth
estimation techniques, as recently also adopted by TCP HyStart.
Using observations of TCP throughput, applications like MPEG-
DASH adapt the video quality and data rate. We discover,
however, relevant conditions where TCP throughput is not a
good bandwidth estimator and observe that it is outperformed
by known UDP-based active probing methods. We investigate
how the theory of active probing can possibly be used to extract
relevant information also from passive TCP measurements. In
case of TCP, the additional difficulty is found to be due to its
chaotic traffic characteristics. We define a criterion to select
relevant traffic samples and apply a regression technique to
estimate the available bandwidth. Noteworthy, using the feed-
back provided by TCP acknowledgements, we can perform the
estimation from sender-side measurements only. We verify the
fidelity of the approach in a variety of experiments, including
different types of cross-traffic, delays, and loss of data packets
as well as acknowledgements.

I. INTRODUCTION

The term available bandwidth denotes the residual capacity

of a link that is left over by the existing traffic, in the following

also referred to as cross traffic. The available bandwidth of a

network path is determined by the tight link, that is the link

that has the minimal available bandwidth along the path. The

tight link may differ from the bottleneck link, that is the link

with the minimal capacity. In available bandwidth estimation,

a sender actively injects artificial probe traffic into the network.

Using time-stamps of the probes, the receiver seeks to deduce

the available bandwidth. To date a number of accepted active

probing techniques and corresponding theories for available

bandwidth estimation exist, e.g., [1]–[13].

A shortcoming is, however, the use of active probes, that

are specifically tailored to the estimation method. Probes are

typically sent either as packet pairs [14] with a defined spacing

referred to as gap gin, as packet trains [3], [15] with a fixed

rate rin, or as packet chirps [6] that are packet trains with an

increasing rate. In contrast, the vast majority of the Internet

traffic are TCP flows that exhibit a rather chaotic traffic pattern

and it is a common practice to use the throughput of a TCP
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Fig. 1. Average TCP throughput. The available bandwidth of 100 Mbps is
attained only if the OWD is small and the chunk size is large.

connection as an estimator of the available bandwidth. A

prominent example is MPEG Dynamic Adaptive Streaming

over HTTP (DASH).

DASH is the core technology used by major Internet

video providers such as YouTube and Netflix [16]. In DASH,

the media content is divided into segments or chunks of a

certain duration, typically in the order of a few seconds.

The chunks are encoded using multiple profiles, i.e., each

chunk is available in different quality levels corresponding

to different bandwidth requirements. The encoded chunks are

stored on HTTP servers along with a manifest file which lists

the available profiles of the chunks. The client downloads the

chunks one by one using HTTP GET requests, where it seeks

to select the profile that matches the available resources best.

While DASH does not specify the method how to measure

the available bandwidth, a typical approach is to use the

average throughput achieved by TCP during the transmission

of previous chunks as an estimate of the available bandwidth,

e.g., [16], [17]. Formally, given a chunk of N packets each

with length l, the average throughput is computed as

rout =
(N − 1)l
∑N−1

k=1
gkout

, (1)

where the output gap is defined as gkout = tk+1
out − tkout and tkout

is the time of reception of packet k by the receiver.

To support basic insights into the relation of TCP throughput

and available bandwidth, we evaluate the average throughput

of TCP in controlled network experiments. Compared to [5],ISBN 978-3-901882-94-4 c© 2017 IFIP



[18], we use TCP CUBIC to transfer chunks of limited

size. CUBIC is a high-speed TCP variant aimed at saturating

networks with a large bandwidth-delay-product. In congestion

avoidance, it uses a cubic function to increase the congestion

window (CWND) independent of the round-trip-time [19].

Fig. 1 shows the throughput that is achieved by TCP when

transmitting chunks of a fixed size in the range from 256

kbyte to 4 Mbyte. The network offers an available bandwidth

of 100 Mbps and the experiments are conducted for a range

of one-way-delays (OWD) from 1 to 100 ms. Further details

on the network are deferred to Sec. III. We notice that

TCP congestion control limits the throughput significantly

below the available bandwidth for two reasons: first, the TCP

transmission starts in slow start with a small CWND and, even

despite the CWND is increased quickly, this initial phase has

a considerable effect on the average throughput if chunks are

small in size; secondly, when the OWD is non-negligible, the

CWND may never reach the bandwidth-delay-product so that

the actual throughput during the transmission of a finite-sized

chunk generally remains below the available bandwidth.

The above limitations have motivated us to investigate in-

depth: “Do observations of short TCP flows provide sufficient

information to infer the available bandwidth?” And if so,

“How can the available bandwidth be estimated, e.g., can

techniques from active probing be adapted to passive TCP

measurements?” On the way to find the answers to these

questions, we make the following contributions:

– We identify the chaotic, non-packet train pattern of TCP

flows and define a criterion to select traffic samples that

bear relevant information. This information is encoded in

the form of packet gaps that are explained by the probe gap

model known in bandwidth estimation.

– We use a regression technique to obtain robust bandwidth

estimates from passive measurements of these gaps. The

accuracy of the method is evaluated for a variety of relevant

parameter settings.

– We propose a method that can take multiple gaps as well

as acknowledgement gaps as input. This extension enables

bandwidth estimation using only sender-side measurements

of TCP data and acknowledgement packets.

The goal of this work is to understand the information that

short-lived TCP flows provide on the available bandwidth.

The results may benefit adaptive applications like DASH and

may contribute to new TCP versions, such as the recent

Hybrid Start (HyStart) algorithm [20] that draws from capacity

estimation techniques [21]. We will discuss HyStart in more

detail in Sec. II.

The remainder of this paper is structured as follows. In

Sec. II, we discuss the related work on available bandwidth

estimation. We describe our experimental setup in Sec. III.

In Sec. IV, we introduce a method to estimate the available

bandwidth from passive measurements. We apply the method

to short-lived TCP flows and evaluate the accuracy for a variety

of relevant parameters in Sec. V. We also extend the method

to use sender-side measurements of acknowledgement gaps.

We provide brief conclusions in Sec. VI.
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Fig. 2. Gap response curve. The turning point marks the available bandwidth.

II. STATE-OF-THE-ART IN BANDWIDTH ESTIMATION

In this section, we introduce the basic probe rate, re-

spectively, probe gap model of a First-In First-Out (FIFO)

multiplexer that is used in bandwidth estimation to derive its

characteristic response curve. Further, we discuss state-of-the-

art bandwidth estimation methods. We start with a definition of

available bandwidth. Given a link with capacity C and cross

traffic with long-term average rate λ, where λ ∈ [0, C], the

available bandwidth A is defined as the residual capacity that

is left over after cross traffic is served, i.e., A = C − λ [10].

The available bandwidth of a network path is defined to

equal the available bandwidth of the tight link, that is the link

that has the minimal available bandwidth along the path [11].

This leads to the abstraction of a network path as a single tight

link, that is applicable in the long-term average [13].

A common assumption in bandwidth estimation is that cross

traffic has a constant rate λ and behaves like fluid, i.e., it is

infinitely divisible. FIFO multiplexing of probe traffic with

input rate rin leads to a rate-proportional capacity sharing and

the output rate of the probe traffic is determined as

rout =
rin

rin + λ
C, (2)

if rin + λ > C and rout = rin otherwise [1]. After some

reordering the so-called rate response curve

rin
rout

= max

(

rin + λ

C

)

=

{

1 if rin ≤ C − λ,
rin+λ

C
if rin > C − λ,

(3)

is obtained. The utility of Eq. (3) is due to the clear bend at

rin = C − λ that identifies the available bandwidth.

An equivalent representation as gap response curve is

obtained by insertion of rin = l/gin and rout = l/gout into

Eq. (3), where l is the constant packet size of the probe

traffic and the gaps gin and gout denote the time difference

between probe packets that are input and output, respectively.

The resulting gap response curve

gout
gin

=

{

1 if l
gin

≤ C − λ,
l

ginC
+ λ

C
if l

gin
> C − λ,

(4)

has the same characteristic bend, for illustration see Fig. 2.

Active techniques for estimation of the available bandwidth

can be classified to be either iterative or direct. We use the



rate response curve to illustrate the difference. The same

conclusions can be made if the gap response curve is used.

Iterative probing techniques basically search for the turning

point of the rate response curve by sending repeated probes

at increasing rates, as long as rin/rout = 1. When rin reaches

C−λ, the available bandwidth is saturated and increasing the

probe rate further results in rin/rout > 1. As a consequence,

a queue builds up at the multiplexer. This causes increasing

OWDs that can be detected by the receiver. The procedure is

implemented, e.g., by Pathload [4] and Pathchirp [6].

Direct probing techniques estimate the upward line segment

of the rate response curve for rin > C − λ. The line is

determined by C and λ. If C is known, a single probe rin = C
yields a measurement of rout that is sufficient to estimate

λ = C(C/rout − 1) from Eq. (3). Spruce [7] implements this

approach. If C is also unknown, a minimum of two different

probing rates rin > C − λ is sufficient to estimate the two

unknown parameters of the line. This approach is taken, e.g.,

by TOPP [1], DietTOPP [2], and BART [9].

In practice, methods for bandwidth estimation have to deal

with noisy measurement data, e.g., due to inaccurate time-

stamping. Further, significant deviations are due to random

cross traffic that is not considered by the fluid flow model. To

deal with the randomness, different post-processing techniques

are used. A typical approach is to repeat measurements several

times to compute average values, as done by Pathchirp [6] and

Spruce [7], or to perform a majority decision, as in case of

Pathload [4] that also reports an undecided bandwidth region.

BART [9] uses a Kalman filter to estimate the available band-

width from repeated measurements and to track changes of the

available bandwidth online. TOPP [1] and DietTOPP [2] use

linear regression to determine the parameters of the upward

line segment of the rate response curve using several probes

with rates in an interval [rmin
in , rmax

in ].
To determine a minimal probing rate rmin

in that is larger

than C−λ, DietTOPP performs an initial phase where probes

are sent back-to-back at the maximal possible rate rmax
in

to measure the corresponding output rate rmax
out . Given that

rmax
in ≥ C − λ, it follows from Eq. (2) that rmax

out ≥ C − λ,

too, so that rmin
in can be safely chosen as rmin

in = rmax
out .

A detailed analysis of the impact of random cross traffic

on the properties of rate and gap response curves is provided

by [10], [11]. The main finding is an elastic deviation from

the fluid flow model that may cause biased estimates. The bias

is significant in the middle part of the probing range around

rin = C−λ, where it blurs the characteristic bend of the curve.

For intuition, the bend of the curve at C−λ can be thought of

as fluctuating along the x-axis if the intensity of cross traffic λ
is random. Further, [10], [11] connect the concept of rate and

gap response curves with known bandwidth estimation tools.

Typically, bandwidth estimation tools use active probing

where probes are sent as packet pairs, i.e., N = 2 packets

sent with a defined gap gin, packet trains, i.e., a larger number

of packets N > 2 sent at a defined rate rin, or packet chirps

that are trains with an increasing rate. Correspondingly, either

the gap response curve or the rate response curve applies.

Compared to a packet pair, a packet train is generally less

susceptible to random fluctuations as the computation of rout
from packet time-stamps by means of Eq. (1) averages over

several gout at the expense of a larger number of probe packets.

Spruce [7] and IGI [8] are examples that use packet pairs.

TOPP [1], DietTOPP [2], Pathload [4], PTR [8], and BART [9]

use packet trains, and Pathchirp [6] uses packet chirps.

The advantage of active probing is that it enables obtaining

specific points of the rate or gap response curve selectively.

The injection of probe traffic contributes, however, to the

load of the network. Hence, it is favorable if the available

bandwidth can also be estimated from passive measurements

of existing network traffic. The additional difficulty of passive

measurements is that the input rate cannot be controlled so

that it is hard to extract the desired information [12].

Recently, passive techniques have been developed that make

use of the fact that a TCP sender in slow start likely transmits

the packets of entire CWNDs in a row [20], [22], i.e., as

a packet train. In this case packet dispersion techniques

from [21] apply to each CWND. A prominent example is TCP

HyStart [20] that seeks to estimate the available bandwidth

to find a safe exit point from slow start before packets are

lost. In essence, HyStart uses rout obtained from Eq. (1),

where CWND is substituted for N , as an estimate of the avail-

able bandwidth. Further, HyStart measures acknowledgements

where gkack is the acknowledgement gap that takes the place

of the output gap gkout.
HyStart provides, however, only a rough estimate of the

available bandwidth since the output rate of a packet train

rout defined by Eq. (1) is known to provide a lower bound of

the bottleneck capacity and an upper bound of the available

bandwidth of a network path [21], i.e., C − λ ≤ rout ≤ C.

This is also verified by Eq. (2) using rin ≥ C − λ. More-

over, acknowledgement-based bandwidth estimation tech-

niques have been found to be challenging due to the interaction

of acknowledgements with cross traffic [23] that may lead

to acknowledgement compression [24]. Compared to HyStart,

we investigate methods that can report the exact available

bandwidth instead of a bound. Further, we do not rely on

the assumption that TCP transmits packet trains when in slow

start, and use the entire traffic of a TCP connection as input.

III. EXPERIMENTAL SETUP

Before we investigate how to estimate the available band-

width from passive TCP measurements, we provide a brief

overview of our testbed network that is used to obtain the

experimental results presented in this paper. The experiments

are conducted in a controlled network at Leibniz Universität

Hannover that is managed by the Emulab software [25].

We use a dumbbell topology with a single bottleneck link as

shown in Fig. 3 and emulate the transmission of DASH video

chunks in the presence of downstream as well as upstream

cross traffic. The downstream cross traffic is used to load

the bottleneck link so that a defined amount of bandwidth

remains available, whereas uplink cross traffic interferes with

TCP acknowledgements and alters their spacing.
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Fig. 3. Dumbbell topology set up in Emulab. The bottleneck link has a
capacity of 100 Mbps and a configurable delay and loss rate. Cross traffic
in downstream and upstream direction is used to load the bottleneck link to
enable controlled bandwidth estimation experiments.

For our experimental purposes, we consider the animated

movie named “Sintel” by Blender Foundation. We downloaded

the movie from YouTube and obtained the chunk statistics. The

modal value of the chunks of about 1 Mbyte is chosen as a

reference. To transmit chunks of data of a defined size via

TCP and UDP, we use the traffic generators iPerf [26] and

RUDE & CRUDE [27], respectively. Cross traffic of different

types and intensities is generated using D-ITG [28].

Since the PCs in our Emulab testbed are connected via

physical Ethernet links of 1 Gbps and 10 Gbps, respectively,

we use the token bucket filter [29] to emulate a 100 Mbps

bottleneck link. In addition, a delay node is used at the

bottleneck to emulate a wide area link to investigate the effect

of different OWDs on the bandwidth estimation. The delay

node can also be configured to create packet loss with a defined

probability in downstream and upstream direction. The access

links are configured to have 100 Mbps capacity, too. We note

that the emulation has limited accuracy and hence contributes

additional noise to the measurements.

We disable the segmentation offloading by the network

interface card using ethtool [30]. Hence, the TCP/IP stack

is responsible for segmenting chunks into datagrams of 1500

byte size, that is the maximum transmission unit carried by the

Ethernet links. Including Ethernet header and trailer, the packet

size is 1514 byte. Packet time-stamps at the video sender

and receiver are generated at points A and B, respectively,

using libpcap at the hosts. We also use a specific endace DAG

measurement card to obtain accurate reference time-stamps.

IV. ESTIMATION FROM PASSIVE MEASUREMENTS

As already discussed in Sec. I, TCP throughput is not

generally a good estimator of the available bandwidth. Two

reasons that we have investigated are non-negligible OWDs

and short-lived TCP flows, as caused by small to medium

chunk sizes, see Fig. 1. Now the following questions arise:

– Is it possible to estimate the available bandwidth in such

scenarios where TCP throughput is limited?

– How can the required information be extracted from the

rather chaotic traffic patterns of TCP?

Before we investigate the specifics of TCP traffic in Sec. V,

we first develop a method for available bandwidth estimation

from general passive measurements. We verify the method in

controlled experiments.

A. Passive Estimation Method

We construct a method that is based on the probe gap

model. It uses techniques from direct probing together with

a threshold test to select relevant packet gaps. To motivate our

design decisions, we start with a discussion of the different

options that arise before we give details on the implementation.

Given passive measurements, we have to deal with non-

structured traffic that cannot be assumed to take certain pat-

terns, like CWND-sized packet trains as used by HyStart [20].

In order to be able to apply packet train models nevertheless,

an option is to filter the sender-side measurement data for clus-

ters of back-to-back packets that exceed a certain threshold.

This approach is used in [22], where the specific requirement is

that packet trains span several scheduling periods of a cellular

network. A drawback of the approach is that a potentially large

number of samples that do not pass the threshold test may

be discarded. To avoid the dependence on any kind of traffic

structure, we will work with individual packet gaps. Hence,

the probe gap model applies.

Using the probe gap model, the task is to estimate the pa-

rameters of the gap response curve from passive measurements

of gin and gout. The difficulty is due to the fact that we cannot

assume evenly spaced gin as achievable by active probing. For

example, we may not have any samples close to the bend of the

gap response curve at l/gin = C−λ, see Fig. 2. Consequently,

iterative techniques that search for the turning point may not

apply, as relevant data may be missing. Further, in the presence

of random cross traffic, it has been found that deviations blur

the turning point, unless long packet trains are used [10], [11].

Techniques from direct probing, on the other hand, require

that gin < l/(C−λ) where C and λ are unknown. Filtering out

all gin ≥ l/(C − λ) beforehand may seem to be an easy task,

given that gout = gin in this case, see Eq. (4). In practice, gout
may, however, be significantly distorted. Important reasons for

this are: inaccurate time-stamping, the packet granularity and

the randomness of non-fluid cross traffic, and the interaction

with cross traffic on links other than the bottleneck link.

To determine a threshold gmax
in up to which gin may safely

be used by techniques from direct probing, we adapt a criterion

from DietTOPP [2] to the probe gap model. We identify the

minimal input gap denoted gmin
in in the passive measurement

data and extract the corresponding output gap gmin
out . It can be

shown that gmin
out < l/(C−λ), so that we can use gmax

in = gmin
out

as a threshold to filter out all gin ≥ gmax
in .

To verify that gmin
out < l/(C − λ), we use Eq. (2) to derive

the corresponding gap representation

gmin
out =

gmin
in λ+ l

C
, (5)

where we assumed that gmin
in < l/(C − λ). The condition is

satisfied if there exist samples gin on the right, upward slope of

the gap response curve. Otherwise, if there are no samples in

this region, the measurement data does not provide sufficient
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Fig. 4. (gin, gout) samples obtained by transmission of a chunk of 1 Mbyte
via UDP. The sender varies gin so that the samples are evenly distributed.
Samples that are marked blue are used to determine the regression line. The
intersection of the regression line with the horizontal line at 1 marks the
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information to estimate the available bandwidth. The intuition

behind Eq. (5) is that during gmin
in an amount of fluid cross

traffic of gmin
in λ is accumulated that is transmitted in FIFO

order between the two packets that span gmin
in . The condition

gmin
in < l/(C − λ) ensures that the FIFO multiplexer does

not becomes idle during this interval. By insertion of gmin
in <

l/(C − λ) into Eq. (5), it follows that gmin
out < l/(C − λ).

A lower bound of gmin
out can be obtained from Eq. (5) if we

let gmin
in → 0. It follows that gmin

out is bounded in the interval

l/C < gmin
out < l/(C−λ), i.e., using the threshold gmax

in = gmin
out

may filter out usable samples that satisfy gin < l/(C−λ). We

ignore these samples since they are close to the middle part of

the gap response curve at l/gin = C − λ that has been found

to be biased if cross traffic is random [10], [11].

In practice, we cannot rely on a single sample gmin
in to

determine gmin
out . Instead, we consider a bin of the x smallest

gaps gin and compute the average of the corresponding gout
to obtain a robust estimate of gmin

out . In our experiments we

configure x so that 10% of the gaps are used to estimate gmin
out .

Once we have selected samples that satisfy gin < l/(C−λ),
we can apply any technique from direct probing to estimate

the available bandwidth. Here, we use linear regression to

determine the upward segment of the gap response curve, as

this method does not require any specific distribution of the gin
that are used. The available bandwidth estimate is determined

from Eq. (4) as the x-axis intercept where the regression line

intersects with the horizontal line at 1, see Fig. 2.

B. Experimental Verification

For a first experimental verification of the estimation

method, we use (gin, gout) samples that are evenly distributed

over the range 30 Mbps ≤ l/gin ≤ 100 Mbps. The samples

are obtained in our experimental testbed using the tool RUDE

& CRUDE that can emit UDP packets with a defined gap. The

packet size is l = 1514 byte on the Ethernet and we transmit

chunks of 1 Mbyte, corresponding to 660 packets. A set of

(gin, gout) samples obtained by transmission of one chunk is
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Fig. 5. Available bandwidth estimates for varying cross traffic rates. The
estimates obtained from UDP (gin, gout) measurements closely match the
ground truth. The TCP throughput underestimates the available bandwidth,
mainly due to the OWD of 10 ms and the limited chunk size of 1 Mbyte. The
UDP throughput overestimates the available bandwidth since a greedy UDP
sender can preempt cross traffic at a FIFO multiplexer.

shown in Fig. 4. In the experiment, constant bit rate (CBR)

cross traffic with rate λ = 50 Mbps is used.

The cross traffic deviates, however, from the fluid flow

assumption as it uses packets of 1514 byte. The effects of the

packet granularity become visible as a vertical spread of the

gout/gin points in Fig. 4. To illustrate an example, we consider

l/gin = 50 Mbps that corresponds to gin = 0.24 ms. The

transmission time of a packet at C = 100 Mbps is 0.12 ms,

so that a cross traffic packet can fit exactly into the gap. This

results in gout/gin = 1 as also predicted by the fluid model.

Cross traffic packets can arrive, however, at arbitrary points in

time and if a cross traffic packet arrives right before the first

or second packet that constitute gin, it delays this packet by

0.12 ms so that gout/gin = 0.5 or 1.5, respectively.

The method for estimation of the available bandwidth from

the samples proceeds in two steps. First, it estimates gmin
in

and the corresponding gmin
out based on the 10% of the samples

with the smallest gin. Using gmax
in = gmin

out as a threshold for

gin, only the samples with l/gin > l/gmax
in = 70 Mbps, that

are marked blue in Fig. 4, are used in the second step to

perform the linear regression. The regression line is shown as

a thick blue line. Extending this line until it intersects with the

horizontal line at 1, reveals an available bandwidth estimate

of 50 Mbps. Further, it follows from Eq. (4) that the slope of

the regression line provides an estimate of 1/C. In Fig. 4, the

slope is approximately 0.01 corresponding to C = 100 Mbps.

We repeated the above experiment with different cross

traffic intensities of λ ∈ {0, 25, 20, 75, 100} Mbps. For each

case we conducted 100 repeated measurements. We report the

median value in Fig. 5. The available bandwidth estimates

closely match the ground truth that is marked in the figure by a

green line. For comparison, we also include the throughput that

is achieved by a TCP sender and a UDP sender, respectively,

that transmit the same amount of data of 1 Mbyte. Clearly,

the TCP throughput underestimates the available bandwidth,

as soon as more than 20 Mbps are available. To understand
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Fig. 6. (gin, gout) samples obtained from passive TCP measurements and bandwidth estimates obtained thereof. The values of gin are a result of TCP
congestion control and depend on network parameters such as the OWD. With increasing OWD a clustering of gin samples is observed and the variability
of bandwidth estimates increases.

this effect, we note that the testbed was configured to have

a OWD of 10 ms. As a consequence, the TCP throughput is

limited by the CWND. For further details see the discussion of

Fig. 1. The UDP throughput, on the other hand, overestimates

the available bandwidth. This is due to the fact that a greedy

UDP sender can preempt the cross traffic at a FIFO multiplexer

and monopolize the link. The effect is expressed by Eq. (2).

Given UDP traffic is injected at line rate rin = C, it

achieves a throughput of rout = C2/(C + λ) that equates

to {100, 80, 67, 57, 50} Mbps for the given λ. Similar values

are observed in the measurement results shown in Fig. 5.

V. ESTIMATION FROM TCP MEASUREMENTS

In this section, we investigate the (gin, gout) characteristics

of passive TCP measurements and evaluate the available

bandwidth estimates that can be obtained thereof. Further, TCP

offers a unique opportunity to estimate the available bandwidth

from sender-side measurements only, using the feedback that

is provided by the spacing of the acknowledgements. We

extend the estimation method to include multiple packet gaps

as well as acknowledgement gaps. For these, we also develop

a technique that deals with packet loss.

A. TCP (gin, gout) characteristics

The (gin, gout) characteristics of TCP traffic are largely

affected by TCP congestion control and related parameters

such as the OWD. Since the input gap is not fixed as in case

of active probing, we extend the notation by superscript k and

write gkin = tk+1

in
− tkin whenever we refer to a specific input

gap. Above, tkin is the send time-stamp of packet k.

In Fig. 6, we show two characteristic sets of (gin, gout)
samples obtained from TCP traffic. The OWD is 1 ms in

Fig. 6(a) and 10 ms in Fig. 6(b). The remaining parameters are

as in Fig. 4. For an OWD of 1 ms, the values of gin are spread

more or less evenly over a wide range, similar to Fig. 4. If the

OWD is increased to 10 ms, we observe, however, a clustering

of the gin values. Roughly three clusters are formed: in the left

part, large gin in the range of up to two OWD occur if the

sender has to wait for acknowledgements after transmitting a

full CWND; in the middle part, the self-clocking of TCP by

the acknowledgements causes gin that correspond roughly to

the available bandwidth; and in the right part, back-to-back

packets can be found that are triggered, e.g., by cumulative

acknowledgements.

Bandwidth estimates for CBR cross traffic in the range

λ ∈ {0, 25, 20, 75, 100} Mbps are summarized in Fig. 6(c),

where we show box-plots comprising the 0.05, 0.25, 0.5, 0.75,

and 0.95-quantiles obtained from 100 repeated measurements

each. As before the capacity is C = 100 Mbps and the chunk

size 1 Mbyte. We compare the case of TCP measurements

with an OWD of 1 and 10 ms, respectively with the UDP

measurements presented in Fig. 5, before. The results con-

firm that it is possible to estimate the available bandwidth

from passive TCP measurements using the probe gap model.

Moreover, we are able to obtain rational available bandwidth

estimates in those scenarios of non-negligible OWDs where

TCP throughput as bandwidth estimator is limited. While in

case of small OWDs, TCP and UDP measurements perform

comparably, the bandwidth estimates show more variability

as well as a certain underestimation if the intensity of the

cross traffic is low and the OWD is increased. In case of low

cross traffic intensity, fewer samples pass the threshold test

and contribute to the regression line.

B. Parameter Evaluation

We proceed with an evaluation of the effects of relevant

parameters, including the intensity and distribution of cross

traffic, the OWD, and the chunk size, on the quality of

bandwidth estimates that are obtained from passive TCP mea-

surements. We use cross traffic of different burstiness: CBR

as assumed by the probe gap model; a moderate burstiness

due to exponential inter-arrival times; and a strong bursti-

ness due to Pareto inter-arrival times with infinite variance,

caused by a shape parameter of α = 2. The packet size

is l = 1514 byte and the average rate of the cross traffic

is λ ∈ {25, 50, 75} Mbps. The chunk size is 1 Mbyte, the

capacity C = 100 Mbps, and the OWD is 1 ms. The results

of 100 repeated experiments for each configuration are plotted

as box plots in Figure 7(a). We notice that the median of the

estimates corresponds well with the true available bandwidth,
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Fig. 7. Parameter evaluation. Bandwidth estimates for different types of cross traffic burstiness (a), OWDs (b), and chunk sizes (c). The quality of the estimates
is good for small to medium OWDs and improves with the chunk size. The burstiness of cross traffic mostly influences the variability of the estimates.

regardless of the type of cross traffic. Effects of the cross

traffic can be observed in the variability of the estimates that

increases if the burstiness is increased.

In Fig. 7(b), we evaluate the impact of the OWD in a wide

range of {1, 5, 10, 50} ms for exponential cross traffic with

average rate λ = 50 Mbps. The results quantify the effects of

the OWD on the (gin, gout) characteristics that we observed

already in Fig. 6. The quality of the bandwidth estimates

obtained from passive TCP measurements decreases if the

OWD is increased. We note that this effect is specific to TCP

congestion control. A fixed increase of the OWD will not alter

the (gin, gout) characteristics of UDP traffic.

The impact of the chunk size, that determines the number

of samples that are obtained for estimation of the available

bandwidth, is evaluated in Fig. 7(c). The cross traffic is

exponential with λ = 50 Mbps and the OWD is 1 ms. Clearly,

the quality of the estimates and specifically the variance

of the estimates improves significantly if more samples are

available. Moreover, as the chunk size is increased, the quality

of the samples changes, too. This is due to the growth of the

CWND during the course of the transmission that causes less

stalling. Considering the case of a chunk size of 128 kbyte

that corresponds to about 85 packets, we conclude that it is

challenging to obtain an estimate of the available bandwidth

already during the slow start phase, as HyStart does.

In our figures, we generally include all outliers to show

unaltered results. In practice, a number of sanity checks can be

performed to filter such outliers, e.g., a decreasing regression

line implies a contradiction as it indicates that the available

bandwidth estimate is larger than the capacity.

C. Acknowledgement Gaps

TCP offers the option to perform the estimation based only

on sender-side measurements of data and acknowledgement

packets, i.e., no specific cooperation of the receiver is required.

This feature is used for example by TCP HyStart. Here, we

will advance the probe gap model to use acknowledgement

gaps. Two aspects have to be considered: TCP uses delayed

acknowledgements and typically only every other packet is

acknowledged, i.e., the acknowledgement process effectively
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Fig. 8. Multi-gap and ack-gap models. The ack-gap enables available
bandwidth estimation using sender-side measurements only.

performs a sub-sampling; and secondly, the cross traffic in the

reverse path may alter the spacing of acknowledgements and

hence increase the measurement noise. In order to evaluate the

impact of the two aspects one at a time, we first investigate

the sub-sampling only. For this purpose, we define a multi-

gap as gj,kout =
∑k−1

i=j giout = tkout − tjout and gj,k
in

accordingly.

Subsequently, we make the transition from multi-gaps to the

corresponding ack-gaps denoted gj,k
ack

. Fig. 8 illustrates the

concepts of multi-gap and ack-gap. The packets are numbered

by i and ACK i denotes a cumulative acknowledgement of all

packets up to and including packet i− 1.

We note that combining several gaps to form a multi-gap

does not imply constant rate packet train models, since the

individual input gaps from passive measurements are random.

In fact, the derivation of a multi-gap response curve by

repeated application of Eq. (4) requires a condition for each

individual input gap. Considering only the relevant, upward

segment of the gap response curve, we use Eq. (4) to derive

gj,kout

gj,k
in

=
λ

C
+

(k − j − 1)l

Cgj,k
in

, (6)

if l/giin > C − λ for all i ∈ {j, k − 1}. The multi-gap

response curve shows the same characteristic slope as the

gap response curve with one difference: the average input

gap gj,k
in

= gj,k
in

/(k − j − 1) and average output gap gj,kout =

gj,kout/(k − j − 1) take the place of gin and gout, respectively.
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in an increased variability of the estimates. The estimates are reasonable in
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In order to estimate the available bandwidth from the multi-

gap response curve, we use the method defined in Sec. IV-A. A

slight modification is required to identify samples that satisfy

the condition of Eq. (6). Given the average input gaps gj,k
in

we

find the minimal average input gap gmin
in and the corresponding

average output gap gmin
out . We select gmax

in = gmin
out as a threshold

for giin to test that giin < gmax
in .

To verify that gmin
out is a valid threshold with respect to

Eq. (6), i.e., gmin
out < l/(C − λ), we apply Eq. (5) repeatedly

to obtain

gmin
out =

gmin
in λ+ l

C
, (7)

where we assumed that all giin that are part of gmin
in satisfy

giin < l/(C − λ). By insertion of gmin
in < l/(C − λ) it follows

that gmin
out < l/(C − λ).

The estimation method applies in the same way if acknowl-

edgements are used to avoid receiver-side measurements. In

this case gj,k
ack

takes the place of gj,kout.

We present bandwidth estimates obtained from multi-gap

and ack-gap measurements compared to the use of individual

gaps in Fig. 9. The cross-traffic is exponential with average

rate λ ∈ {25, 50, 75} Mbps. Cross traffic is generated both

in downstream and upstream direction. The chunk size is

1 Mbyte, the capacity C = 100 Mbps, and the OWD is 1 ms.

Box-plots of 100 repeated measurements are shown. In all

cases the median of the estimates closely matches the true

available bandwidth. The variability is, however, increased if

multi-gaps or ack-gaps are used. The reason is due to a smaller

number of samples that pass the threshold test. Compared to

the multi-gap results, we do not notice a significant change of

the accuracy when ack-gaps are used.

We note that the estimation may be enhanced using a

weighted regression that takes the number of individual gaps

that are comprised by a multi-gap into account. We did not

use this option since TCP typically acknowledges every other
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Fig. 10. Use of the ack-gap model in the presence of packet loss. Duplicate
acknowledgements are ignored and the ack-gap is closed by the next higher
cumulative acknowledgement. The corresponding input gap has to consider
the retransmission that triggered this acknowledgement.

packet so that most of the multi-gaps or ack-gaps are of the

same size, i.e., they comprise two individual gaps.

D. Evaluation of Loss

The fluid flow models that are used in available bandwidth

estimation assume lossless systems and few methods for

bandwidth estimation consider loss. The iterative packet train

method Pathload [4] uses loss as an indication that rin > C−λ.

The work [13] models lost packets as incurring an infinite

delay. Further, it is possible to define the output rate rout of

a packet train in the presence of loss, considering only the

packets that are received. The output gap gout of a packet

pair is, however, void if any of the two packets is lost. This

may cause estimation bias, since packet pairs that encounter

congestion have a higher loss probability.

If acknowledgement gaps are used, packet loss has to be

taken into account since it causes retransmissions and perturbs

the sequence. Fig. 10 shows an example, where a packet

is lost and three duplicate acknowledgements trigger a fast

retransmit. To deal with this case, we define the following

procedure: first, when determining the ack-gaps, duplicate

acknowledgements are ignored; also packets that are retrans-

mitted later are ignored; second, the packets that triggered

the remaining acknowledgements are identified; these are used

to compute the corresponding input gaps. In the example

in Fig. 10, ACK 2 and ACK 6 remain, resulting in g1,5
ack

.

The acknowledgements have been triggered by packet 1 and

by the retransmission of packet 2, respectively. Hence, the

corresponding g1,5
in

is determined as the difference of the send

time-stamps of these two transmissions.

While the procedure can deal with single packet losses, we

note that burst losses can result in more intricate constella-

tions that may not be resolvable unambiguously. The loss of

acknowledgements, on the other hand, is less an issue as it is

typically resolved by the next cumulative acknowledgement.

Available bandwidth estimates that are obtained from ack-

gaps with loss in downstream and upstream direction are

shown in Fig. 11. The cross traffic has exponential inter-arrival

times and an intensity of 50 Mbps. The OWD is 1 ms and

the chunk size 1 Mbyte. Loss rates of 0%, 0.1%, and 1%

are evaluated. We notice an increase of the variability of the
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Fig. 11. Available bandwidth estimates obtained from ack-gaps in the
presence of loss in downstream and upstream direction. The accuracy of
estimation decreases with increasing loss rate.

estimates in case of packet loss. Further, for a loss rate of 1%,

the available bandwidth is underestimated, particularly if the

intensity of the cross traffic is low. In this case, few samples

that pass the threshold test remain for the regression step to

estimate the upward segment of the gap response curve.

VI. CONCLUSIONS

Motivated by the shortcomings of TCP throughput as avail-

able bandwidth estimator, we investigated how techniques

from active probing can benefit TCP bandwidth estimation.

The difficulty is due to the uncontrollable traffic patterns

emitted by TCP that do not match typical active probes,

such as packet trains. To solve the issue, we used individual

packet gaps and applied a linear regression technique to esti-

mate the gap response curve. We performed a comprehensive

measurement study to evaluate the accuracy of the available

bandwidth estimates, where we investigated the impact of

relevant parameters including type and intensity of cross

traffic, and the OWD. We also considered the effect of the

number of samples on the variability of the estimates. While

it turned out that obtaining bandwidth estimates already during

the initial slow start phase is challenging, the transmission of

a typical DASH chunk of 1 Mbyte or more can provide stable

estimates. Taking advantage of the feedback that is provided by

TCP acknowledgements, we enhanced the estimation method

to use sender-side measurements only.
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