
Packing Strictly-Shortest Paths in a Tree for
QoS-Aware Routing

Jose Yallouz∗, János Tapolcai†, Attila Kőrösi‡, Kristóf Bérczi§, László Gyimóthi†, Ariel Orda∗
∗Dept. of Electrical Engineering, Technion Israel Institute of Technology, {jose@tx, ariel@ee}.technion.ac.il

‡MTA-BME Information Systems Research Group, Budapest University of Technology (BME), korosi@tmit.bme.hu
†MTA-BME Future Internet Research Group, BME, {tapolcai, gyimothi}@tmit.bme.hu

§MTA-ELTE Egerváry Research Group, Budapest, berkri@cs.elte.hu

Abstract—Spanning trees are a basic and important network
design tool, which constitutes an efficient infrastructure for
broadcasting and routing protocols. The number of shortest-paths
covered by a spanning tree is a metric of major importance for
evaluating the ”quality” of the tree. However, typically, demanding
that the connection would be precisely through a shortest path
is essential only for a few source-destination pairs with strict
communication requirements (critical-demands). Accordingly, we
define the covering effectiveness of a spanning tree as the pro-
portion of critical-demands whose paths in the spanning tree
are indeed shortest in the network. We provide a rigorous study
of this novel metric and classify several optimization problems.
Specifically, we are interested in scenarios where the critical-
demands originate at a few selected nodes. According to the
tractability of the considered problems, we derive either optimal
or heuristic solutions for finding a spanning tree with maximum
covering effectiveness. Then, through extensive simulations, we
demonstrate the effectiveness of our solutions. Most notably, we
indicate that the quite common approach, in which a (spanning)
shortest-paths tree from a single source node is selected, is often
unsuitable for the scenario where critical-demands are associated
with more than one pair of nodes.

I. INTRODUCTION

A spanning tree is a well-known network design tool for
providing connectivity to all nodes with a minimum number
of links. Indeed, spanning trees are often employed in various
networking environments, e.g. LANs [1], wireless [2] and
optical networks [3], for several purposes such as broadcast,
loop avoidance and compact routing.

The provision of Quality of Service (QoS) is an issue of
major importance in the context of routing through a spanning
tree. Accordingly, the selection of an efficient spanning tree
has been widely studied in the context of weighted (additive)
metrics. When efficient communication to a single “central”
node is sought, an optimal solution is provided by a Shortest-
Path (spanning) Tree (SPT) rooted at that node, and standard
shortest path algorithms, e.g. Dijkstra or Bellman-Ford, provide
such a solution. Another example is selecting an optimal
spanning tree in terms of the overall weight of its links, i.e., a
Minimum Spanning Tree (MST) [4]. Note that an MST does not
provide any guarantee in terms of the quality (weight) of any

This work was partially supported by the Hungarian Scientific Research Fund
(OTKA grant K108947, K109240, 108947) and by Ericsson.

ISBN 978-3-901882-94-4 c© 2017 IFIP

of its paths. A compromise between these approaches has been
considered in [5], which focuses on the creation of a spanning
tree that balances between two approximation ratios, namely to
the quality of minimum spanning tree and to that of the shortest
path tree.

However, quite often efficient communication is sought to
more than one “central” node. In this case, an SPT solution
(rooted at any of the “central” nodes) would often fall short of
providing efficient paths to the other “central” nodes. Generally,
for the multiple “central” nodes case, the restriction to route
through the paths of a unique tree affects the quality of the
routing paths. Accordingly, spanners have been proposed as
an efficient compromise between routing over a single span-
ning tree and employing per-destination shortest path routing.
Specifically, a spanner is a spanning tree in which the cost of a
path between any two nodes is at most k times worse than the
shortest path between these nodes in the network [6], where the
parameter k is called stretch. Several variants of this problem
have been widely studied, e.g., the worst case [6], average case
[7] and additive case [8] variants. In most of these cases, the
problem has been shown to be NP-hard while approximation
solutions exist for several problem variants [9]. However, the
spanner approach typically evaluates the approximation to the
optimal routing in terms of the total (aggregate) weight of
all source-destination pairs in the network without providing
any guarantee on selecting the shortest path of any source-
destination pair. Yet, there are important scenarios in which
one should focus only on a (possibly small) subset out of all
possible source-destination pairs, while, on the other hand, due
to strict QoS requirements, it is essential to insist on shortest
path routing for members of this selected subset. For example,
a real-time service requiring that the connection would be
establish through a minimum-hop path.

Accordingly, we introduce an alternative metric, termed cov-
ering effectiveness, which quantifies the number of considered
source-destination pairs that are connected by shortest paths in
the selected spanning tree. We aim to provide zero stretch for
a maximum number of required connections, in contrast to the
spanner approach, where the goal is to provide decent service
to every customer. To the best of our knowledge, the covering
effectiveness problem has not been investigated previously. This

novel metric evaluates the sustainability of a shortest path rather
than the gap between the sustained path and the optimal one, as
done by the spanner approach. We provide a rigorous analytical
study for employing spanning trees according to the covering
effectiveness metric.

A different approach for providing network-wide QoS guar-
antees is to give a restriction on the diameter of the Steiner tree
(also known as shallow Steiner tree problem [10], [11]). The
main drawback with this approach is that the resulting tree has
no guarantees on the per-destination connections, like spanners.

As mentioned, spanning trees have been widely employed
in various networking environments. In the Ethernet [1], the
Spanning Tree Protocol (STP) ensures a loop-free topology that
overcomes undesirable effects such as “broadcast storms” [12].
Furthermore, the spanning tree solution simplifies the routing
mechanism of the Ethernet architecture. Particulary, in [13],
a variant of STP protocol have been shown to be extremely
efficient for data center networks in terms of configurability,
scalability and bandwidth utilization. It is interesting to note
that the designers of the STP protocol attempted to consider
the efficiency of the routing paths by selecting a shortest path
(spanning) tree rooted at a selected node. This approach is
beneficial in case that most of the network traffic is designated
to a single node, but, as will be shown, might be very inefficient
for other scenarios.

Spanning trees have been employed also in the context of
wireless networks and optical networks as well as in the context
of Multiprotocol Label Switching (MPLS). For example, in
sensor [2] and ad-hoc [14] networks, spanning trees are utilized
to optimize energy consumption. In multi-protocol lambda
switching (MPλS) optical networks [3], shared backup trees
can be employed to protect a set of working light-paths towards
the same destination. In the MPLS architecture [15], a tree-
based routing protocol is utilized in order to handle the trade-off
between label size and stack depths. Accordingly, the concept
of a tree cover, i.e. a small set of subtrees such that, for
each pair of nodes, one of the trees contains a shortest path
between them, was evaluated. Moreover, in [16], a Steiner
tree structure is employed to connect VPN endpoints through
MPLS, resulting in efficient utilization of network bandwidth.
Furthermore, distributed algorithmic schemes for computing
optimal spanning trees between arbitrary communication pairs
of nodes in the network are suggested in [17].

The following example, depicted in Fig. 1, demonstrates
the concept of covering effectiveness with spanning trees.
Consider the network depicted in Fig. 1a, where the octagonal
red nodes and the circular blue nodes represent premium and
regular nodes, respectively. Moreover, each link is associated
with a weight. Assume that we wish to establish an efficient
communication through a spanning tree designated to the two
premium nodes represented by nodes 1 and 5 by demanding
a shortest path connection between the following critical de-
mands: 〈2, 1〉, 〈3, 1〉, 〈3, 5〉, 〈4, 5〉. Clearly, the establishment
of the MST depicted in Fig. 1b results in a poor covering
effectiveness of 2

4 , as it covers only the requirements 〈3, 1〉 and

1

2

3

4

5

2

2

1 1 2

2

(a) Network example

1

2

3

4

52

1 1

2

(b) Minimum Span-
ning Tree

1

2

3

4

5

2

2

1

2

(c) Shortest Path Tree
from node 1

1

2

3

4

5

2

2

2

2

(d) Optimal Spanning
Tree

Fig. 1: Covering Effectiveness Metric Example

〈3, 5〉. Considering now the SPT from the controller in node
1, depicted in Fig. 1c, it covers the additional requirement of
〈2, 1〉, resulting in a covering effectiveness of 3

4 . Note that,
due to symmetry, the SPT from the controller in node 5 also
leads to the same result. Finally, the tree depicted in Fig. 1d
provides the optimal covering effectiveness of 1 by covering
all the required demands.

To summarize, this study aims to provide a generic frame-
work for evaluating routing through a spanning tree and it
differs from previous studies in two major aspects. First,
we do not consider neither a single “central” node nor all
possible source-destination pairs, but rather focus on a subset
of critical demands; second, for each critical demand, we aim
at establishing a connection precisely through a path that is
shortest.

The remainder of the paper is organized as follows. Section
II formalizes the problem of employing a spanning tree that
connects a maximum number of critical demands through
shortest paths. In Section III, we classify several variants of the
problem and establish their tractability. Specifically, we present
a polynomial algorithmic scheme for two special cases, namely
for a fixed number of critical demands (Section III-A) and for
critical demands from two central nodes to all other nodes (Sec-
tion III-B). We then establish that the problem is in general NP-
hard (Section III-C). Consequently, in Section IV, we propose
three heuristic approaches, the first based on a greedy method
(Section IV-A), the second on shortest path trees (Section IV-B),
and the third on Kruskal’s algorithm (Section IV-C). We then
establish upper bounds on the maximum number of demands
that can be covered by a single tree (Section IV-D). Through
extensive simulations, in Section V, we demonstrate the effect
of several parameters, e.g. network density and number of de-
mands, on the covering effectiveness metric and the efficiency
of the proposed heuristics. Furthermore, we demonstrate the
weakness of the quite common shortest path spanning tree
approach in addressing the considered problem. Due to space
limits, some proofs and details are omitted from this version
and can be found (online) in [18].

II. PROBLEM FORMULATION

A network is represented by an undirected graph G(V,E),
where V is the set of nodes and E is the set of links. We denote
the size of these sets by n = |V | and m = |E|, respectively.

Each link e ∈ E is associated with a positive weight we ∈ R+

that represents an additive QoS target such as delay, cost, jitter,
etc. In the unweighted case we is assumed to be 1 on each link.

A path is a finite sequence of nodes π = {v0, v1, . . . , vh}
such that (vi, vi+1) ∈ E (0 ≤ i ≤ h− 1). Alternatively, a path
can be represented by the sequence of its links. The length
of a path π is the number of its links and is denoted by |π|.
A path is simple if all of its nodes are distinct. The weight
of path π is denoted by w(π) and is defined as the sum of
the weight of its links, i.e., w(π) =

∑
e∈π we. A shortest path

between two nodes s, t ∈ V is a path with minimum weight.
Let G′(V,E′) be a subgraph of G. Note that between two nodes
in the network several shortest paths might exist. Accordingly,
the set of shortest paths between s and t in G′ is denoted by
ΠG′(s, t) or ΠE′(s, t). The set of all shortest paths links in
ΠG′(s, t), i.e.

⋃
π∈ΠG′ (s,t) π, is denoted by ΛG′(s, t). In all

cases, we will omit the subscript when G′ is identical to G. A
member of ΠG′(s, t) will be usually denoted by πG′(s, t). The
common weight of paths in ΠG′(s, t) is denoted by lG′(s, t).
Note that, in the unweighted case, lG′(s, t) denotes the length
(that is, the number of links) of a shortest path between s and
t in G′.

A tree is an undirected graph in which any two nodes are
connected by exactly one simple path. A spanning tree T of
G(V,E) is a tree that is a subgraph of G composed of all
network nodes V and some of the links in E. Furthermore, we
will also use the abbreviation T for specifying the spanning
tree link set. Given a node v ∈ V , a shortest path tree rooted
at s is a spanning tree T of G such that lT (s, v) = lG(s, v)
for every v ∈ V , that is, the unique path in T between s and
any other node v is a shortest path in G. Note that such a tree
can be determined in polynomial time by using a shortest path
algorithm, e.g., Dijkstra.

As explained, often we seek shortest paths between several
specific pairs of nodes, giving rise to the following definition.

Definition 2.1: Given a network G(V,E), a critical demand
〈s, t〉 represents a demand to communicate along a shortest
path between the nodes s, t ∈ V . Accordingly, the critical
demands set D is defined as the set of all critical demands (out
of the

(|V |
2

)
pairs of nodes). The number of critical demands is

denoted by |D|.
For ease of presentation, the critical demands set is also
represented by an undirected graph H(V,D), termed demand
graph, where a link 〈s, t〉 ∈ D constitutes a demand.

A critical demand 〈s, t〉 ∈ D is covered by a tree T if
lT (s, t) = lG(s, t); in other words, the unique path between
s and t in T is a shortest path in G(V,E). The number of
critical demands covered by a tree T is denoted by θD(T). We
omit the subscript D if the demand graph is complete.

Definition 2.2: The covering effectiveness of a tree T is
denoted by η(T) and is defined as

η(T) =
θD(T)

|D|
.

The goal of this study is to find a tree that covers a maximum
number of critical demands, formally:

Definition 2.3: Single Tree Effectiveness problem (STE):
Given a network G(V,E) with positive link weights
w : E → R+ and critical demands D, find a spanning tree
T that maximizes η(T).

For complexity analysis, we also define the following de-
cision version of the problem. Given are a network G(V,E)
with positive link weights w : E → R+, critical demands D
and a positive integer k. Is there a spanning tree T such that
θD(T) ≥ k?

While there might be several shortest paths between any two
nodes, we are interested in covering just one (any) of them. This
freedom introduces some additional complexity and sometimes
we might be interested in guaranteeing that the shortest path
is unique (e.g., for uniformity when the algorithm is run at
different nodes). This uniqueness can be achieved for example
by introducing a ”tie breaker” such as the nodes’ id’s. Thus, we
also study the particular instance of STE where |Π(s, t)| = 1,
that is, the shortest path is unique for every demand 〈s, t〉 ∈
D, which we term the Unique Path Single Tree Effectiveness
(UPSTE) problem.

For each of the two problems, STE and UPSTE, we consider
the four cases, listed by increasing order of difficulty:
• The fixed number of demands case where |D| is bounded

by a constant.
• The 2-to-all case where H is the union of two star-graphs.
• The all-to-all case where H is a complete graph, i.e. |D| =(|V |

2

)
.

• The general case where H is an arbitrary graph.
We proceed to consider the tractability of the above problem

variants.

III. ANALYSIS OF THE STE PROBLEM

In this section, we study several variants of the STE problem.
First, we consider the case of a fixed number of demands,
which is proved to be strongly related to a well known open
problem of finding node-disjoint shortest paths. This relation
provides a polynomial-time algorithm for the special case
where the network is planar. Then, we examine the 2-to-all
problem variant and establish a polynomial-time algorithm. We
show that the STE problem is NP-hard for all-to-all demands.
Concerning the case of general demands, we prove that UPSTE,
hence also STE, are NP-hard problems. Table I summarizes the
main results of this section.

TABLE I: Summary of the results on STE problem

Type of demands STE UPSTE
Fixed number of
demands

Open, Equiv. to k-DSP, Thm.
3.1 (P for planar graphs)

P , Sec. III-A

2-to-all demands P , Sec. III-B
All-to-all demands NP-hard, Thm. 3.2 Open
General demands NP-hard, Thm. 3.3

A. Fixed Number of Demands

Consider first the UPSTE problem with a fixed (i.e., O(1))
number of demands |D| = d. In this case, we can consider
every possible subset of the demands and check if it can be

covered by a single tree. To check whether a subset D′ ⊆ D of
demands can be covered, we just have to consider the union of
the unique paths π ∈ Π(s, t) for 〈s, t〉 ∈ D′. Clearly, D′ can
be covered by a single tree if and only if this link set does not
contain a cycle. Note that there are 2d possible choices for D′,
hence, all of these subsets can be checked in polynomial time
as d is not part of the input.

Now, we show that the STE problem for a fixed number
of demands is equivalent to a long-standing open problem,
namely the k-Disjoint Shortest Paths (k-DSP) problem. Given
a network G(V,E), a weight function w : E → R+ and
a set D of demands consisting of k distinct pairs of nodes
〈s1, t1〉, . . . , 〈sk, tk〉, the k-DSP problem aims to find k pair-
wise node-disjoint paths π1, . . . , πk such that πi ∈ ΠG(si, ti)
for i = 1, . . . , k. This problem is NP-complete when k is part of
the input, and can be solved in polynomial time for k = 2 [19].
However, in case the network G(V,E) is planar and k is fixed
then the problem becomes tractable [20]. Hence our reduction
shows that the STE problem can be solved in polynomial time
for a fixed number of demands and planar topologies.

Theorem 3.1: The STE problem for fixed number of demands
and the k-DSP problem for fixed k are polynomially equivalent.

Proof: First, we show that the k-DSP problem for a fixed
k is polynomially reducible to the STE problem for a fixed
number of demands. Consider an instance G(V,E) and D =
{〈s1, t1〉, . . . , 〈sk, tk〉} of the k-DSP problem. Add a new node
v0 and links (v0, si) to the network with w(v0, si) = L for
i = 1, . . . , k, where L is large, say, L = |E| · max{w(e) :
e ∈ E} + 1. Let G′(V ′, E′) denote the extended network and
D′ = D ∪ {〈v0, si〉 : i = 1, . . . , k}. Now consider the STE
problem on this new network G′(V ′, E′) and demand set D′.
As the weights of the extra links are large, there is no shortest
path from si to ti through v0 for i = 1, . . . , k. Hence, there is a
tree T in G′ with θl(T) = |D′| = 2k if and only if there are k
pairwise node-disjoint paths π1, . . . , πk in the original network
such that πi ∈ ΠG(si, ti) for i = 1, . . . , k.

Next we show that the STE problem for a fixed number of
demands is polynomially reducible to the k-DSP problem for
fixed k. Consider an instance G(V,E) of the STE problem with
a fixed number of demands |D| = d. It suffices to show that
the problem of deciding whether a subset D′ ⊆ D of demands
can be covered by a single tree is polynomially reducible to the
k-DSP problem for fixed k. Indeed, in this case we can apply
the reduction to each subsets D′ of D. As there are 2d subsets
of D where d is fixed, we get a polynomial reduction of the
original problem.

Let D′ = {〈s1, t1〉, . . . , 〈sl, tl〉} and assume temporarily that
we have a tree T covering each demand in D′. We may assume
that every leaf v of T is one of the nodes s1, . . . , sl, t1, . . . , tl as
otherwise we could simply delete v from T . Thus the number
of leafs in T is at most 2l. We call a node v of T a demand
node if v ∈ {s1, . . . , sl, t1, . . . , tl}, and a hub if v is not a
demand node and its degree in T is at least 3. The number
of hub nodes is denoted by h, and it is at most the number
of leafs, thus h ≤ 2l. A path π in T is called branch if both

of its end nodes are among the demand and hub nodes and π
does not contain a demand or a hub node as an intermediate
node. Let T ′ denote the tree obtained from T by substituting
its branches by a single link. In other words we merge every
2-degree node other than hubs and demands. We will call T ′

the topology of T . Observe that T ′ has at most 4l nodes.
By the above, the set of hub nodes in the network can be

chosen in
(
n
h

)
= O(n2l) possible ways. After a set of hub

nodes is selected, the number of possible topologies with the
given hubs is bounded by 44l−2l4l−2, the number of labelled
trees on 4l nodes. Hence the number of possible topologies is
O(n2l44ll4l), which is polynomial in n as l ≤ d and d is fixed.

Summing up the above, for a given subset D′ ⊆ D of
demands with |D′| = l we can check whether D′ can be
covered by a single tree as follows: for each possible topology
T ′, we try to embed T ′ into G in such a way that each link
e of T ′ corresponds to a shortest path in G between the end
nodes of e. Recall that these paths should be disjoint in order to
obtain a tree T . That is, if the number of links in the topology
T ′ is k then we have to solve a k-DSP problem in G where
each demand corresponds to a link in T ′. Note that there are
at most 4l − 1 links in the tree T ′, i.e. k ≤ 4l − 1.

This approach requires solving polynomial number of in-
stances of the k-DSP problem, thus concluding the proof.

B. 2-to-all Demands Case

When all demands share a common end-node s, a shortest
path tree rooted at s constitutes an optimal solution for the STE
problem. Next, we extend this observation to the STE problem
for 2-to-all demands with center nodes s1 and s2 and provide a
polynomial algorithmic scheme for finding the optimal solution.

For simplicity, first we consider the critical demand set
consisting of pairs 〈si, v〉 for i = 1, 2 and v ∈ V \{s1, s2}, that
is, we are not interested in covering a shortest path between
s1 and s2. Further, we will show how the algorithm can be
modified to also include the demand 〈s1, s2〉.

An arbitrary spanning tree T determines a partition of
V \ {s1, s2} into three disjoint sets AT , BT , CT as follows:
• v ∈ CT if T covers both 〈s1, v〉 and 〈s2, v〉,
• v ∈ BT if T covers only one of 〈s1, v〉 or 〈s2, v〉,
• v ∈ AT if T covers none of 〈s1, v〉 and 〈s2, v〉.
We will show that there exists a spanning tree for which |CT |

is maximal among all possible spanning trees, and in addition
AT = ∅. Such a tree clearly maximizes |BT |+2|CT | and hence
is optimal.

Consider an arbitrary spanning tree T . We first show that CT
spans a connected subtree of T .

Lemma 3.1: CT induces a connected subgraph in T .
Proof: Let u, v ∈ CT , and let πT (u, v) be the path in T

between them. We will show that any node w ∈ πT (u, v) is
also in CT . Let z be the node in πT (u, v) closest to s1, that
is, one for which πT (s1, z) has the least number of links. Note
that z is uniquely determined. By symmetry, we may assume
that w is part of the segment between u and z of πT (u, v). Now
the path πT (s1, u) goes through w, and since T covers 〈s1, u〉

it also covers 〈s1, w〉 (the subpath πT (s1, w) of the shortest
path πT (s1, u) is also a shortest path between its end-nodes).
A similar argument shows that T covers 〈s2, w〉.

Now, we provide an upper bound on the size of CT . Let
t1, t2 ∈ CT denote the closest nodes to s1 and s2, respectively.
Observe that for any node v ∈ CT , πT (si, v) is a shortest path
from si to v through node ti (i = 1, 2). We define the chain of
T to be πT (t1, t2), the path between t1 and t2 in T . Given a
node v ∈ V \ {s1, s2}, let Zv denote the set of nodes that can
be reached both from s1 and s2 on a shortest path containing v.
We define the value of the chain as

∑
[|Zv| : v ∈ πT (t1, t2)].

Lemma 3.2: The size of CT is at most the value of the chain
of T , i.e. |CT | ≤

∑
v∈πT (t1,t2) |Zv|.

Proof: By Lemma 3.1, the node-set CT can be partitioned
into the sub-trees hanging on the nodes of the chain, and the
size of sub-tree corresponding to node v is bounded by |Zv|
from above.

In order to show that the upper bound for |CT | can be
achieved, we will need the following lemma.

Lemma 3.3: Zv1 ∩ Zv2 = ∅ for any v1, v2 ∈ πT (t1, t2).
Proof: Suppose that v1, v2 ∈ πT (t1, t2) are distinct nodes

on the chain such that z ∈ Zv1 ∩ Zv2 . We may assume that
nodes t1, v1, v2 and t2 come in this order on the chain of T .
Recall that l(u, v) denotes the length of a shortest path between
u and v in G.

As z ∈ Zv1 ∩Zv2 , we have l(s1, v1) + l(v1, z) = l(s1, v2) +
l(v2, z) and l(s2, v2)+ l(v2, z) = l(s2, v1)+ l(v1, z). As v1 and
v2 lie on the chain of T , we have l(s1, v2) = l(s1, v1)+l(v1, v2)
and l(s2, v1) = l(s2, v2) + l(v2, v1). By summing up the left-
and right-hand sides of these equalities we get 2l(v1, v2) = 0,
contradicting the positivity of the link weights.

Lemma 3.3 suggests the following algorithm for finding an
optimal spanning tree. Define a subgraph G′(V,E′) of G in
which an link uv is kept if and only if u can be reached from
s1 on a shortest path containing v, and vice versa, v can be
reached from s2 on a shortest path containing u. Observe that
E′ consists exactly of those links of G that may appear in the
chain of a tree. Now assign the value |Zv| to each node v ∈ V .
Note that a node u belongs to Zv iff l(s1, v) + l(v, u) ==
d(s1, u) and l(s2, v) + l(v, u) == d(s2, u). Accordingly, an
an All-Pairs Shortest Paths algorithm should be employed for
ensuring these conditions. Moreover, orient an link uv ∈ E′

from u to v if l(s1, u) < l(s1, v). The resulting node-weighted
graph is acyclic, hence one can find a path maximizing the
total weight of its nodes employing Program Evaluation and
Review Technique (PERT) algorithm, which can be solved in
linear time [4]. This path will be our candidate as the chain of
the solution. Let t1 and t2 denote the end-nodes of the path
and assume that l(s1, t1) ≤ l(s1, t2).

Lemma 3.3 shows that if we assume a shortest-path tree
rooted at v and spanning Zv for each node v of the chain, then
the chain together with these sub-trees form a tree T ′. If we
could show that T ′ can be extended to a spanning tree T of
G in such a way that AT = ∅ and CT contains the node-set
of T ′ then the optimality of T would follow from AT = ∅,

the choice of the starting chain and the upper bound given in
Lemma 3.2.

The following lemma shows that T ′ can indeed be extended
in a proper way.

Lemma 3.4: There exists a tree T with AT = ∅ and CT
containing all nodes of T ′.

Proof: We provide sketch of the proof and further details
can be found in [18]. At this point T ′ contains a chain between
t1 and t2 and the proper sub-trees of the chain. Next, we aim to
achieve AT = ∅. First we extend T ′ by adding to it the shortest
paths πG(s1, t1) ∈ ΠG(s1, t1) and πG(s2, t2) ∈ ΠG(s2, t2) to
it thus obtaining a larger tree. Clearly, this step does not create
a cycle in T ′. Our plan is roughly as follows. We consider the
nodes {v} not yet contained in the tree iteratively and connect v
to the tree by adding a path such that either 〈s1, v〉 or 〈s2, v〉 is
covered. We explain why this step is (garanteed to be) possible
through an example depicted in Fig. 2.

Assume that T ′ consists of the path {s1, v2, t1, t2, v1, s2}.
We would like to add p to the tree such that either 〈s1, p〉
or 〈s2, p〉 becomes covered. This is not possible only if the
unique shortest path between si and p is {si, vi, p} for i = 1, 2.
However, this, together with the fact that 〈s1, t2〉 and 〈s2, t1〉
are covered by T ′, implies the inequalities of Fig. 2. By adding
up both sides of the inequalities we get l(t1, t2) < 0, a
contradiction. Through a similar reasoning, we can show that
T ′ can be extended to a spanning tree T with AT being empty.

After finding the optimal chain and adding the shortest-path
tree rooted at v and spanning Zv for each node v of the chain,
the tree-construction can be finished by using the algorithm of
Lemma 3.4. Thus we get a spanning tree T of G with an empty
AT and maximal CT , showing the optimality of T .

p

w1

v1

t1

t2

s1

s2

s1 → t2 : s1w1 + w1t1 + t1t2 ≤ s1v1 + v1t2

s2 → t1 : s2v1 + v1t2 + t2t1 ≤ s2w1 + w1t1

s1 → p : s1v1 + v1p < s1w1 + w1p

s2 → p : s2w1 + w1p < s2v1 + v1p

Fig. 2: Illustration of the proof of Lemma 3.4. Note that l(a, b) is
shortened as ab in the inequalities.

In the above discussion, we assumed that the demand set
D does not include 〈s1, s2〉. However, the case where D does
include 〈s1, s2〉 can be handled through a small modification of
the algorithm. Specifically, s2 should not be included in Zs1 ,
while s1 is contained by Zs2 . This way the double counting
of the demand 〈s1, s2〉 is avoided. The running time of the
algorithm is dominated by an All-Pairs Shortest Paths algorithm
employed for assigning the values of |Zv| to each node v ∈ V .
The usage of Floyd-Warshall algorithm results in a running
time of O(|V |3)[4].

C. All-to-All and General Demands

Now we show that the STE problem is NP-hard for the
general case and for particular all-to-all demands case, that is,

when the demand graph H is complete.
Theorem 3.2: The STE problem is NP-hard even if G is

bipartite and uniform-weighted and H is complete.
Theorem 3.3: The Unique Single Tree Effectiveness (UP-

STE) problem is NP-hard.
Proof: The proofs of Theorems 3.2 and 3.3 are both

based on a reduction from a variant of the hypergraph perfect
matching problem. The details appear in the Appendix of [18].

IV. HEURISTICS AND BOUNDS FOR THE STE PROBLEM

As the STE problem is intractable for general demands,
we turn to focus on efficient heuristic approaches. First, we
introduce a simple greedy iterative heuristic. Then, we propose
a heuristic based on the establishment of a shortest path tree.
Accordingly, we investigate when the optimal tree is a shortest
path tree and present examples where the optimal solution
for the STE ptoblem is not a shortest path tree. Next, we
define a heuristic based on Kruskal’s minimum-spanning tree
algorithm, which also provides an upper bound on the covering
effectiveness metric. Finally, we introduce a second upper
bound, which can better cope with multiple shortest-path trees.

A. Iterative Greedy Heuristic

The first heuristic iteratively constructs a spanning tree T .
Initially, the tree T does not contain any link. The heuristic
selects a demand 〈s, t〉 from the critical demands set D itera-
tively, and checks if it can be covered by the tree by optionally
extending the tree. A demand 〈s, t〉 can be covered if there is
a shortest path π ∈ Π(s, t) between s and t such that π ∪ T
remains a tree, i.e. π ∪ T does not contain a cycle. For unique
shortest paths, i.e. the UPSTE case, this property can be verified
in linear time through a Depth First Search (DFS). This process
is repeated until every demand is processed. The total running
time of the heuristic is O(|D| · |E|2).

In case the shortest path between s and t is not unique, this
property verification is a bit more complex. Observe that if a
shortest path π can be covered by T , π ∪ T cannot have a
cycle. Therefore, π can be divided into three (possibly empty)
segments: the first and third segment is disjoint with T , while
the second segment is a part of T . Let i and j denote the
intersection nodes at the end of the first segment and the second
segment, respectively. The verification is done by searching for
a proper node-pair i,j in the following way. Consider the all
shortest paths links set Λ(s, t) and search for a node pair i
and j for which (1) there is a directed path from i to j in
Λ(s, t), (2) lG\T (s, i) = lG(s, i), (3) lT (i, j) = lG(i, j), and (4)
lG\T (j, t) = lG(j, t). If such i and j is found add πG\T (s, i)
and πG\T (j, t) to tree T . The total running time of the heuristic
is O(|D| · |V |3 log |V |).

The performance of the heuristic strongly depends on the
order of the selected demands. Our experiments indicate that
considering the demands in increasing order of their hop
distance is typically a good choice; however the performance of
the heuristic in terms of covering effectiveness and runtime can
be improved. Specifically, it becomes computationally intensive

1

2 3

4

5 6

2 2
3

2 2
3

1
2 2

3

2 2
3

1

2 2
3

2 2
3

2 2
3

2 2
3

D2: 〈5, 4〉,〈4, 3〉,〈5, 3〉
D1: 〈1, 2〉,〈1, 6〉,〈6, 2〉

D3: 〈5, 1〉,〈5, 2〉,〈1, 4〉,〈2, 4〉
D4: 〈6, 4〉,〈2, 4〉,〈2, 3〉,〈3, 6〉

Fig. 3: Network example with unit link weights. The link labels
correspond to the induced cost of ICKruskalHeur of Sec. IV-C. The
demands on the right illustrate Thm. 4.2.

if there are many demands in the network. Accordingly, we
introduce an additional heuristic, based on shortest path trees.

B. Shortest Path Tree Heuristic

In case the demand graph is a star with central node v, the
optimal tree is the shortest path tree from v. Moreover, every
subpath of a shortest path is a shortest path itself. Thus, a
shortest path tree covers quite several demands, especially if the
node v is in the ”center” of the network, such as a node with
high betweenness centrality value. This motivates the following
simple heuristic: select a shortest path tree covering a large
number of demands. In order to do that, first determine the
all-pairs shortest paths by using the Floyd-Warshall algorithm
[4]. For an arbitrary node v, consider a shortest path tree Tv .
Then Tv covers a demand 〈s, t〉 ∈ D if and only if one of the
following holds.
• lTv (s, v) + lTv (v, t) = lG(s, t) as in this case a shortest

path between s and t goes through v,
• the path in Tv between v and s contains t, or
• the path in Tv between v and t contains s.

We can compute a shortest path tree Tv for each v ∈ V and
choose the one with maximal η(Tv). The running time of the
heuristic is O(|D| · |V |2 + |V |3).

Intuitively, one could expect that there always exists an
optimal solution of the STE problem with all-to-all demands
consisting of a shortest path three rooted at some node of the
network. Note that this does not contradict the NP-hardness
of the problem as the number of possible shortest path trees
may be exponential. However, in the Appendix of [18] we
show a counter example that establishes that the intuition of the
optimality of a shortest path tree is wrong. Next we introduce
a more sophisticated approach, which also provides an upper
bound on the number of demands.

C. Upper Bound and Heuristic Based on Kruskal’s Algorithm

We start by introducing an upper bound for the UPSTE
problem. We define a cost function c : E → R+, as fol-
lows. For each 〈s, t〉 ∈ D, consider the unique shortest path
π(s, t) ∈ Π(s, t) and increase the link costs along the path
π(s, t) by 1 unit in total. That is, if cs,te denotes the cost
added to link e corresponding to the shortest path π(s, t) then∑
e∈π(s,t) c

s,t
e = 1. Let c : E → R+ be the cost function

defined as ce =
∑

(s,t)∈D c
s,t
e for e ∈ E. We call such

a cost function induced. For example, a possible choice for
cs,te is setting cs,te = 1

|π(s,t)| . In this case ce is set to be∑
π(s,t)3e

1
|π(s,t)| .

Theorem 4.1 (KruskalBound): In the UPSTE problem, the
maximum number of demands covered by a single tree T is at
most the cost of a maximum cost spanning tree of G having
an induced cost function c,1 formally:

max{θD(T) : T is a tree} ≤
bmin{c(T) : c is induced, T is a maximum c-cost tree}c.

Proof: Consider an arbitrary tree T and an in-
duced cost function c. Assume that T covers demands
〈s1, t1〉, . . . , 〈sk, tk〉. Then the sum of the costs on the links
of T is at least k as c is induced. Thus, the number of shortest
paths covered by T is bounded by the cost of T .

The above theorem can be generalized to the STE problem
if cs,te is set such that for any shortest path π(s, t) ∈ Π(s, t) we
have

∑
e∈π(s,t) c

s,t
e ≥ 1. However, it is possible to define cs,te in

such a way that
∑
e∈π(s,t) c

s,t
e = 1 for each π(s, t) ∈ Π(s, t).

In order to do so, first determine the set Λ(s, t) of links that lie
on a shortest path between s and t by employing the In-All-
Weight-Shortest-Paths Links algorithm described in [21]. It is
well known that this way we get an acyclic digraph in which
each directed path from s to t has the same weight, namely
l(s, t). Recall that l(s, t) denotes the weight of a shortest path
between s and t. Thus, setting cs,te = 1

l(s,t) we for e ∈ Λ(s, t)
will give a proper cost function. Hence, we derive the following
corollary.

Corollary 1: In the STE problem, the maximum number of
demands covered by a single tree T is at most the floor of the
cost of a maximum cost spanning tree G where the cost of an
link e is defined as

ce =
∑

(s,t)∈D
e∈Λ(s,t)

we
l(s, t)

.

See Fig. 3 for an example of the above corollary, where the
cost ce of each link is depicted in the gray box. For example,
link (1, 5) is contained in Λ(1, 5), Λ(4, 5), Λ(3, 5) and Λ(5, 6),
hence its induced cost is 1 + 1

2 + 1
2 + 1

3 = 2 2
3 . The induced

costs of the remaining links can be computed analogously. A
maximum cost tree is (1, 5), (2, 5), (2, 3), (3, 6), (4, 6) with a
cost of 11 2

3 giving a bound of b11 2
3c = 11, while we have

already seen that an optimal solution covers 10 demands.
The heuristic outputs the obtained maximum cost tree as the

solution. The running time of the heuristic is O(|D|·|E| log |V |)
steps, see also Fig. 1 for the pseudocode of the heuristic
algorithm.

D. Upper Bound Based on Conflict Cycles

We continue to present an additional upper bound, which
focuses on the case where the shortest paths are not unique.
Let D′ ⊆ D be a subset of demands consisting of node-pairs

1Since any induced cost function such that a 〈s, t〉
∑
e∈π(s,t) c

s,t
e = 1 is

valid, we consider one which results with the smallest upper bound.

Algorithm 1: Induced Cost Kruskal Heuristic
Data: G(V,E)-network, demand D, and link weights w
begin

ce = 0 for every link e
for 〈s, t〉 ∈ D do

for e ∈ ΛE(s, t) do
ce := ce + we

l(s,t)

return the maximum cost spanning tree with cost
function c on links with Kruskal’s algorithm

〈s1, t1〉, . . . , 〈sl, tl〉, where l = |D′|. The set D′ is conflicted if
the corresponding shortest paths cannot be covered by a single
tree. In other words, D′ is conflicted if there exist no paths
π1, . . . , πl such that πi ∈ Π(si, ti) and

⋃k
i=1 πi is a forest.

Theorem 4.2 (CCycleBound): Let D1, . . . , Dk be k conflicted
subsets of D that are pairwise disjoint (i.e. Di ∩ Dj ≡ ∅,
∀i 6= j). Then θD(T) ≤ |D| − k for any spanning tree T of G.

Proof: Consider an arbitrary spanning tree T of G. For
each i = 1, . . . , k, there must be a demand in Di not covered
by T as Di is conflicted. Since the D′is are pairwise-disjoint,
there are at least k demands not covered by T , thus concluding
the proof.

See Fig. 3 for an illustrative example, where the demands
can be divided into disjoint conflicted subsets of D1, D2, D3

and D4.
Next, we define a simple brute-force heuristic to search for

such pairwise disjoint conflicted sets. First, the demands with
unique shortest paths are processed. In case of unique shortest
paths, a set Di of the demands can be evaluated by examining
the 2-connected components of the subgraph that is determined
by the union of the shortest paths in Di. If the resulting
subgraph is not a tree, i.e. there is a bi-connected component,
then Di can be removed from the original demand set, and
the upper bound can be decreased by one, since Di forms a
conflicted set. Note that finding the 2-connected component
requires a single run of Depth First Search (DFS).

If the demands have multiple shortest paths, we focus on sets
of three demands only, i.e.|Di| = 3. We select every possible
triplet of nodes a, b and c. Let x be an arbitrary node, if
lG(a, x) + lG(x, b) = lG(a, b), lG(a, x) + lG(x, c) = lG(a, c)
and lG(b, x) + lG(x, c) = lG(b, c) holds, then the demands
〈a, b〉, 〈b, c〉 and 〈a, c〉 can be covered with a tree, where node
x is a ”central” node, see also the discussion at Section IV-B.
Note that the opposite is also true, i.e. if there is no such x ∈ V
the three demands are in a conflict cycle.

V. SIMULATION STUDY

In Sections IV and III-B, we presented three heuristics
(IGreedHeur, SPTHeur, ICKruskalHeur), two upper bounds
(KruskalBound, CCycleBound) and an optimal algorithm for
the case of 2-to-all demands (2ToAll). We proceed to evaluate
the efficiency of these approaches in terms of covering effec-
tiveness and running time in real-world and random network

KruskalBound
CCycleBound

2ToAll
ICKruskalHeur

IGreedyHeur
SPTHeur

(a) The legend of the charts. Note
that, for random demands the hor-
izontal axis is scaled to be inline
with the k-to-all case.

0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

C
ov

er
in

g
E

ff
.(
η

)

Demand graph H with k-to-all
(b) {1, . . . , 5}-to-all demand graph.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

C
ov

er
in

g
E

ff
.(
η

)

H with random k(|V | − k) +
(
k
2

)
demands

(c) Random demands.

(d) The DeltaCom network with a
tree of ICKruskalHeur for 5-to-all
demands from the large nodes.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

C
ov

er
in

g
E

ff
.(
η

)

H with random k(|V | − k) +
(
k
2

)
demands

(e) Random demands for UPSTE with transformed
link weights

0
0.05
0.1

0.15
0.2

0.25
0.3

1 2 3 4 5

R
un

ni
ng

tim
e

[s
]

H with random k(|V | − k) +
(
k
2

)
demands

(f) The runtime corresponding to Fig. 4c.

Fig. 4: The results of DeltaCom with 103 nodes and 151 links.

topologies. Specifically, we examine the achieved covering
effectiveness for two demand configurations, namely k-to-all
and randomly chosen demands. It turns out that the spanning
tree provided by the ICKruskalHeur heuristic offers the best
covering effectiveness for all simulated scenarios. Furthermore,
we demonstrate the negative effect of the density of the network
links on the covering effectiveness of the spanning tree. Some-
what surprisingly, we show that the SPTHeur heuristic results
in the worst covering effectiveness for almost all simulated
scenarios. This finding is noteworthy in view of the quite
common usage of shortest path spanning trees in networking
scenarios.

We generated two classes of network topologies, namely the
real carrier topology and the random topology.

First, we evaluated twenty real-world carrier topologies [22].
For the sake of brevity, we present the results of the largest
network only, namely the Deltacom, which is a relatively large
network operated in the U.S.A region. This topology is depicted
in Fig. 4d and contains 103 nodes and 151 links. In order to
evaluate the performance of our heuristics in the context of
the STE problem, the link weights were set to be uniform.
Moreover, the link weights were modified with a very small
value to have unique shortest path for every demand in the
network, enabling the evaluation of the UPSTE problem.

Next, we consider the class of random topologies, based on
the Waxman model [23]. We created 320 random networks
containing 50 nodes and a range of [62, 150] links. Note
that these networks are very sparse and often planar. In all
simulation instances of this class, we focused on the STE
problem, therefore, the link weights were set to be uniform.

For each network topology class, we evaluated the three
heuristics (ICKruskalHeur, IGreedHeur, SPTHeur), the two
upper bounds (KruskalBound, CCycleBound) and the optimal

algorithm for 2-to-all demands (2ToAll), where the legend for
the charts of each case is depicted in Fig. 4d.

Fig. 4 demonstrates the simulation results of the DeltaCom
carrier topology depicted in Fig. 4d. First, we evaluated the
STE problem, i.e. the link weights were uniform. In Fig. 4b,
we show the covering effectiveness for k-to-all demands, where
k = {1, . . . , 5} and the selected central nodes are depicted
with diamonds in Fig. 4d. Each data point corresponds to
an average of 60 executions and the 95% confidence interval
is also drawn. As expected, for a 1-to-all demand graph the
shortest path tree from the single central node provides 100%
covering effectiveness for all evaluated cases. However, for 2-
to-all demands the covering effectiveness dropped to 59%. Note
that for 2-to-all demands, we have an optimal algorithm, which
gives η = 78% (2ToAll point). For all cases, KruskalHeur
resulted in better covering effectiveness than IGreedyHeur and
SPTHeur and, moreover, the CCycleBound provided better
bounds than KruskalBound. The KruskalHeur spanning tree
with highest covering effectiveness for the 5-to-all demand
graph is depicted in Fig. 4d.

Fig. 4c shows the results when the demand graph is random.
Note that the number of demands for the k-to-all case is
k(|V |−k)+

(
k
2

)
. Here, we scaled the horizontal axis to have the

same scale as of Fig. 4b, thus, the k-th tick on the horizontal
axis corresponds to k(|V | − k) +

(
k
2

)
randomly selected 〈s, t〉

demands for k = {1, . . . , 5}. In average, 10% less random
demands can be covered compared to the k-to-all case. We
obtained a larger difference when the number of demands
is small. We have discussed the significant difference in the
complexity of the STE and UPSTE versions of the problem.
In order to analyze its effect in practice, we transformed the
DeltaCom case to UPSTE by adding a very small random value
to each link weight in the network. This will reduce the number

0.6

0.7

0.8

0.9

2.5 3 3.5 4 4.5 5 5.5 6

C
ov

er
in

g
E

ff
.(
η

)

Average Nodal degree
(a) 2-to-all demands.

0.4
0.5
0.6
0.7
0.8
0.9

2.5 3 3.5 4 4.5 5 5.5 6

C
ov

er
in

g
E

ff
.(
η

)

Average Nodal degree
(b) 5-to-all demands.

Fig. 5: The covering effectiveness respect the nodal degree of
the random topology network. See Fig. 4a for the legend.

of shortest paths between each node-pair to one, and thus
significantly reducing the search space of the algorithms. Fig.
4e shows the results in terms of average values over 30 UPSTE
instances. Surprisingly, the covering efficiency in UPSTE was
only 10% smaller in average compared to STE. Note that it is
easy to construct networks where this difference is arbitrarily
large. In Fig. 4f, we evaluate the running time of the proposed
heuristics of the STE random demand graph and show that:
(1) the CCycleBound incurs the highest computational penalty,
(2) the SPTHeur is the fastest heuristic and less sensible to
the number of demands and (3) the ICKrustalHeur is still
reasonably fast, yet with better performance.

Finally, in Fig. 5, we evaluate the covering effectiveness with
respect to the average nodal degree of the random topology
class. Two demand scenarios were analysed, namely the 2-to-
all and 5-to-all cases. For the 2-to-all case, we have an optimal
algorithm, whose performance is close to the heuristics and far
from the upper bounds. As expected, better coverage efficiency
can be achieved for sparser networks. Indeed, our results clearly
show that shortest paths in sparser networks can be better
covered by a spanning tree due to their smaller diversity.
In addition, we evaluated the 5-to-all demands, where the
KruskalBound became better than the CycleBound compared
to the 2-to-all case.

Notably, for almost all simulated cases, the SPTHeur heuris-
tic results in a significantly small value of covering effective-
ness, contradicting the quite common usage of shortest path
spanning trees in networking scenarios.

VI. CONCLUSION

The covering effectiveness is a novel quantitative approach
for evaluating the ”quality” of a spanning tree to support QoS-
aware communication between a restricted set of (several) criti-
cal pairs of nodes. This metric quantifies the number of source-
destination pairs for which the path on the tree is shortest.
Accordingly, we defined the STE optimization problem which,

for a given set of critical pairs, aims to find a spanning tree
that maximizes its covering effectiveness. We investigated four
variants of the optimization problem according to the set of
demands, namely: fixed number of critical demands, 2-to-all,
all-to-all and the general case. For the first two cases we
established optimal polynomial solutions while the other two
were shown to be NP-hard. For the intractable cases, we derived
theoretical bounds and presented heuristic solutions, all of
which have been evaluated through comprehensive simulations.
Most notably, we indicated that the quite common approach,
in which a shortest path spanning tree from a single node is
selected, often falls short of providing good solutions in the
typical scenario where critical demands are associated with
more than a single end-node. As an alternative, we proposed
a simple yet typically efficient heuristic, which is based on
Kruskal’s algorithm.

REFERENCES

[1] IEEE, “802.1d: Standard for local and metropolitan area networks: Media
access control (MAC) bridges,” 1990.

[2] J. Liang, J. Wang et al., “An efficient algorithm for constructing maximum
lifetime tree for data gathering without aggregation in wireless sensor
networks,” in IEEE INFOCOM, 2010.

[3] A. Groebbens, D. Colle et al., “Efficient protection in mpλs networks
using backup trees,” Photonic Network Communications, 2003.

[4] T. H. Cormen, C. E. Leiserson et al., Introduction to Algorithms, Third
Edition, 3rd ed. MIT Press, 2009.

[5] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum span-
ning trees and shortest-path trees,” Algorithmica, 1995.

[6] D. Peleg and A. A. Schäffer, “Graph spanners,” Journal of Graph Theory,
1989.

[7] D. Peleg, “Low stretch spanning trees,” in Mathematical Foundations of
Computer Science, 2002.

[8] D. Kratsch, H.-O. Le et al., “Additive tree spanners,” SIAM Journal on
Discrete Mathematics, 2003.

[9] C. Liebchen and G. Wünsch, “The zoo of tree spanner problems,” Elsevier
Discrete Applied Mathematics, 2008.

[10] G. Kortsarz and D. Peleg, “Approximating the weight of shallow steiner
trees.” Discrete Applied Mathematics, 1999.

[11] M. Chimani and J. Spoerhase, “Network design problems with bounded
distances via shallow-light steiner trees.” in STACS, 2015.

[12] Y.-C. Tseng, S.-Y. Ni et al., “The broadcast storm problem in a mobile
ad hoc network,” Wireless networks, 2002.

[13] B. Stephens, A. L. Cox et al., “PAST: scalable ethernet for data centers,”
in CoNEXT, 2012.

[14] H. Baala, O. Flauzac et al., “A self-stabilizing distributed algorithm
for spanning tree construction in wireless ad hoc networks,” Journal of
Parallel and Distributed Computing, 2003.

[15] A. Gupta, A. Kumar, and R. Rastogi, “Traveling with a pez dispenser (or,
routing issues in MPLS),” SIAM Journal on Computing, 2005.

[16] A. Kumar, R. Rastogi et al., “Algorithms for provisioning virtual private
networks in the hose model,” IEEE/ACM TON, 2002.

[17] S. Schmid, C. Avin et al., “Splaynet: Towards locally self-adjusting
networks,” IEEE/ACM Trans. Netw., 2016.

[18] “Packing strictly-shortest paths in a tree for QoS-aware routing,” Tech.
Rep., 2016. [Online]. Available:
https://www.dropbox.com/s/487utisqbre3tfn/TR PSSPTQAR.pdf?dl=0

[19] T. Eilam-Tzoreff, “The disjoint shortest paths problem,” Elsevier Discrete
Applied Mathematics, 1998.

[20] A. Schrijver, “Finding k disjoint paths in a directed planar graph,” SIAM
Journal on Computing, 1994.

[21] J. Yallouz and A. Orda, “Tunable QoS-aware network survivability,” in
IEEE INFOCOM, 2013.

[22] S. Knight, H. X. Nguyen et al., “The Internet Topology Zoo,” http://www.
topology-zoo.org.

[23] B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, 1988.

