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Abstract—Real-time visual analysis tasks, like tracking and
recognition, require swift execution of computationally intensive
algorithms. Enabling visual sensor networks to perform such
tasks can be achieved by augmenting the sensor network with
processing nodes and distributing the computational burden
among several nodes, in a way that the cameras contend for
the processing nodes while trying to minimize their completion
times. In this paper, we formulate the problem of minimizing the
completion time of all camera sensors as an optimization problem.
We propose algorithms for fully distributed optimization, analyze
the existence of equilibrium allocations, and evaluate their perfor-
mance. Simulation results show that distributed optimization can
provide good performance despite limited information availability
at low computational complexity, but the predictable and stable
performance is often not provided by the algorithm that provides
lowest average completion time.

Index Terms—Visual feature extraction, Sensor networks,
Divisible load theory, Distributed optimization

I. INTRODUCTION

Many real-time computer vision applications, like surveil-
lance, tracking, traffic monitoring and augmented reality, re-
quire the timely processing of visual information from several
cameras [1], [2], [3], [4], [5], [6]. Timely processing allows
improved application precision, and allows events in 3D to be
reconstructed, but has significant computational requirements.
The emergence of cheap cameras and network devices, vi-
sual sensor networks (VSNs), could in principle enable the
wide-spread deployment of these popular applications, but
in practice visual processing in VSNs faces two challenges.
On the one hand, the high computational complexity of the
image processing tasks prevents the processing to be performed
locally at the cameras. On the other hand, the large amount
of pixel data in the images makes it infeasible to transmit all
data through the sensor network to a central processing node,
considering the delay limit and the energy resources of the
network nodes.

A promising solution to overcome these challenges is to
augment the sensor network with processing nodes that have
suitable memory and computational capacity, and to perform
the image processing at the processing nodes. The processing
nodes do not need to be calibrated and can be installed or
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replaced with ease, possibly extending the lifetime of the
camera equipped nodes. Reduced maintenance and extended
lifetime are particularly important for VSNs deployed in
remote or hazardous areas, or in protected animal habitats.
As in this case multiple sensors need to share the processing
nodes as well as the wireless channel, the optimization of the
distribution of the processing tasks is non-trivial.

In this paper we consider the case of local visual feature-
based visual analysis [7], [8], [4], [5], where the visual analysis
application utilizes the extracted features from the images
captured by multiple sensors and the role of the processing
nodes is to detect and to extract the descriptors within the
time limit determined by the application. The sensors can
leverage the processing capabilities of the processing nodes,
and aim at optimizing the size of the image sub-areas sent
to the processing nodes and the schedule of the transmissions
of the pixel information through the shared wireless channel,
so that the time when the extraction of all features from all
the images is completed is minimized. The optimization is,
however, based on the information that the sensors have about
the system, from measurements or obtained through signaling,
and thus it is important to understand how the amount of
information available and the coordination between the sensors
would affect the completion time.

In this paper we address this question. We provide an
analytic model of the system and formulate completion time
minimization as an optimization problem for the case when
all system parameters are known, and the optimization can
be performed centrally. We then propose fully distributed
optimization algorithms that are executed by the sensors based
on locally available information. The sensors can obtain the
information via measurements and through signaling between
the processing nodes and the sensors. We consider three
different levels of available information, provide sufficient
conditions for the existence of equilibrium allocations, and
analyze the convergence properties of the algorithms under
synchronous and asynchronous revisions. We use simulations
to give insight into the convergence properties and the perfor-
mance of the algorithms under various VSN topologies, and we
use a multi-camera surveillance trace to assess the algorithms’
performance in a realistic scenario. Our results show that
predictable and low completion times may be contradicting
requirements, and the choice of the revision rule plays a crucial
role in determining an algorithm’s performance.

The rest of the paper is organized as follows. In Sec-
tion II we review related work. In Section III we describe
the considered system and in Section IV we formulate the
problem of completion time minimization. In Section V weISBN 978-3-901882-68-5 c© 2015 IFIP



present and analyze fully distributed algorithms for solving
the completion time minimization problem. In Section VI
we present numerical results and we conclude the paper in
Section VII.

II. RELATED WORK

Visual analysis applications utilizing many camera nodes
are discussed among others in [1], [2] for free viewpoint
television, in [3], [4], [5] for localization and tracking and
in [6] for high accuracy object recognition. The challenge
of visual analysis at nodes with limited processing power is
addressed in [7], [8], defining feature extraction schemes with
low computational complexity. To decrease the transmission
bandwidth requirements of pixel information, [9], [10] pro-
pose lossy image coding schemes optimized for descriptor
extraction, while [11], [12], [13] give solutions to decrease
the number and the size of the descriptors to be transmitted.
Considering video sequences with temporal correlation, [14]
limits the image areas of interest, while [15], [16] proposes
intra- and inter-frame coding for the descriptors. However,
results in [17] show that even under optimized extraction and
coding, the processing at the camera sensor or at the sink node
of the VSN leads to significant delay, which motivates the
introduction of in-network processing in VSNs [18], [19].

Optimal load scheduling for distributed systems is ad-
dressed in [20], in the framework of Divisible Load Theory
(DLT), with the general result that minimum completion time
is achieved, if all processors finish the processing at the same
time. Usually three decisions need to be made: the subset
of the processors used, the order they receive their share of
workload, and the division of the workload. Unfortunately, the
results are specific to a given system setup. Tree networks
with heterogeneous link capacities and processor speeds are
addressed in [21], concluding that scheduling should be in
decreasing order of the transmission capacities, while the
processing speed does not affect the scheduling decision.
However, [22] shows that the optimal scheduling order may
be different if the processing has constant overhead, and
under equal link capacities the scheduling should happen in
decreasing order of the processing speeds. In [18] we show
that the application of DLT for distributed visual processing
is non-trivial even in the case of a single sensor node, due
to the transmission overhead introduced by distributed feature
extraction, and due to the dynamism of the image content in the
video. Contrary to previous work, in this paper we investigate
the optimal distribution of the processing load for the case of
several camera sensors sharing the processing resources, in the
framework of distributed optimization.

Related to our work is the problem of learning in
games [23], [24]. Studies of learning in games usually consider
models of perfect information for the analysis of conver-
gence [23], [24], [25], [26]. Recent works on experimentation
dynamics and regret testing models consider that players can
only observe their own payoffs [27], [28], [29], but these
learning models provide asymptotic convergence guarantees,
and thus convergence is prohibitively slow. In this paper we
consider three models of imperfect information, and provide
equilibrium existence and convergence results. Our results also
highlight the potential trade-off between predictable and good
performance in learning.

III. SYSTEM MODEL

We consider a visual sensor network (VSN) that consists
of a set of sensor nodes S, |S| = S, and a set of processing
nodes N , |N | = N . Sensor node s ∈ S captures a sequence
Is = {1, ...} of images of width w pixels. For the delegation of
the computation, sensor node s divides image i into V is ≤ N
vertical slices. This scheme was referred to as area-split
in [30], [31]. We define slice v using its normalized leftmost
and rightmost horizontal coordinates, xis,v−1 and xis,v , i.e.,
xis,0 = 0 and xis,V i

s
= 1, and we define the cutpoint location

vector for image i as xis = {xis,0, . . . , xis,V i
s
}. For convenience,

we use yis,v = xis,v − xis,v−1 to denote the normalized width
of slice v, and we define yis,v = 0 for v ≤ 0 and for v > V is .

Thus, by definition,
∑V i

s
v=1 y

i
s,v = 1. Sensor s transmits slice

1 ≤ v ≤ V is to processing node dis(v) ∈ N for processing. We
define dis as a sequence with V is distinct elements, and with
slight abuse of notation we use n ∈ dis if dis(v) = n for some
1 ≤ v ≤ V is , i.e., node n is used by sensor s. We use the
notation

di
s(n) for the slice that sensor s assigns to node n.

That is, we refer to dis as the assignment by sensor s, and todi
s as its inverse.

A. Visual feature extraction

Each processing node n computes local visual features
from the image slices assigned it. The computation of local
features starts with interest point detection in an image, by
applying a blob detector or an edge detector at every pixel of
an image [32], [33], [8]. For each pixel, the detector computes
a response score based on a square area centered around it. We
denote the side length of the square normalized by the width
of the image by 2o. The side length 2ow of the square (in
pixels) depends on the applied detector.

A pixel is identified as an interest point if the response
score exceeds the detection threshold ϑ ∈ Θ ⊆ R+. The
time it takes to detect interest points can be modeled as a
linear function of image size in pixels and of the number
ξis,v = fi(x

i
s,v, x

i
s,v−1) of interest points detected; this model

was validated recently on a BeagleBone Black single board
computer in [18] and on an Intel Imote2 platform in [17]. We
can thus model the detection time for slice v from sensor s at
processing node n as a function of the image slice width yis,v
and of the number ξis,v of interest points detected in the image
slice as an affine function Pn(yis,v +αfξ

i
s,v), where Pn is the

per unit processing time of node n. Note that ξis,v is unknown
before processing image slice v, but efficient low-complexity
predictors exist, such as the last value predictor [18].

After detection, a feature descriptor is extracted for each
interest point by comparing pixel intensities. The time it
takes to extract the descriptors can be modeled as a linear
function of the number ξis,v of interest points detected, as
shown in [18]. We can thus model the detection and extraction
time as Pn(yis,v + (αf + αe)ξ

i
s,v) = Pn(yis,v + αdξ

i
s,v). We

consider that αf , αe and thus αd are the same for all processing
nodes, which is reasonable if the nodes have a similar computer
architecture (e.g., instruction set).

In applications where features extracted from images cap-
tured by multiple cameras are needed, e.g., in the case of



multi-camera tracking for updating a hidden-Markov model or
a particle filter, the extraction of the features from all images
should finish at the same time. We thus consider that if a
processing node n has to process image slices from different
sensors simultaneously, then it allocates its processing power in
a way that ensures that the processing of all slices is completed
at the same time.

B. Communication Model

The nodes communicate using a wireless communication
protocol, such as IEEE 802.15.4 or IEEE 802.11, in which
transmissions suffer from packet losses due to wireless channel
impairments. As measurement studies show [34], [35], the
loss burst lengths at the receiver have low mean and variance
in the order of a couple of frames [36], [37]. Therefore, a
widely used model of the loss process is a low-order Markov-
chain, with fast decaying correlation and short mixing time. In
the system we consider, the amount of data to be transmitted
to the processing nodes is relatively large, and therefore it
is reasonable to model the average transmission time from
sensor s to processing node n as a linear function of the
amount of transmitted data. We denote the transmission time
coefficient by Cs,n, which can be interpreted as the average per
image transmission time, including potential retransmissions.
As the throughput is close to stationary over short timescales,
Cs,n can be estimated [38]. When there are several sensors
transmitting data, the MAC protocol provides airtime fairness
for the transmitters [39], thus the actual transmission time co-
efficient is proportional to the number of sensors transmitting.
For example, when there are S sensors transmitting, the actual
transmission time coefficient is SCs,n.

Recall that interest point detection involves applying a
square filter of size 2o at each pixel. Thus, for correct op-
eration, each slice v has to be appended by an overlap area of
width o on one or both sides. The resulting regions of overlap
in adjacent slices could in principle be transmitted in multicast
to the appropriate processing nodes, but experimental results
show that multicast transmission suffers from low throughput
in practice due to lack of link layer retransmissions and missing
channel quality information [40], we thus consider that all data
transmissions are done using unicast.

The processing nodes can receive data and perform pro-
cessing simultaneously. Thus, a processing node can start
processing slice v from sensor s after it has received o (for
v = 1) and 2o (for 1 < v ≤ V is ) worth of data. Motivated by
the rapid increase of 802.11 wireless transmission capacities,
we consider that processing is slower than transmission, i.e.,

minnPn(1 + αd) ≥ Smax
s,n

Cs,n, (1)

and thus processing an image slice takes at least as much time
as receiving it.

IV. COMPLETION TIME AND PROBLEM FORMULATION

Using the model of transmission and processing above,
let us consider the completion time of the processing of
image i ∈ Is captured by sensor s. Figure 1 illustrates the
transmission and processing of slices to N = 3 processing
nodes. Let us denote by tbs,v the time instant when processing
node dis(v) receives the first bit of slice v from sensor s, by tps,v

Figure 1: Transmission and processing schedule of slices from
a single sensor to three processing nodes. ’R’ stands for
receiving the image slice, ’P’ for processing, and ’W’ for
waiting.

the time instant when processing of slice v from sensor s starts
at processing node dis(v) (i.e., after receiving the overlap),
by trs,v the time instant when processing node dis(v) receives
the last bit of slice v from sensor s, and by tcs,v the time
instant when processing of slice v from sensor s is completed
at processing node dis(v).

Observe that the time trs,v− tbs,v it takes node s to transmit
slice v to processing node n depends on the number of sensor
nodes that are transmitting simultaneously, which depends
on the cutpoint location vectors xis′ and on the assignment
functions dis′ of the other sensors. To capture the dependence
of the transmission time on the sensors’ cutpoint location
vectors (xis)s∈S and assignment functions (dis)s∈S , we define
the experienced transmission time coefficient

C̃s,n(xi,di) =

{
(trs,v − tbs,v)/(yis,v + o) for v = 1, V is
(trs,v − tbs,v)/(yis,v + 2o) for 1 < v < V is

.

(2)

Similarly, the time it takes processing node n to complete
the processing of slice v sent by sensor s depends on whether
or not the processing node has to process slices from other
sensors simultaneously. We define the experienced process-
ing time coefficient of sensor s at processing node n as
P̃s,n(xi,di) = (tcs,v − tps,v)/(yis,v + αdξ

i
s,v).

We can express the mean completion time of slice v
delegated by sensor s to processing node n = dis(v) as a
function of the experienced transmission time coefficients and
of the experienced processing time coefficients. For the first
slice, i.e., n = dis(1), we have

T is,n(xi,di) = C̃s,n(xi,di)o+ P̃s,n(xi,di)(yis,1 + αdξ
i
s,1).

(3)
For the remaining slices, i.e., n = dis(v), v > 1, the completion
time depends also on the transmission times of previous slices

T is,n(xi,di) = C̃s,dis(1)(x
i,di)[yis,1 + o] + C̃s,n(xi,di)2o

+

v−1∑
ν=2

C̃s,dis(ν)(x
i,di)[yis,ν + 2o]

+ P̃s,n(xi,di)(yis,v + αdξ
i
s,v). (4)

Finally, we define the completion time of image i for sensor
s as the completion time of the processing node that finishes



last
T is(x

i,di) = max
n∈dis

(T is,n(xi,di)). (5)

Observe that the maximum is taken only over the processing
nodes used by sensor s.

A. Completion Time Minimization

Given the set of sensor nodes S, the set of processing
nodes N , the transmission and processing time coefficients
Cs,n and Pn, we can formulate the problem of minimizing
the completion time for a single image i as a combinatorial
optimization problem

min
(xi,di)

t (6)

s.t.
T is(x

i,di) ≤ t ∀s ∈ S (7)
xis,v−1 − xis,v ≤ −o 1 ≤ v ≤ V is (8)

xis,vw ∈ {1, . . . , w} 1 ≤ v ≤ V is (9)

where w is the width of the image in pixels. Solving this
optimization problem in the considered VSN scenario faces
three challenges. First, the solution has to consider all profiles
of partial permutations (dis)s∈S , and for each profile find the
optimal allocation vector xi. Thus, given the computational
constraints in the sensors it may be infeasible to solve even
moderate instances of the problem. Second, even if every
sensor could solve the optimization problem, there may be
multiple solutions, and deciding which solution to use would
require communication between the sensors, which introduces
delay. Third, the sensors may not have sufficient information to
formulate the optimization problem, e.g., because the interest
point distribution is unknown before processing an image. We
are thus interested in fully distributed solutions that require no
communication between the sensors.

V. DISTRIBUTED ALGORITHMS

We consider distributed solutions in which the sensors use
information they can observe (e.g., measure) or they may
receive from the processing nodes. We denote the information
available to sensor s before processing image i by Υi

s.

To make the information Υi
s explicit, we intro-

duce the mean expected transmission time coefficient
C̄s,n(xis, d

i
s|Υi

s), and the mean expected processing time coef-
ficient P̄s,n(xis, d

i
s|Υi

s). Thus, based on the information Υi
s, the

expected mean completion time of sensor s can be expressed
for n = dis(1) as

T̄ is,n(xis, d
i
s|Υi

s) = C̄s,n(xis, d
i
s|Υi

s)o (10)

+ P̄s,n(xis, d
i
s|Υi

s)(y
i
s,1 + αdξ

i
s,1),

and for the remaining slices, i.e., n = dis(v), v > 1, we have

T̄ is,n(xis, d
i
s|Υi

s) = C̄s,dis(1)(x
i
s, d

i
s|Υi

s)[y
i
s,1 + o] (11)

+

v−1∑
ν=2

C̄s,dis(ν)(x
i
s, d

i
s|Υi

s)[y
i
s,ν + 2o]

+ C̄s,n(xis, d
i
s|Υi

s)2o

+ P̄s,n(xis, d
i
s|Υi

s)(y
i
s,v + αdξ

i
s,v).

Finally, sensor s aims to minimize its expected completion
time

T̄ is(x
i
s, d

i
s|Υi

s) = max
n∈dis

T̄ is,n(xis, d
i
s|Υi

s). (12)

The times when the sensors can revise their allocations is
determined by the revision opportunity, which can be either
synchronous or asynchronous.

Definition 1. Revision opportunity: Asynchronous revision
allows one sensor s ∈ S to update its allocation upon each
image i. Synchronous revision allows every sensor to update
its allocation upon every image i.

While in a VSN synchronous revision is easy to imple-
ment, asynchronous revision could, e.g., be implemented by
configuring a static revision order through modulo division of
the image sequence number.

A basic requirement in networked system design is to have
predictable, constant performance. For a distributed algorithm,
constant system performance can be guaranteed if the algo-
rithm reaches an allocation at which the sensors would settle,
and thus the completion time would remain constant, assuming
that the image contents do not change.

Definition 2. Equilibrium: An equilibrium is an assignment
profile (dis)s∈S and (xis)s∈S compared to which no sensor
s can decrease its expected completion time by deviating
unilaterally, given the information Υi

s.

In the case of perfect information (i.e., Υi
s contains all

transmission time coefficients, processing time coefficients
and interest point distributions), the notion of an equilibrium
corresponds to the notion of a Nash equilibrium in game
theory [23], [25].

In the following we consider and analyze three different
models of information Υi

s that the sensors base their revisions
upon. We define an algorithm to be the combination of the
revision opportunity and of the revision made by the sensors
based on the information available to them. For the analysis
we assume that the interest points are evenly spaced along
the horizontal axis in every image, we can thus let αd = 0.
For notational convenience we omit the index i whenever the
expected transmission time and processing time coefficients
are used.

A. Measurement Only (MO) Information

We start with considering a system with no signaling
between the processing nodes and the sensor nodes, thus, all
parameters need to be estimated by the sensors. We call this the
measurement only (MO) scenario. Sensor s can measure the
experienced transmission time coefficient C̃s,n to processing
node n ∈ dis, and it can measure the experienced processing
time coefficient P̃n of processing node n ∈ dis. In lack of more
information, sensor s would estimate the sensitivity of the
completion time at node n to the slice width as

dtcs,n
dyi

s,dis(v)

= P̃n,

and would use it as follows.

Let us consider sensor s and let us derive the optimal
offloading for a particular assignment function ds, given
C̄s,n = C̃s,n and P̄n = P̃n. In order to compute the optimal



assignment ds and the optimal allocation xs, we recall a
fundamental result from divisible load theory [20].

Lemma 1. The completion time T is for sensor s is minimized
if all processing nodes n ∈ ds complete processing at the
same time. Furthermore, if all processing time coefficients are
equal then the optimal assignment is in increasing order of
the transmission time coefficients Cs,n (i.e., use the node with
fastest link first).

This result is illustrated in Figure 1 for N = 3 processing
nodes. The fact that at optimality all used processing nodes
n ∈ ds complete processing at the same time allows us to
establish a relationship between the optimal slice widths for a
particular assignment ds as

P̄ds(1)ys,1 = C̄s,ds(1)ys,1 + C̄s,ds(2)2o+ P̄ds(2)ys,2 (13)
P̄ds(2)ys,2 = C̄s,ds(2)ys,2 + C̄s,ds(3)2o+ P̄ds(3)ys,3 (14)
. . .

P̄ds(V−1)ys,V−1 = C̄s,ds(V−1)ys,V + C̄s,ds(V )2o+ P̄ds(V )ys,V .
(15)

We can use the above equations to formulate a recursive
expression for the normalized width of slices 1 ≤ v < V
as

ys,v =
2oC̄s,ds(v+1)

P̄ds(v) − C̄s,ds(v)

+
P̄ds(v+1)

P̄ds(v) − C̄s,ds(v)

ys,v+1, (16)

and together with the normalization constraint
∑V
v=1 ys,v = 1

we can compute the optimal allocation vector. Based on this
recursive expression we can formulate the following result.

Lemma 2. Given an assignment function ds, the optimal slice
widths y∗s,v are insensitive to the scaling of the expected trans-
mission time coefficients C̄s,n and of the expected processing
time coefficients P̄n by the same factor σ > 0.

Proof: Observe that based on (16) the ratio ys,v/ys,v+1

does not change as long as the ratios C̄s,ds(v+1)

P̄ds(v)−C̄s,ds(v)
and

P̄ds(v+1)

P̄ds(v)−C̄s,ds(v)
are unchanged. Since the optimal slice widths

are obtained by using the fact that
∑V
v=1 ys,v = 1, the optimal

slice widths y∗s,v are only a function of ys,v/ys,V , and thus the
result follows.

Lemma 3. Let d∗s be the assignment function that together with
cutpoint location vector x∗s minimizes the completion time for
sensor s. Then d∗s and x∗s are optimal after scaling all expected
transmission time coefficients C̄s,n and all expected processing
time coefficients Pn by the same factor σ > 0.

Proof: Observe that by Lemma 2, the cutpoint location
vector x∗s remains optimal for d∗s after scaling. Furthermore,
the completion time is a linear function of the transmission and
of the processing time coefficients, and thus all completion
times Ts(xs, ds) are scaled by σ. Thus, T̄s(x∗s, d

∗
s) remains

minimal after scaling.

We are now ready to prove a sufficient condition for an
equilibrium allocation to exist for the MO scenario.

Theorem 1. Consider a VSN with symmetric transmission time
coefficients Cs,n = Cs′,n,∀s, s′ ∈ S , and denote by d∗s and

by x∗s the assignment function and the corresponding cutpoint
location vector that are optimal for C̃s,n = Cs,n and P̃n = Pn,
i.e., when s is the only sensor in the system. If the sensors
use all processing nodes, i.e., d∗s = N , then an equilibrium
allocation exists under MO, and (d∗s)s∈S and (x∗s)s∈S is an
equilibrium allocation profile.

Proof: Observe that for every sensor s the experienced
transmission time coefficients C̃s,n = S × Cs,n and the
experienced processing time coefficients P̃n = S × Pn. By
Lemma 3 the optimal assignment function d∗s and the optimal
cutpoint location vector x∗s are insensitive to scaling and thus
they remain optimal for all sensors. Consequently, (d∗s, x

∗
s)s∈S

is an equilibrium.

Thus, an equilibrium may exist, and synchronous revision
starting from an appropriate initial allocation (d∗s and x∗s)
would reach an equilibrium after one revision. It is thus
important to understand whether, in general, the completion
time would be minimal in an equilibrium. The following result
shows that this is not the case.

Proposition 1. An equilibrium allocation under the MO sce-
nario may not be optimal.

Proof: We prove the proposition through an example. Let
S = 2, N = 2, Cs,n = 1 and Pn = 5, o = 0.1. Then, in
isolation d∗s = (1, 2), x∗s = (0, 5.2

9 , 1), which is an equilibrium
according to Theorem 1, with completion time T ∗s = 5.98. By
the assignment function of sensor 2 to d∗s = (2, 1), with the
same cutpoint location vectors x∗s = (0, 5.2

9 , 1) the completion
time is Ts = 5.2 < T ∗s , thus d∗s = (1, 2), x∗s cannot be optimal.

Thus, while the MO scenario requires no signaling, even if
sensors would converge to an equilibrium using synchronous
or asynchronous revisions, the performance may not be opti-
mal.

B. Transmission Time (TT) Information

In the second scenario each sensor can measure its trans-
mission and processing time coefficients as in the MO sce-
nario. Besides, upon completion, every processing node n
broadcasts to each sensor s its processing time coefficient
Pn, and the times (tb

s′,

di
s′ (n)

, tr
s′,

di
s′ (n)

) and the corresponding

slice widths yi
s′,

di
s′ (n)

for all sensors that used node n, i.e.,

s′ ∈ {s′|∃v s.t. dis′(v) = n}. We refer to this as the
transmission time (TT) scenario.

Observe that (tb
s′,

di
s′ (n)

− tr
s′,

di
s′ (n)

) is a known linear

function of yi
s′,

di
s′ (n)

and of the transmission time coefficient

Cs′,n, and thus every sensor s can compute Cs′,n for n ∈ dis′ .
The sensors can also compute the time tp

s′,

di
s′ (n)

for every
processing node n.

In order to get analytic insight into the problem, let us make
the simplifying assumption that the experienced transmission
times do not change as an effect of the sensors’ assignments.
Under this simplifying assumption we can show that an
equilibrium allocation exists for the TT scenario.



Theorem 2. There is an equilibrium allocation (x∗,d∗) such
that no sensor can decrease its completion time by unilaterally
changing its allocation.

Proof: For an allocation (x,d) let us define the vector
τ(x,d) = (Ts,1, . . . , Ts,N ) of completion times sorted in
decreasing order, i.e., Ts,1(x,d) ≥ Ts,2(x,d), etc.

Let us now consider that every sensor s chooses a cutpoint
location vector x1

s and an assignment vector d1
s that minimizes

its completion time assuming there are no other sensors. We
refer to this initial assignment as (x1,d1).

Let us consider now that given assignment (xi,di), i ≥ 1,
a single sensor s revises its assignment and/or allocation to
(x′s, d

′
s) and thereby it minimizes its completion time given

the assignments di
−s and allocations xi

−s of the other sensors,
i.e.,

Ts((x
′
s,x

i
−s), (d

′
s,d

i
−s)) < Ts(x

i,di). (17)

Let us denote by (xi+1,di+1) = ((x′s,x
i
−s), (d

′
s,d

i
−s)) the

resulting assignment profile. Observe that (17) implies that

maxn∈d′sTs,n((x′s,x
i
−s), (d

′
s,d

i
−s)) < maxn∈dsT

n
s (xi,di).

(18)
At the same time, for n 6∈ d′s we have
Tns ((x′s,x

i
−s), (d

′
s,d

i
−s)) ≤ Ts(xi,di). Thus,

τ(xi+1,di+1) <L τ(xi,di), (19)

where <L stands for lexicographically smaller. Since among
all vectors τ of ordered completion times there is a vector
that is lexicographically minimal, the vector that corresponds
to all sensors completing at the same time. Thus, there is an
allocation (x,d) compared to which no sensor can decrease
its completion time.

Observe that the proof is based on an asynchronous re-
vision opportunity. A consequence of the proof is that using
asynchronous revision the sensors can reach an equilibrium in
the TT scenario.

Corollary 1. Assume that sensors follow the asynchronous
revision opportunity. Then the sensors’ allocations converge
to an equilibrium under the TT scenario.

Thus, using asynchronous revision under the TT scenario
guarantees convergence to equilibrium. Unfortunately, this
result cannot be extended to the case of synchronous revision,
as shown by the following example.

Example 1. Let S = {1, 2}, N = {1, 2}, Cs,1 = 1, Cs,2 = 2,
Pn = 5, and o = 0.1. Let the initial assignment be d1

1 =
(1, 2), d1

2 = (2, 1) and the allocations x1
s = (0, 0.6, 1). Then

T 1 = (5.2, 5.4) and the senors will update their allocations
to x2

1 = (0, 0.62, 1) and x2
2 = (0, 0.58, 1), which results in

T 2 = (5.4, 5.2). The next allocation is x3
s = (0, 0.6, 1) = x1

s,
thus the sensors will cycle between these two allocations.

Nonetheless, it is easy to verify that the cycle in the above
example can be avoided if upon processing image i sensor s
uses xis = 1

Sx
′
s + S−1

S xi−1
s , as in this case the sensors would

reach the equilibrium x2
1 = (0, 0.61, 1) and x2

2 = (0, 0.59, 1) in
one step. We call this revision rule the synchronous/S revision.

C. Processing Time (PT) Information

The third scenario is between the MO and the TT scenarios
in terms of available information. Each sensor can measure its
transmission and processing time coefficients as in the previous
scenario. Besides, upon completion, every processing node
broadcasts to each sensor its processing time coefficient Pn and
the time tpn = mins′(t

p

s′,

di
s′ (n)

) when it started the processing.
We refer to this as the processing time (PT) scenario.

The time tcs,v at which the processing of slice v completes
satisfies

tcs,v = min
s′

(tp
s′,

di
s′ (n)

) + Pn(yis,v + αdξ
i
s,v) (20)

+ Pn
∑

s′∈S\{s}

(yi
s′,

di
s′ (n)

+ αdξ
i
s′,

di
s′ (n)

), (21)

and hence sensor s is able to compute the total workload that
n received from the other sensors (i.e., (21)), as it knows the
time when n started to process the first slice (the first term in
(20)). Furthermore, it can compute the remaining workload at
tps,v as (tcs,v − tps,v)/Pn − (yis,v + αdξ

i
s,v).

Based on these data, sensor s can estimate the sensitivity
of the experienced processing time coefficient at node n to
the slice width as dP̃s,n

dyi
s,ds(v)

= Pn as long as tps,v + Pn(yis,v +

αdξ
i
s,v) < tpn, and s can influence tps,v at node n through the

assignment function dis and the cutpoint location vector xis,
and can use these to compute the expected completion time.
In what follows we investigate the convergence properties and
the resulting completion times using simulations.

VI. NUMERICAL RESULTS

We consider three VSN topologies for the numerical eval-
uation. In the first topology the system consists of S = 2
sensors and N = 4 processing nodes. The transmission time
coefficients are Cs,n = 0.3 s/image, ∀s ∈ S, n ∈ N . In this
topology all processing nodes are equivalent from the sensors’
points of view, it is only the interaction between the sensors
that affects the behaviour of the algorithms. We refer to this
topology as Homogeneous. Observe that this topology satisfies
the conditions of Theorem 1 and of Theorem 2, and thus an
equilibrium allocation exists for the MO and the TT scenarios.

In the second topology we consider a system with S = 4
sensor nodes and N = 4 processing nodes. The transmission
time coefficients are

C =

0.25 0.25 0.05 0.05
0.05 0.25 0.25 0.05
0.05 0.05 0.25 0.25
0.25 0.05 0.05 0.25

 s/image,

which corresponds to a system where each sensor is located at
a distinct corner of a square, e.g., directed towards the center
of the square, and a processing node is placed at the midpoint
of each edge. We refer to this topology as Square.

In the third topology there are S = 2 sensors, and N =
2 to N = 5 processing nodes. The two sensors are at two
adjacent corners of a square, and the two first processing nodes
at the remaining two corners. The remaining processing nodes
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Figure 2: Cumulative distribution function of the completion time
for the Homogeneous topology.
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Figure 3: Cumulative distribution function of the completion time
for the Square topology.
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Figure 4: Mean, minimum and maximum completion times vs.
number of nodes for the Line topology.

are placed on the edge connecting the first two nodes at even
intervals. The transmission time coefficients for N = 5 are

C =

(
0.050 0.063 0.100 0.163 0.250
0.250 0.163 0.100 0.063 0.050

)
s/image.

We refer to this topology as the Line topology.

For each topology we evaluate the completion time of
the system under the MO, PT, and TT scenarios with both
asynchronous and synchronous revisions, i.e., 6 algorithms,
and compare the results to the optimal completion time. For
obtaining an initial estimate of the transmission and processing
time coefficients, the sensors use a bootstrap cutpoint location
vector xis in which yis,n = max(o, 1/N).

A. Convergence vs. Performance

We first evaluate the algorithms on an image sequence in
which every image has a uniform interest point distribution,
which is the case on average [30], [31], and we can thus use
αd = 0. For the overlap we use o = 0.06, which corresponds to
a filter width of 84 pixels in an image of width w = 720 pixels.
The processing time coefficient is Pn = 1 s/img for all process-
ing nodes, and serves as a reference: a single processing node
would complete processing an image in 1 second of time. This
configuration allows us to observe the convergence properties
of the algorithms and how convergence affects the completion
time.

Figure 2 shows the cumulative distribution function (CDF)
of the completion times for the Homogeneous topology for the

three scenarios, using the asynchronous and the synchronous/S
revision. To interpret the figure, observe that an algorithm
will produce a constant completion time after it reaches an
equilibrium, hence a step function-like CDF. The TT scenario
results in approximately the same completion time at equilib-
rium for synchronous and for asynchronous revision, hence the
two curves overlap.

Based on the figure, we can see that all algorithms reach
an equilibrium after a few images, except for the asyn-
chronous MO algorithm. The reason for the non-convergence
of the asynchronous MO algorithm is twofold. First, when
sensor s updates its slice sizes, its estimates P̃s,n of the
processing time coefficients are correct only if the proportion
of the slice size from s to the total size of the slices from all
sensors remains constant. Second, as slices evolve based on the
experienced processing time coefficients, eventually an image
i is reached where the sensors will change the assignment
function dis, and changing the assignment function has a large
impact on the experienced processing time coefficients of all
sensors in the system, preventing convergence.

The non-convergence of the asynchronous MO algorithm
is remarkable with respect to the game theoretical literature
of learning. Observe that the MO scenario corresponds to
a best reply dynamics based on imperfect information. For
game theoretical models of learning under perfect information,
e.g., using best- and better reply dynamics and fictitious
play, convergence under asynchronous revision is typically
necessary but not sufficient for convergence under synchronous
revision [23], [24]. In contrast, for the MO scenario con-
vergence happens under synchronous revision, but not under
asynchronous revision, which emphasizes the importance of
information availability for the convergence of learning rules
(c.f., Theorem 1).

It is interesting to note that even though all but the
asynchronous MO algorithm converge after a few images, only
the average system completion time achieved in equilibrium
for the TT scenario is lower than that of the non-convergent
asynchronous MO algorithm, which is 0.98 s. This observation
raises an important system design question, i.e., whether it is
preferable to have a predictable constant but higher completion
time or a lower average completion time that changes over
time.

Figure 3 shows the CDF of the completion times for the
Square topology for the three scenarios combined with the
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Figure 5: Cumulative distribution function of the completion time
for the Square topology with the Parking lot data set.
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Figure 6: Mean, minimum and maximum completion time for
the Square topology and the Parking lot data set.

two revision rules. We see that under this topology neither the
synchronous nor the asynchronous MO algorithms converge,
while all other algorithms converge within a few revisions.
Nonetheless, non-convergence does not mean that the syn-
chronous and the asynchronous MO algorithms exhibit worst
performance (the average completion times are 2.14 s and
2.02 s, respectively). Among the convergent algorithms it is
interesting to note the difference between the synchronous
and the asynchronous TT algorithms, which highlights the
importance of the revision opportunity used.

Figure 4 shows the mean completion times obtained with
each of the six algorithms maximum completion times, i.e.,
the variation around the mean. The figure shows that the
mean completion times decrease with the number of processing
nodes, but at the same time the variation tends to increase.
Observe that under the PT and the TT scenarios the algo-
rithms converge, hence the minimum is close to the average
completion time.

We can conclude that the topology has a major impact
on which algorithms converge to equilibrium, but reaching an
equilibrium does not guarantee low completion times.

B. Trace-based Evaluation

We now turn to the evaluation of the algorithms using a
measured multi-camera surveillance video trace. The trace we
use is the Parking lot surveillance video data set used for the
evaluation of algorithms for tracking humans [41]. The data
set consists of video traces captured in a parking lot by 4
surveillance cameras at a resolution of 720 × 480 pixels and
frame rates of 30 fps, showing 9 people moving around. The
cameras are approximately located at the corners of a square
and are facing the center of the square, and thus we use the
Square topology for the evaluation. Given the topology, the
optimal solution is for each sensor to use one of the closer
processing nodes.

We use BRISK [8] for detecting local visual features with
a filter width of up to 84 pixels (i.e., o = 0.06), and use the top
400 interest points to compute the interest point distribution
of each frame. We do not perform background subtraction on
the traces prior to interest point detection, and thus there are a
number of interest points belonging to the background that do
not change their locations. As the sensor nodes can not know
the distribution of interest points in image i before image i

has been processed, they assume that image i+1 has the same
interest point distribution as image i. This corresponds to the
last value predictor used in [18], which was shown to provide a
good trade-off between prediction accuracy and computational
complexity. We use a processing time coefficient of Pn =
1
6

s/img and αd = 5; these match measured data reported in [18]
for a target of 400 interest points using BRISK. Again, as
a reference, with these parameters a single processing node
would complete processing an image in 1 second of time.

Figure 5 shows the CDF of the completion times using
the six algorithms based on 50 video frames. We see that the
algorithms lead to increased completion times, and they exhibit
very different behaviour compared to the results with uniform
interest point distribution (c.f. Fig. 3). Furthermore, it is for
the TT scenario that performance deteriorates most.

To facilitate the comparison of the completion times,
Figure 6 shows the mean, minimum and maximum completion
times for the different algorithms, and the optimal completion
time. Based on the averages, the results for the PT scenario are
most consistent and thus processing time information may be
the most robust signaling scheme to be used when the interest
point distributions change due to the image content.

VII. CONCLUSION AND FUTURE WORK

We considered the problem of minimizing the completion
time of distributed feature extraction in visual sensor networks
consisting of several camera sensors and image processing
nodes. As centralized optimization would require excessive
control information exchange, we considered distributed so-
lutions where each camera sensor decides locally about the
size and the allocation of the image slices. We defined three
schemes that differ in terms of the information available to
the sensors, and evaluated synchronous and asynchronous
revisions. Our results show that for images with uniform
interest point distribution, transmission and processing time
information from the processing nodes helps to achieve equi-
librium and close to optimal completion time. Convergence
however does not necessarily mean good performance, and
in some scenarios the non-convergent scheme, based on local
measurements only, outperforms convergent solutions. Eval-
uations with real traces showed that most of the algorithms
do not converge, and lead to low performance, reflecting that
under changing image content, tighter cooperation among the



sensor nodes may be necessary. Therefore, as future work, we
plan to design algorithms with a central coordinator to improve
system performance.
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