
Remote Measurement of Interrupt-Coalescence
Latency of Internet Hosts

Khondaker M. Salehin
Illinois State University, USA

Email: kmsaleh@ilstu.edu

Vinitmadhukar Sahasrabudhe
P3 North America, USA

Email: sahasrabudhevinit@gmail.com

Roberto Rojas-Cessa
New Jersey Institute of Technology, USA

Email: rojas@njit.edu.

Abstract—Interrupt coalescence (IC) in the network interface

card (NIC) of an Internet host is a hardware artifact to reduce the

processing load of the host, but it also adds an additional delay

in the processing time of a packet. As the transmission speeds of

Internet hosts are increasing at a faster pace than the processing

speeds of the hosts, NICs running at 100 Mb/s and above are

adopting IC. This added delay from IC incurs a significant error

to the measurement of various network parameters performed

by Internet hosts. Knowledge of the IC-based delay helps to

increase the accuracy of the measurement of several network

parameters, including delay and bandwidth, and supports delay-

sensitive applications, such as IP geolocation and load balancing.

In this paper, we propose a scheme to measure the IC period

of a remote Internet hosts using pairs of probing packets. The

scheme does not require infrastructural support along the path or

specialized instrumentation at the host under test. We evaluated

the scheme on a testbed and an open-access campus network, on

links of up to 1000 Mb/s. The scheme measures the IC period

with 90% accuracy, quickly, and with a small probing load.

Index Terms—Network measurement, interrupt coalescence,

PPT, k-means clustering, end-to-end delay, IP geolocation.

I. INTRODUCTION

Hosts are connected to the Internet for data communications
through network interface cards (NICs), which transmit and
receive packets. Once a NIC receives a packet, it notifies
the event to its host by invoking system calls and interrupts
involving the NIC driver, main memory, central processing
unit (CPU), and operating system [1], [2]. The host then
acknowledges the receiving process and generates a time
stamp for the received packet [3].

Hosts used for high-speed data communications must pro-
cess a packet at the same speed as the transmission of their
NICs. However, it is difficult to comply with this required
processing time because line rates are increasing at a faster
pace than the processing speeds of hosts [4], [5]. Invoking
frequent interrupts may induce heavy CPU loads that could
result in performance degradation [6].

To reduce CPU load on a host, NICs are equipped with a
hardware artifact called interrupt coalescence (IC) [7]–[10].
IC makes a NIC invoke a single interrupt after the arrival of
multiple packets over a period of time. IC periods are found to
be on the order of hundreds of microseconds [11]. However,
this reduction of CPU load comes at the cost of adding a delay
in the per-packet processing delay at the hosts.

The presence of IC in NICs may affect the measurement
of various network parameters, such as delay and bandwidth,
and the performance of delay-sensitive applications, such as
IP geolocation and traffic load balancing. Therefore, it is
essential to measure the IC period of Internet hosts. Although
IC is widely deployed in high-speed NICs, no scheme is yet
available to measure it, to the best of our knowledge.

To fill in this void, we propose a scheme to actively measure
the IC period in the NIC of a remote host in this paper. The
scheme is practical and easy to deploy because it does not
require infrastructural support along the path of measurement
or specialized instrumentation at the host under test. It uses
pairs of packets, where the variations in the measured gaps
infer the duration of the IC period. We determine the variations
in the gaps using a k-means clustering algorithm [12].

In the remainder of the paper, Section II describes the
operation of IC and the corresponding NIC timers. Section
III outlines the applications of IC measurement. Section IV
introduces the proposed scheme for measuring the IC period
of a remote host. Section V presents experimental evaluations
of the proposed scheme in a testbed and on an open-access
campus network. Section VI presents our conclusions.

II. BACKGROUND

The objective of IC in a NIC is to improve the efficiency of
interrupt processing at a host by processing packets in periodic
intervals (i.e., batches) at the cost of having an additional delay
in processing packets. The duration of the IC period is set to
minimize the load of the CPU generated by the frequent arrival
of packets. As a result, packets are processed in batches after
they arrive in the NICs [11].

A small IC period minimizes the per-packet delay without
adding a heavy CPU load on the host for infrequent packet
arrivals. On the other hand, a large IC period minimizes the
CPU load by generating a single interrupt for multiple packets
that arrive over a short interval under high transmission speeds.
NIC drivers (e.g., Intel e1000e) implement three different
timers to adjust the IC period for transmitting and receiving
packets: i) the packet timer, ii) the absolute timer, and iii) the
interrupt-throttle timer [11].

The packet timer resets (i.e., re-initializes) the IC period
each time a packet arrives in the NIC buffer before the
expiration of an existing IC period. This timer defines the
minimum delay a NIC adds before generating an interrupt forISBN 978-3-901882-94-4 c� 2017 IFIP

a packet [11]. Figure 1(a) presents an illustration of a packet
timer as three packets, P1, P2, and P3, arrive in the NIC.
Here, the IC period is reset each time at the arrival of P1,
P2, and P3; an interrupt is finally generated after receiving
P3 because no other packet arrives before the expiration of
the ongoing IC period. The packet timer is efficient when the
transmission speed is low because under a high transmission
speed, frequent resetting of the IC period may cause buffer
overflow in NICs if the inter-arrival time of packets is smaller
than the IC period [11].

P2 P3 P1

IC period

Timer resets
as

P1 arrives

Timer resets
as

P2 arrives

Timer resets
as

P3 arrives

Interrupt
generation

Packet timer

t

(a) Packet timer

P2 P3 P1

IC period 1

Timer resets
as

P1 arrives

P2 arrives

P3 arrives

Interrupt
generation

Absolute timer

t

(b) Absolute timer

Timer resets for P3
after interrupt
generation

IC period 2

Fig. 1: IC periods using the (a) packet and (b) absolute timers.

The absolute timer determines the maximum delay before
generating an interrupt after a packet arrives in the NIC buffer
[11]. This timer does not reset the IC period at the arrival of
every packet during an ongoing IC period. Figure 1(b) shows
that IC period 1 is initiated at the arrival of P1 and that the
absolute timer does not reset before the expiration of IC period
1 though P2 and P3 start to arrive. IC period 2 is initiated after
an interrupt is generated following the expiration of IC period
1, which acknowledges the first two packets, as P3 arrives. The
absolute timer is used under high transmission speeds [11].

The interrupt-throttle timer determines the IC period in
a different manner from those of the above two. Instead
of providing a single and discrete IC period, it defines the
maximum number of interrupts that can be generated per unit
time to determine an IC period in reference to the arrival
rate of packets. Here, the IC period is reset periodically
independently of packet inter arrivals as the timer does not
initiate a new IC period before exhausting all (available)
interrupts per unit time [11].

IC is configured as either a static or dynamic period. A static
IC period is configured using the packet and/or absolute timer.
In a dynamic IC configuration, the interrupt-throttle timer is
used to determine an upper and lower ranges of the IC period,
based on the arrival rate of packets at the NIC [11].

III. APPLICATION OF IC MEASUREMENT

Knowledge of the IC period of a host is needed to achieve
the correct measurement of different network parameters and
applications. Here, we discuss some examples.

A. Delay Measurement
Delay over an end-to-end path is an important network

parameter that is usually measured using Ping [13], King [14],
and Ting [15]. However, delay measurement using existing
tools are inaccurate because these tools do not consider the
time stamping delay, i.e., the packet processing time (PPT),
and IC period of Internet hosts [3], [10], [16]. The PPT of a
host is the elapsed time as a packet travels from the data-link
layer to the application layer of the TCP/IP protocol stack [17].
According to RFC 7679 [18], the measured OWD (OWD0) by
Ping over a single-hop path between two end hosts src and
dst is

OWD0 = PPTsrc + ICsrc + OWD + PPTdst + ICdst (1)

If the PPTs at the end hosts are PPTsrc = PPTdst = 2 µs
and the IC periods are ICsrc = 0 and ICdst = 100 µs, the
measured delay OWD0 = 181 µs when the actual delay OWD
= 77 µs given that the transmission time of P (tt) = 12 µs, the
average queueing delay (tq) = 40 µs [19], and the propagation
time (tp) = 25 µs, considering a 5-km optical (Gigabits)
link between src and dst. Here, the measurement error =
|OWD0�OWD

OWD | = 135%. This error in the delay measurement
can only be alleviated if knowledge of PPT and IC period
are available in advance.

In addition, the utility of IC measurement in delay esti-
mation has far-reaching impacts on various delay-sensitive
applications of the Internet. For example, precise delay mea-
surements are essential for producing high accuracy in IP-
geolocation schemes [20]–[22], and financial trading [23],
[24]. In case of IP geolocation, a 1-µs error in the measured
delay varies the estimated geographic distance by 200 m
between two end hosts connected over optical links, where
data travel 2

3 the speed of light in vacuum [25]. Therefore, IC
measurement is important because IC periods are on the order
of hundreds of microseconds.

B. Bandwidth Measurement
The knowledge of the IC period of a host can be used to

accurately measure bandwidth, e.g., link capacity and available
bandwidth, of Internet links [7], [8]. Consider a 1000-Mb/s
link between src and dst where the capacity of the link is
under measurement using a pair of probing packets, each
with a length of 1500 bytes. The intra-probe gap between the
packets at dst is must be proportional to the link capacity for
accurate measurement; the expected intra-probe gap is

E[G] =
Packet size

Link capacity
=

1500 bytes
1000 Mb/s

= 12 µs (2)

However, ensuring the proportional gap in (2) is infeasible
because dst has an IC period, ICdst = 100 µs, which is larger

than E[G]. The presence of IC eliminates the expected gap
because the packets are buffered in the same IC period and this
gap loss generates errors in link-capacity measurement [7], [8].
With prior knowledge of the IC period, it would be possible to
determine an optimal packet size for producing high accuracy
in packet-pair-based measurement schemes [26]–[30].

Additionally, the schemes that use trains of probing packets,
e.g., Pathrate [31], IGI [32], pathChirp [33], and cartouche
[34] may utilize the knowledge of the IC period to improve
their measurement efficiency. Probing-train based schemes
uses an arbitrary train length, which contributes to the large
probing traffic in the network. Such practice in bandwidth
measurement can be avoided by determining an optimal (i.e.,
minimum) train size without compromising accuracy if the IC
period is known a priori.

C. Load Balancing of Traffic
Load balancing of traffic allows efficient usage of Internet

resources by splitting end-to-end traffic flows among multiple
routes at different granularities, e.g., per packet and per
destination-address. However, load balancing schemes usually
suffer from packet reordering at the end hosts. To eliminate
packet reordering, a study proposes a traffic-splitting scheme
using the burstiness of Internet traffic that can be generated by
the IC periods of the end hosts [35]. NIC IC usually generates
traffic bursts in 10s of packets in length in the Internet [9]. The
study assumes the burstiness of traffic in their experimental
evaluation without actually characterizing it. The performance
of the proposed scheme can be improved by characterizing the
level of burstiness of traffic flows using the knowledge of IC.

IV. PROPOSED SCHEME

We are aware of only two prior work that were motivated
to detect the presence of IC in NICs [8], [10] at the time of
writing this paper, but there is no scheme that can measure
IC period to the best of our knowledge. In this paper, we
propose an active scheme to measure the IC period of a remote
host over an end-to-end path. The scheme uses a packet-
pair structure, called compound probe [3], [36], [37], and
estimates the IC period by measuring the variations of the
intra-probe gap of the probing structure at the host under
test. The compound probe consists of user datagram protocol
(UDP) packets, and the intra-probe gap is measured by a
software process on the host. Hence, the proposed scheme
does not require infrastructural support from the network or
instrumentation at the host.

Figure 2 shows a compound probe that consists of a large
heading packet (Ph) and a small trailing packet (Pt), and
they are being received by the NIC of a destination host.
Here, both Ph and Pt arrive in the NIC back-to-back (i.e.,
without any separation in between) and are buffered at the
input queue inside a single IC period. After the expiration of
the IC period, two consecutive time stamps, TSh and TSt,
are generated for Ph and Pt, respectively, with a processing
delay, or the time-stamp generation time, on the receiving
host to finish the receiving process. Because the intra-probe

gap of the compound probe (i.e., the time difference between
the last bits of Ph and Pt) is determined by using the
time stamps, the measured intra-probe gap corresponds to the
processing delay or PPT of the destination host rather than the
actual transmission time of Pt [10], as Figure 2 shows. The
disproportionate and small intra-probe gap in the compound
probe suggests the presence of IC in the NIC [10].

PhPt

Intra-probe gap

TShTSt

IC expires

Time
stamping

delay

t
Transmission time of Pt

IC Period

Ph arrivesPt arrives

IC starts

Ph

Intra-probe gap

TShTSt

t

IC Period 1

Ph arrivesPt arrives

Pt

IC Period 2

TShTSt

Intra-probe gap

Time
stamping

delay

Time
stamping

delay

Transmission time of Pt

Ph Pt

Intra-probe gap

TStTSh

Period starts

Time
stamping

delay

t
Transmission time of Pt

IC period

Ph arrives Pt arrives

Period expires

t

Time
stamping

delay

IC period 1 IC period 2

Ph Pt

Ph arrives Pt arrives

TStTSh

Intra-probe gap

Time
stamping

delay

Transmission time of Pt

Fig. 2: Buffering of a compound probe during an IC period.

Figure 3 illustrates another scenario where Ph and Pt

arrive in two consecutive IC periods, IC periods 1 and 2,
as the packets are received in the NIC. Here, TSh and TSt

are generated after the expiration of IC periods 1 and 2,
respectively. In this figure, both the initiation of IC period
2 and the time stamping of Pt are shown as two separate but
parallel events. Because TSh and TSt are interleaved by IC
period 2, the measured intra-probe gap of the compound probe
is equal to the IC period and larger than the intra-probe gap
measured in Figure 2.

PhPt

Intra-probe gap

TShTSt

IC expires

Time
stamping

delay

t
Transmission time of Pt

IC Period

Ph arrivesPt arrives

IC starts

Ph

Intra-probe gap

TShTSt

t

IC Period 1

Ph arrivesPt arrives

Pt

IC Period 2

TShTSt

Intra-probe gap

Time
stamping

delay

Time
stamping

delay

Transmission time of Pt

Ph Pt

Intra-probe gap

TStTSh

Period starts

Time
stamping

delay

t
Transmission time of Pt

IC period

Ph arrives Pt arrives

Period expires

t

Time
stamping

delay

IC period 1 IC period 2

Ph Pt

Ph arrives Pt arrives

TStTSh

Intra-probe gap

Time
stamping

delay

Transmission time of Pt

Fig. 3: The measured intra-probe gap of a compound probe
when Ph and Pt arrive in two consecutive IC periods.

Considering these two possible scenarios, the proposed
scheme at a sender host sends compound probes with a
constant Pt size and an increasing Ph sizes to the remote host
under test so that the packets arrive in consecutive IC periods
of its NIC. The scheme adjusts the Ph size in an iterative
manner during the course of measurement. Ph and Pt fall
into consecutive IC periods only if the transmission time of
Ph is smaller, but the combined transmission time of Ph and
Pt is larger than the IC period.

Figure 4 shows the variations of the measured intra-probe
gaps when the propose scheme sends compound probes with
increasing Ph sizes. Here, the small gaps (identified as IC-
detection phase) correspond to the scenario depicted in Figure
2 and the large gaps (identified as transition phase) correspond
to the scenario depicted in Figure 3. The proposed scheme first
identifies the IC-detection phase from the smaller intra-probe

gaps. It then detects the transition phase in reference to the
smaller gaps for measuring the IC period at the remote host.
In the IC-detection phase, the scheme estimates the PPT of
the remote host, as discussed above.

PP
T

IC
 p

er
io

d

IC detection with
smaller gaps

(Ph and Pt arrive in
the same IC period)

Transition phase with
larger gaps

(Ph and Pt arrive in two
different IC periods)

In
tra

-p
ro

be
 g

ap
 (µ

s)

Size of Ph (bytes)
sh1 sh2 sh3 sh4 sh5 sh6 sh7 sh8 sh9

Fig. 4: Variations of the intra-probe gap for compound probes
with different Ph sizes.

Figure 5 shows an n-hop path between src and dst, the
sender host and the remote host under test, respectively. The
detailed steps for measuring the IC period at dst from src are
described below:

n

dst

0

src

1 i
L1 LnL2 Li Li+1

PPTavg = Gavg(s1) о ˆtt(s1)

Fig. 5: An n-hop path between src and dst.

1) Send a train of i compound probes from src to dst

using a Ph with a size of sh, e.g., sh = the maximum
transmission unit (MTU) of the path, and a Pt with a
size of st < sh, such that the packet-size ratio of the
compound probes, ↵ = sh

st
, is large enough to ensure

back-to-back arrivals of the probing packets. The sizing
of st in the compound probe for back-to-back arrival of
Ph and Pt at dst over an n-hop path is determined as

(
sh

ln
� sh

↵ln�1
)+(

sh

ln�1
� sh

↵ln�2
)+...+(

sh

lz+1
� sh

↵lz
) = 0

(3)
Here, lz and lz+1 are the capacities of the input and
output links at a node z over the n-hop path, where Ph

and Pt experience the largest dispersion of the path [37].
2) Measure the intra-probe gap, G(st), of each compound-

probe in the train received at dst:

G = {Gj(st) | j  i}, (4)

where G is the required dataset of intra-probe gaps for
estimating the IC period at dst.

3) Determine the distribution of the data set, G, using the k-
means clustering algorithm such that the resultant cluster
set is

C

0 = {Ck | k > 1}, (5)

where Ck ⇢ G and Ck \ Ck+1 = ;.
4) Update the cluster set C

0 after discarding the cluster
elements that have a population size smaller than a
portion p of the size of G as

C = {Ck | (|Ck| �
p|G|
100

)} (6)

Here, C is the updated cluster set where |C|  |C 0|.
5) Consider vk to be the centroid (i.e., average intra-probe

gap) of Ck. With V = {vk | k  |C 0|} being the
corresponding set of all centroids of the cluster set C,
determine the cluster with the smallest centroid, vs, in
C to estimate the PPT at dst as

PPT = vs = min{V } (7)

Here, vs corresponds to the case illustrated in Figure 2.
6) Calculate the difference between the smallest centroid

value and each of the remaining centroid values in V :

� = {�s,k = vk � vs | (vs 6= vk)^ (k  |V |� 1)} (8)

7) Discard all data elements such that �s,k < � to check if
Ph and Pt arrive in consecutive IC periods, as illustrated
in Figure 3, and update � as

� = {�s,k | (�s,k � �) ^ (k  |V |� 1)}, (9)

where � is the minimum threshold defined by the
minimum IC period of the NIC at dst. For example,
the minimum IC period in Linux and Windows is
approximately 50 µs [11].

8) If � = ;, none of the centroid values exceed the
minimum threshold values, as Figure 6 shows. This
condition also means that the compound probes using
Ph = sh did not detect a transition phase in the
measured intra-probe gaps, as illustrated in Figure 4.
Repeat Steps 1 to 7 using Ph = sh + ⌧ and the same
Pt = st in the compound probe. Here, ⌧ , the step size
for sh, can be determined from the clock resolution and
the transmission speed of the NIC at dst [3], [37].

9) Else, at least one or more centroid values exceed the
minimum threshold value, as Figure 7 shows; therefore,
determine the IC period at dst as

IC = {vk |�s,k = min{�}} (10)

V. EXPERIMENTAL EVALUATIONS

We evaluated the proposed scheme on both a controlled
testbed and an uncontrolled intranet environments. The scheme
was implemented in a Linux (Ubuntu) operating system that
consists of a client process at src and a server process at
dst over an end-to-end path, as Figure 5 shows. In our
experiments, we used two different workstations: Dell Opti-
plex 790 (DO790) and Dell Studio XPS 435 MT (DS435).
They are both equipped with integrated Intel NICs, whose IC
period is configurable in Linux environment [11]. The detailed
specifications of the workstations are presented in Table I.

PP
T

C
en

tro
id

 o
r I

nt
ra

-p
ro

be
 g

ap
 (µ

s)

Smallest
centroid value

C

G(st)

C1 C2 C3 C4 C5

Minimum threshold
for transition phase

Cluster index

¨1,2
¨1,3

¨1,4
¨1,5

(a) Centroids without exceeding the
minimum threshold

PP
T

Smallest
centroid value

C

G(st)

C1 C2 C3 C4 C5

Minimum threshold
for transition phase

Cluster index

¨1,2

¨1,3
¨1,4

¨1,5

(b) Centroids with a centroid value
exceeding the minimum threshold

IC
 P

er
io

d
IC

 P
er

io
d

Smallest centroid value
exceeding the minimum

threshold

C
en

tro
id

 o
r I

nt
ra

-p
ro

be
 g

ap
 (µ

s)

Fig. 6: An example where no cluster centroids exceed the
minimum threshold because �1,k < �, where 2 < k  5
considering |C| = 5.

PP
T

C
en

tro
id

 o
r I

nt
ra

-p
ro

be
 g

ap
 (µ

s)

Smallest
centroid value

C

G(st)

C1 C2 C3 C4 C5

Minimum threshold
for transition phase

Cluster index

¨1,2
¨1,3

¨1,4
¨1,5

(a) Centroids without exceeding the
minimum threshold

PP
T

Smallest
centroid value

C

G(st)

C1 C2 C3 C4 C5

Minimum threshold
for transition phase

Cluster index

¨1,2

¨1,3
¨1,4

¨1,5

(b) Centroids with a centroid value
exceeding the minimum threshold

IC
 P

er
io

d
IC

 P
er

io
d

Smallest centroid value
exceeding the minimum

threshold

C
en

tro
id

 o
r I

nt
ra

-p
ro

be
 g

ap
 (µ

s)

Fig. 7: An example where three cluster centroids exceed the
minimum threshold because �1,k � �, where 3 < k  5
considering |C| = 5.

TABLE I: Workstation Specifications
Name DO790 DS435

Processor (speed) Intel Core i3 (3.30 GHz) Intel Core i7 (2.67 GHz)
RAM (speed) 8148 MB (1333 MHz) 8725 MB (1066 MHz)
NIC (driver) Intel 82579LM (e1000e) Intel 82567LF-2 (e1000e)

Max. transmission speed 1000 Mb/s 1000 Mb/s
Linux distribution Ubuntu Ubuntu

Linux kernel 2.6.18 3.11.0

A. End-to-End Paths and IC Configurations

We measured the IC periods of DO790 and DS435 under
two different transmission speeds, 100 and 1000 Mb/s, at
dst over single- and multiple-hop paths. For example, both
a single-hop path (src and dst directly connected by a 100-
or 1000-Mb/s link) and a 4-hop path (src and dst connected
by 100-Mb/s, 100-Mb/s, 155-Mb/s, and 100-Mb/s or 1000-
Mb/s links) were used in the testbed experiments. The 4-hop
path consisted of two Cisco 7200 routers and one Cisco 3600
router between the end hosts. The testbed experiments were

performed without having cross-traffic loads along the paths;
these experiments provided a benign network environment
during IC measurement to determine the maximum achievable
performance of the proposed scheme.

In the intranet experiments, a multiple-hop path, consisting
of at least 4 hops, between the Electrical and Computer En-
gineering (ECE) and Faculty Memorial Hall (FMH) buildings
at New Jersey Institute of Technology (NJIT) was used. The
infrastructure (e.g., link capacity, routing policy, and queue
length of intermediate routers) and traffic (e.g., traffic load
and number of flows) conditions over this path were unknown
while running the experiments. This set of experiments eval-
uated the maximum achievable performance of the proposed
scheme, determined by the testbed experiments, in an uncon-
trolled environment. We evaluated the scheme in NJIT’s open-
access network for a month during regular working hours.

In both sets of experiments, we measured the IC periods
of DO790 and DS435 under two different IC settings: static
and dynamic. In the static setting, the workstation at dst was
manually configured with three different fixed IC periods: 125,
166, and 200 µs. These periods were chosen to verify the
sensitivity of the proposed scheme, and they were all within
the min-max range of the static-IC settings [11]. In the case
of the dynamic setting (also known as Mode 3 or Interrupt
Throttle Rate, ITR3), the workstation at dst was configured
with an IC period that ranges between 50 and 250 µs, which
is the default ITR setting in Linux [11].

B. Probing Parameters and Clustering Algorithm
The proposed scheme measures IC of each workstation in all

experiments using 50 and 200 compound probes per train. We
used these train sizes to verify the performance of the scheme
under two different probing loads. Compound probes in each
train are separated by 11 to 99 ms to avoid generating probing
traffic with a constant rate in the end-to-end path and at dst.
In the compound probes, we initially used sh = 1,492 bytes
and st = 150 bytes under 100 Mb/s or st = 1,250 bytes or
less under 1000 Mb/s. The selected sts ensure a large ↵ in the
compound probe for each speed and considering the limited
clock resolution in Linux [38]. The theoretical intra-probe gaps
in the compound probes (i.e., st

ln
[3]) were 12 and 10 µs for

the respective speeds.
In each experiment, we started the measurement process

with the initial sh and st and then continued to send probing
trains with increasing shs until five successful measurements
of the IC period were achieved to calculate an average
estimate. The client process increases sh with either 12- or
125-byte step size following the completion of sending a
probing train. These two step sizes were chosen considering
the NIC speeds, 100 and 1000 Mb/s, respectively, and the
limited clock resolution (usually 1 µs) in Linux system [38]. In
case the scheme failed to achieve five successful measurements
when sh = 64,000 bytes (i.e., the maximum allowable packet
size), the client process ended the measurement process, and
calculated an average IC estimate from the available successful
measurements.

We used the VLFeat open-source library [39] to implement
the k-means algorithm and incorporated it in the client process
at src. In the k-means algorithm, the clusters were filtered
in Step 3 of the proposed scheme using a population size
p = 5, which we chose empirically from our measurement
experiences, because it provides a high accuracy. For data
filtering, the scheme ran the k-means clustering algorithm on
each dataset for 100 iterations using a random seed value,
as implemented in the VLFeat library, before producing an
initial set of clusters C

0. The scheme also used a minimum
threshold value � = 50 µs for detecting a transition phase in
the measured intra-probe gaps.

C. Measurement Results under 100 Mb/s

Figure 8 shows the summary of IC periods measured on
(a) DO790 and (b) DS435 under 100 Mb/s using a train
size of 200 compound probes and two different step sizes
⌧ = {12, 125} bytes. In the remainder of the paper, we
present measurement results of only 200-probe trains because
this train size produces better performance than 50-probe
trains. In Figure 8, the x-axis corresponds to different IC-
Path configurations, where IC = {125, 166, 200, ITR3} and
Path = {testbed single-hop path (S), testbed multiple-hop path
(M), intranet multiple-hop path (I)}. The y-axis corresponds to
the measured IC period by the proposed scheme. In addition,
the horizontal lines in the figure shows the actual IC periods
in microseconds for static ICs in the experiments. In case
of dynamic IC (i.e., ITR3), the two parallel horizontal lines
correspond to the upper and lower range of the configured IC
period.

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280

IC-Path

IC
 (
µs

)

12 bytes
125 bytes

Actual IC: 125 µ s

Actual IC: 166 µ s

Actual IC: 200 µ s

Actual IC: 50-250 µ s

(a) DO790

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280

IC-Path

IC
 (
µs

)

12 bytes
125 bytes

Actual IC: 125 µ s

Actual IC: 166 µ s

Actual IC: 200 µ s

Actual IC: 50-250 µ s

(b) DS435

Fig. 8: Measured IC periods under 100 Mb/s on the (a) DO790
and (b) DS435 workstations for different IC configurations
over the testbed and intranet paths.

According to Figure 8(a), the measured IC periods on
DO790 are very close to the actual IC periods for all ex-
perimental configurations. For example, the proposed scheme
consistently measures IC periods of approximately 120, 140,
and 200 µs when the actual static IC periods are 125, 166,
and 200 µs, respectively, over all path configurations. In the
case of dynamic IC, the measured IC period is approximately
245 µs, which is within the range of the IC period of ITR3,
i.e., between 50 and 250 µs, and close to the upper range of
the IC period, on both testbed and intranet. Figure 8(b) shows
that the measured static IC periods on DS435 are about 120,
160, and 197 µs, respectively, whereas the dynamic IC period
is about 240 µs, which is, again, close to the upper range of
the ITR3 setting. Overall, Figure 8 shows that the proposed
scheme is consistent in measuring ICs on both workstations
under different experimental conditions.

We summarize the consistency of the IC measurements in
Figure 9 using the measurement errors on (a) DO790 and (b)
DS435. Error is defined as

�� IC Period � Measured IC Period
IC Period

��⇥100%,
which is plotted along the y-axis in Figure 9. However, for
dynamic IC, the error is determined by considering how far
off the measured IC period is from the expected range.

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

2

4

6

8

10

12

14

16

18

IC-Path

Er
ro

r
(%

)

12 bytes
125 bytes

Avg: 4.4% (std: 5.6%)

Avg: 4.3% (std: 5.1%)

(a) DO790

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

1

2

3

4

5

6

7

8

IC-Path

Er
ro

r
(%

)

12bytes
125 bytes

Avg: 2.5 % (std: 2.0%)Avg: 2.4 % (std: 2.4%)

(b) DS435

Fig. 9: Measurement errors under 100 Mb/s on the (a) DO790
and (b) DS435 workstations for different IC configurations
over the testbed and intranet paths.

Figure 9 shows that the measurement errors are consistently
small on both workstations to validate the high accuracy of the
proposed scheme irrespective of the experimental configura-
tions. For example, the average measurement errors on DO790
with ⌧ = {12, 125} bytes are 4.3 and 4.4%, respectively,
as indicated by the dashed- and solid-horizontal lines in
Figure 9(a). Here, the standard deviations are 5.6 and 5.1%,

respectively. These large standard deviations are due to the
relatively high measurement errors (approximately 12% on
average) for IC period = 166 µs. On DS435, the average errors
with ⌧ = {12, 125} bytes are 2.4 and 2.5% with standard
deviations of 2.4 and 2%, respectively, as Figure 9(b) shows.
Although the standard deviations in the above measurements
are large, the accuracy of the proposed scheme is high as the
average errors on DO790 and DS435 are below 5%.

D. Measurement Results under 1000 Mb/s
Figure 10 summarizes the IC measurements on (a) DO790

and (b) DS435 under 1000 Mb/s. In this set of experiments,
we measured both static and dynamic IC periods, over the
single-hop testbed and multiple-hop intranet paths using a
single step size, i.e., ⌧ = 125 bytes, since the transmission
time of 125 bytes under 1000 Mb/s is 1 µs. Here, we used
st = 1,250 bytes over the single-hop path and st = {200,
250} bytes for DO790 and DS435, respectively, over the
multiple-hop path. The large st = 1,250 bytes over the single-
hop path provided a large intra-probe gap (i.e., 10 µs) similar
to that used in the experiments under 100 µs, and the smaller
sts were the lower bounds of st that ensured zero-dispersion
gap in the compound probe over the multiple-hop path.

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

25
50
75

100
125
150
175
200
225
250
275

IC-Path

IC
 (
µs

)

125 bytes

Actual IC: 125 µ s

Actual IC: 166 µ s

Actual IC: 200 µ s
Actual IC: 50-250 µ s

(a) DO790

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

25
50
75

100
125
150
175
200
225
250
275

IC-Path

IC
 (
µs

)

125 bytes

Actual IC: 125 µ s

Actual IC: 166 µ s
Actual IC: 200 µ s

Actual IC: 50-250 µ s

(b) DS435

Fig. 10: Measured IC periods under 1000 Mb/s on the (a)
DO790 and (b) DS435 workstations for different IC configu-
rations over the testbed and internet paths.

Figure 10(a) shows that the measured IC periods on DO790
are approximately 117, 182, and 210 µs for static ICs of
125, 166, and 200 µs, respectively. For dynamic IC, the
measured values are approximately 67 µs, which is within
the ITR3 range and close to the lower range of the IC
setting. Figure 10(b) shows the static IC periods on DS435
are measured about 160, 166, and 200 (excluding over 200-
M) µs, respectively. For dynamic IC, the values are about

57 µs, which is within the expected range and close to the
lower range of the IC setting.

Figure 11 presents a summary of measurement errors under
1000 Mb/s. Here, the average errors on DO790 and DS435 are
6.2 and 15.8%, respectively, with standard deviations equal to
6.2 and 28.1%, respectively. The relatively large errors with
1000 Mb/s suggests that the IC measurement on 1000 Mb/s
is more challenging than with 100 Mb/s.

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

2

4

6

8

10

12

14

16

18

IC-Path

Er
ro

r
(%

)

125 bytes

Avg: 6.2% (std: 6.2%)

(a) DO790

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

10

20

30

40

50

60

70

80

IC-Path

Er
ro

r
(%

)

125 bytes

Avg: 15.8% (std: 28.1%)

(b) DS435

Fig. 11: Measurement errors under 1000 Mb/s on the (a)
DO790 and (b) DS435 workstations for different IC configu-
rations over the testbed and intranet paths.

IC presents the most challenging behavior under 1000 Mb/s
[40]. Challenges in the measurement of IC period under
1000 Mb/s are attributed to two factors. First, st impacts the
accuracy of IC measurement under higher transmission speeds
because of smaller intra-probe gaps in the compound probe,
which is proportional to st and the transmission speed [3].
These smaller gaps minimize the probability of having Ph

and Pt in two consecutive IC periods. This phenomenon is
perceived from the average errors on DS435 for the 125-S and
125-I configurations and on DO790 for the 200-S and 200-I
configurations, as Figure 11 shows. Second, the condition of
five successful measurements using p = 5 impacts the outcome
of the proposed scheme. IC measurement using the 5% rule
was successful only for a number of configurations due to
the minimized probability of having the probing packets in
two consecutive IC periods. For example, the measured values
and average errors for the ITR3-S and ITR3-I configurations
in Figures 10(a) and 11(a), respectively, are generated using
p = 3. In case of Figures 10(b) and 11(b), the values for 125-S
and 200-S are generated using p = 4 and p = 2, respectively.

We consider that the above challenges can be reduced with
larger sh and sts, which would ensure both a larger intra-

probe gap in the compound probe and a zero dispersion gap
over an end-to-end path. Such considerations are feasible if
we use larger packet sizes in the compound probe using the
IPv6 infrastructure in the Internet.

E. PPTs of the Workstations
The proposed scheme estimates PPT after detecting IC in

the NIC as the initial step before measuring the IC period on
a workstation. Figure 12 presents the estimated PPTs during
IC measurements under 100 Mb/s. As Figure 12(a) shows, the
average PPTs estimated on DO790 are approximately 13 µs for
⌧ = {12, 125} bytes. Figure 12(b) shows that the average PPTs
of DS435 are approximately 12 µs. The standard deviation in
the average PPTs is less than 1 µs.

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

2

4

6

8

10

12

14

16

18

IC-Path

PP
T

 (
µs

)

12 bytes
125 bytes

Avg: 13.1 µ s (std: 0.7 µ s)Avg: 13.0 µ s (std: 0.0 µ s)

(a) DO790

125-S 125-M 125-I 166-S 166-M 166-I 200-S 200-M 200-I ITR3-S ITR3-M ITR3-I
0

2

4

6

8

10

12

14

16

IC-Path

PP
T

 (
µs

)

12 bytes
125 bytes

Avg: 12.1 µ s (std: 0.7 µ s)Avg: 11.6 µ s (std: 0.4 µ s)

(b) DS435

Fig. 12: Estimated PPTs under 100 Mb/s on (a) DO790 and
(b) DS435 workstations for different IC configurations over
the testbed and intranet paths.

Figure 13 presents the average PPTs under 1000 Mb/s. The
solid-horizontal lines in Figures 13(a) and 13(b) show that the
average PPTs of DO790 and DS435 are both approximately
12 µs. Here, the standard deviations of the estimated PPTs
are up to 1.3 µs. However, such a large variation on a higher
transmission speed is coming from the limited clock resolution
in Linux system [3].

In a prior work, PPT of both DO790 and DS435 were
measured with a dynamic IC (i.e., ITR3), where the values
are estimated as 3 µs under 100 Mb/s and 10 µs under
1000 Mb/s, respectively [10]. According to Figures 12 and 13,
the estimated PPTs are different than those in the prior work,
especially on DO790. We consider the estimated values in this
paper are more reliable because the prior work used ICMP
probes and utilized only 500 packets (or ten PPT estimates)
during the measurements [10].

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

2

4

6

8

10

12

14

16

18

IC-Path

PP
T

 (
µs

)

125 bytesAvg: 13.3 µ s (std: 1.0 µ s)

(a) DO790

125-S 125-I 166-S 166-I 200-S 200-I ITR3-S ITR3-I
0

2

4

6

8

10

12

14

16

18

IC-Path

PP
T

 (
µs

)

125 bytesAvg: 12.6 µ s (std: 1.3 µ s)

(b) DS435

Fig. 13: Estimated PPTs under 1000 Mb/s on the (a) DO790
and (b) DS435 workstations for different IC configurations
over the testbed and intranet paths.

F. Measurement Time

To explore the efficacy of the proposed scheme, we esti-
mated the average time required for measuring IC on each
workstation. For example, the scheme required 72 and 57 s
for measuring IC period on DO790 using 50 compound
probes when ⌧ = {12, 125} bytes, respectively. On DS435,
the average measurement times are approximately 23 and 50 s,
respectively. These values suggest that the proposed scheme
measures IC period in a short time. They also suggest that the
measurement time decreases as the step size increases, i.e.,
from 12 to 125 bytes, without losing any performance gain,
as Figure 9 shows.

We found that the scheme requires a longer time for
measuring IC under 1000 Mb/s since the average measurement
time on DO790 and DS435 are 180 and 140 s, respectively,
using ⌧ = 125 bytes. This behavior is expected considering
the challenges discussed in Section V-D.

G. Probing Load

We also calculated the probing loads generated by the pro-
posed scheme during IC measurements since active measure-
ment schemes are considered intrusive for Internet traffic [41].
In the above experiments under 100 Mb/s, the scheme gener-
ates probes at the average rates of 0.3 and 0.2 Mb/s on DO790
and DS435 workstations, respectively. Under 1000 Mb/s, these
rates are 1.7 and 1.2 Mb/s, respectively. These small probing
loads show that the proposed scheme is not intrusive to the
data traffic on an end-to-end path because the scheme utilizes
less than 1% of the above stated transmission speeds.

VI. CONCLUSIONS

IC is a hardware artifact of the NIC of an Internet host that
delays the processing of a packet in order to reduce CPU load.
High-speed NICs are equipped with an IC period on the order
of 100s of microseconds, which can affect different network
parameters and applications if neglected. In this paper, we
proposed an active scheme to measure IC period in the NIC
over an end-to-end path. The proposed scheme is practical
and easy to deploy because it does not require infrastructural
support along the path of measurement or instrumentation at
the host under test. The scheme sends pairs of probing packets
at the host to determine the intra-probe gaps in the packet
pairs. The measurement method uses a k-means clustering
algorithm to determine variations in the measured gaps, which
are used to infer the duration of IC period.

We evaluated the proposed scheme to measure different IC
periods on two different workstations, in both controlled and
uncontrolled environments and both without and with real-
life cross traffic, respectively. The experimental results showed
that our scheme measured IC periods over an end-to-end path
with a high accuracy, e.g., approximately 5% and 11% error
under 100 and 1000 Mb/s, respectively, regardless of the used
workstation and existing network conditions. The scheme also
measures IC period in a short time and generates a small
amount of probing load into the network.

REFERENCES

[1] P. Willman, H. Kim, S. Rixner, and V. Pai, “An efficient programmable
10 Gigabit Ethernet network interface card,” in Proc. IEEE HPCA-11,
CA, USA, 2005, pp. 96–107.

[2] J. Shafer and S. Rixner, “A reconfigurable and programmable gigabit eth-
ernet network interface card,” Rice University – Department of Electrical
and Computer Engineering, Tech. Rep., December 2006.

[3] K. Salehin, R. Rojas-Cessa, C. Lin, Z. Dong, and T. Kijkanjanarat,
“Scheme to measure packet processing time of a remote host through
estimation of end-link capacity,” IEEE TC, vol. 64, no. 1, pp. 205–218,
2015.

[4] N. McKeown. High performance routers – Talk at IEE,
London UK. October 18th, 2001. [Online]. Available:
http://tinytera.stanford.edu/ nickm/talks/index.html.

[5] S. Savage. IP router design. [Online]. Available:
http://cseweb.ucsd.edu/classes/wi05/cse123a/Lec8.pdf.

[6] J. Mogul, D. Western, J. Mogul, and K. Ramakrishnan, “Eliminating
receive livelock in an interrupt-driven kernel,” ACM TOCS, vol. 15, pp.
217–252, 1997.

[7] G. Jin and B. Tierney, “System capability effects on algorithms for
network bandwidth measurements,” in Proc. ACM IMC, USA, 2003, pp.
27–38.

[8] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on
network measurements,” in Proc PAM, France, 2004, pp. 247–256.

[9] R. Kapoor, A. Snoeren, G. Voelker, and G. Porter, “Bullet Trains: A
study of NIC burst behavior at microsecond timescales”, in Proc. ACM
CoNEXT, USA, 2013, pp. 133–138.

[10] K. Salehin and R. Rojas-Cessa, “Measurement of packet processing time
of remote hosts in the presence of interrupt coalescence,” in Proc. IEEE
HPSR, Japan, 2016, pp. 144–149.

[11] Intel. Interrupt moderation using Intel GbE controllers. [Online]. Avail-
able: http://www.intel.com/content/www/us/en/ethernetcontrollers/gbe-
controllers-interrupt-moderation-appl-note.html.

[12] E. Alpaydin, Introduction to Machine Learning, ch. 7. MA, USA: The
MIT Press, 2010.

[13] B. Forouzan, TCP/IP Protocol Suit, ch. 9. NY, USA: McGraw Hill,
2010.

[14] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating latency
between arbitrary Internet end hosts,” in Proc. ACM IMW, 2002, pp. 5–18.

[15] F. Cangialosi, D. Levin, and N. Spring, “Ting:Measuring and exploiting
latencies between all tor nodes,” in Proc. ACM IMC, Japan, 2015, pp.
289–302.

[16] D. Frost and S. Bryant, “Packet loss and delay measurement for
MPLS networks,” RFC 6374, September 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6374.txt.

[17] K. Salehin, R. Rojas-Cessa, and S. Ziavras, “A method to measure packet
processing time of hosts using high-speed transmission lines,” IEEE SJ,
vol. 9, no. 4, pp. 1248–1251, 2014.

[18] G. Almes, S. Kalidindi, M. Zekauskas, and A. Morton, Ed., “A one-way
delay metric for IPPM,” RFC 7679, January 2016. [Online]. Available:
http://www.ietf.org/rfc/rfc7679.txt.

[19] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Mea-
surement and analysis of single-hop delay on an IP backbone network,”
IEEE JSAC, vol. 21, no. 6, pp. 908–921, 2003.

[20] E. Katz-Bassett, J. John, A. Krishnamurthy, T. Anderson, and Y.
Chawathe,“Towards IP geolocation using delay and topology measure-
ments,” in Proc. ACM IMC, USA, 2006, pp. 71–84.

[21] V. Padmanabhan and L. Subramanian, “An investigation of geographic
mapping techniques for Internet hosts,” in Proc. ACM SIGCOMM, USA,
2001, pp. 173–185.

[22] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based
geolocation of Internet hosts,” IEEE/ACM ToN, vol. 14, no. 6, pp. 1219–
1232, 2006.

[23] Wall street’s quest to process data at the speed of light. [Online].
Available: http://www.informationweek.com/news/199200297?pgno=1.

[24] R. Kompella, K. Levchenko, A. Snoeren, and G. Varghese, “Every
microsecond counts: Tracking fine-grain latencies with a lossy difference
aggregator,” in Proc. ACM SIGCOMM, Spain, 2009, pp. 255–266.

[25] R. Percacci and A. Vespignani, “Scale-free behavior of the Internet
global performance,” EPJ B, vol. 32, no. 4, pp. 411–414, 2003.

[26] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet
switched networks,” Performance evaluation, vol. 27 and 28, pp. 297–
318, 1996.

[27] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link
bandwidth,” in Proc. USITS, 2001, pp. 123–134.

[28] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proc. ACM IMC, 2003, pp. 39–
44.

[29] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe:
A simple and accurate capacity estimation technique,” in Proc. ACM
SIGCOMM, USA, 2004, pp. 67–78.

[30] A. Pasztor and D. Veitch, “Active probing using packet quartets,” in
Proc. ACM IMC, USA, 2002, pp. 293–305.

[31] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet dispersion tech-
niques and capacity estimation,” IEEE ToN, vol. 12, no. 6, pp. 963–977,
2004.

[32] N. Hu and P. Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE JSAC, vol. 21, no. 6, pp. 879–894,
2003.

[33] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathchirp:
Efficient available bandwidth estimation for network paths,” in Proc. PAM,
vol. 4, 2003, pp. 1–11.

[34] K. Harfoush, A. Bestavros, and J. Byers, “Measuring capacity bandwidth
of targeted path segments,” IEEE/ACM ToN, vol. 17, no. 1, pp. 80–92,
2009.

[35] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM CCR, vol. 37, no. 2,
pp. 51–62, 2007.

[36] K. Salehin and R. Rojas-Cessa, “Combined methodology for measure-
ment of available bandwidth and link capacity in wired packet networks,”
IET Commun., vol. 4, no. 2, pp. 240–252, 2010.

[37] —-, “Packet-pair sizing for controlling packet dispersion on wired
heterogeneous networks,” in Proc. IEEE ICNC, USA, 2013, pp. 1031–
1035.

[38] D. Bovet and M. Cesati, Understanding the Linux Kernel, ch. 5. CA,
USA: O’Reilly, 2001.

[39] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of
computer vision algorithms. [Online]. Available: http://www.vlfeat.org/.

[40] A. Chatzipapas and V. Mancuso, “Measurement-Based Coalescing Con-
trol for 802.3az”, in Proc. IFIP Networking, Austria, 2016, pp. 270–278.

[41] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M.
Fomenkov, and k. claffy, “Comparison of public end-to-end bandwidth
estimation tools on high-speed links,” in Proc. PAM, 2005, pp. 306–320.

