
LT Codes Based Distributed Coding for Efficient
Distributed Storage in Wireless Sensor Networks

Xiucai Ye and Jie Li
University of Tsukuba, Japan

Wen-Tsuen Chen
Academia Sinica, Taiwan

Feilong Tang
Shanghai Jiao Tong University, China

Abstract—Fountain codes are linear codes with low complex-
ities. LT (Luby Transform) codes, which are a special class of
Fountain codes, are widely used in Wireless Sensor Networks
(WSNs) to increase the robustness of data storage and efficiency
of data retrieval. In this paper, we propose a novel LT codes
based Distributed Coding (LTDC) scheme for efficient distributed
storage in WSNs. In the proposed LTDC scheme, we use random
walks to disseminate sensed data from a source sensor node
to a random subset of sensor nodes by multicast. As long as
a data packet stops at an ending sensor node of a random
walk, the ending sensor node encodes this data packet in a main
packet (an encoded data packet) with a certain probability. By
adjusting the main packet with the un-encoded data packets, the
number of data packets encoded in the main packet follows the
distribution of LT codes. The data collector is able to decode
the original data by querying any subset of sensor nodes. The
theoretical analysis and simulation results have demonstrated
that the proposed LTDC scheme has lower data dissemination
cost and lower storage overhead, while maintains the same level
of fault tolerance as the original LT codes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of a large num-
ber of sensor nodes, which has low CPU power, small
bandwidth, limited battery energy and limited storage space
[1]. In many applications, WSNs are usually deployed in a
challenging environment where human involvement is limited
[2]. In such environment, it is not feasible to set up a powered
base station with Internet connection. An approach is to use
mobile base station to perform data collection periodically [3].
The sensor nodes collaboratively store the sensed data over a
period of time by themselves. The mobile base station collects
the sensed data from the sensor nodes.

Due to limited energy and hostile environment, sensor nodes
may fail suddenly and unpredictably, resulting in the loss of
sensed data. To provide robust data retrieval, it is desirable to
distribute the sensed data throughout the network for redundant
storage [4], [5]. Thus, the mobile base station can retrieve the
sensed data from any subset of sensor nodes, even after some
sensor nodes have failed.

Coding is a powerful tool for redundant data storage.
Distributed coding, which distributes the encoding operations
to multiple nodes, has been widely used in WSNs [6]. Since
random linear codes are easily implemented in a distributed
way, many distributed coding schemes based on random linear
codes are proposed for distributed storage in WSNs (e.g., [7],
[8]). Random linear codes have high decoding complexity.

Fountain codes are a promising solution to reduce the decoding
complexity in WSNs [9]. LT (Luby Transform) codes, which
are the first implementation of Fountain codes, are widely used
in WSNs.

Dimakis et al. [9] firstly addressed the problem of con-
structing Fountain codes for distributed storage. The fountain
codes are constructed over grid network by using geographic
routing. Kamar et al. [10] constructed special fountain codes
called growth codes to improve the data recovery at the base
station. Similar to the problem in [9], location information was
required. Each sensor node sent data to the base station and
should know its location.

Lin et al. [11] firstly used random walks to construct
Fountain codes in WSNs. Random walk is routing approach
without location information [12]. The authors proposed an
interesting scheme called Exact Distributed Fountain Codes
(EDFC). EDFC has high level of network reliability. However,
the storage overhead in EDFC is large for achieving the
expected code degree distribution.

Inspired by [11], many distributed schemes applied random
walks to construct Fountain codes in WSNs [13], [14], [15].
Kong et al. [13] proposed a LT Codes based Distributed
Storage (LTCDS) scheme. LTCDS has low storage overhead.
However, each data packet is disseminated to all sensor
nodes at least once, which cause high data transmission cost.
Jafarizadeh et al. [14] shared the same consideration in [13]
and proposed a distributed scheme, which consumed lower
data transmission cost than LTCDS. However, similar to [13],
the code degree distribution in each sensor node is unstable,
which may make the network reliability no so high.

To achieve high network reliability, meanwhile reduce both
the data storage overhead and the data dissemination cost, in
this paper, we propose a novel LT codes based Distributed
Coding (LTDC) scheme. In LTDC, each data packet is dis-
seminated to a random subset of sensor nodes by random
walks. The main contributions of this paper are summarized
as follows.
• We proposed the LTDC scheme to improve the efficiency

of random walks in data dissemination by using a vari-
ant of the Metropolis-Hastings algorithm, which only
requires local information available in each sensor node.

• The proposed LTDC scheme takes advantage of the
shared nature of wireless medium to reduce the data
dissemination cost in random walks by multicast.

• The proposed LTDC scheme reduces the storage overheadISBN 978-3-901882-68-5 c© 2015 IFIP

significantly. Each sensor node encodes the stopping data
packets in a main packet with a certain probability,
without storing all the original stopping data packets.

• The proposed LTDC scheme has high network reliability,
which maintains the same level of fault tolerance as the
original LT codes. By adjusting the main packet in each
sensor node, the number of data packets encoded in each
main packet follows the distribution of LT codes.

Note that EDFC [11] is the first to use random walks to
construct LT codes in WSNs. EDFC is influential and typical
due to the salient contribution of using Metropolis algorithm in
random walks for data dissemination, which not only reduces
the length of random walks, but also makes the number of data
packets for encoding follows the distribution of LT codes. In
the proposed LTDC scheme, we also use random walks to
construct LT codes and apply a variant of the Metropolis-
Hastings algorithm to reduce the length of random walks.
However, the data dissemination method and data encoding
method in our LTDC are more efficient than EDFC, which
further reduces the data dissemination cost and the storage
overhead, meanwhile makes the number of data packets for
encoding follow the distribution of LT codes. To the best of
our knowledge, no previous scheme is compared with EDFC.
We will compare LTDC with EDFC in the evaluation.

The remainder of this paper is organized as follows. The
preliminaries and system description are presented in Section
II and Section III, respectively. We present the proposed LT
Codes based Distributed Coding (LTDC) scheme in Section
IV. The performance evaluation is presented in Section V. We
conclude the paper in Section VI.

II. PRELIMINARIES

A. Fountain Codes and LT Codes

Fountain codes are linear codes with low encoding and de-
coding complexities [9]. The encoded data packet is generated
by the exclusive-or (XOR) of a subset of data packets. The
original data packets can be decoded from any subset of the
encoded packets whose size is equal to or only slightly greater
than the number of original data packets.

LT (Luby Transform) codes [16] are the first implementation
of Fountain codes, which make Fountain codes work in
practice. By LT codes, K data packets can be decoded from
any subset of K + O(

√
K ln2(K/δ)) encoded data packets

with probability 1 − δ, where 0 < δ < 1. The encoding
and decoding complexities are both O(K ln(K/δ)). The code
degree which is regarded as an important parameter in LT
codes is defined as the number of data packets to generate an
encoded data packet.

In LT codes, the distribution of code degree follows the Ro-
bust Soliton distribution. Since the Robust Soliton distribution
is based on the Ideal Soliton distribution, we first introduce
the Ideal Soliton distribution. Let d denote the code degree of
an encoded data packet. The Ideal Soliton distribution for K
data packets is given by

ρ(i) =

{
1/K, i = 1,
1/i(i− 1), i = 2, 3, ...,K.

Let R = c ln(K/δ)
√
K for some constant c > 0 and

τ(i) =

 R/iK, i = 1, ...,K/R− 1,
R ln(R/δ)/K, i = K/R,
0, i = K/R+ 1, ...,K.

The Robust Soliton distribution for K data packets is defined
as follows.

µ(i) =
ρ(i) + τ(i)

β
, (1)

where β =
∑K

i=1(ρ(i) + τ(i)).
In the encoding process of LT codes, each encoded data

packet is generated independently. To generate an encoded
data packet, the encoder first chooses the code degree d from
the Robust Soliton distribution, and then randomly chooses d
distinct data packets from the K data packets. The encoded
data packet is the XOR of the d data packets. The decoding
process of LT codes is performed by using the Belief Propa-
gation algorithm [17], which is computationally efficient.

B. Random walks on graphs

Random walks have been widely used for data dissemina-
tion in WSNs [12]. When using random walks to disseminate
a data packet, a source node i first chooses the next hop node
j randomly from the neighbors. When the data packet arrives
at node j, node j randomly chooses the next hop node u from
the neighbors, and so on.

A random walk corresponds to a time-reversible Markov
chain, since the choice of the next hop only depends on the
current node. If a random walk has sufficient length (i.e.,
sufficient steps), the distribution of the random walk stopping
at a particular node converges to the steady-state distribution
π = (π1, π2, ..., πi, ...) of the Markov chain, where πi is the
probability that a random walk stops at node i. The length of
the random walk should be minimized, since it is proportional
to the data dissemination cost. The minimal length of the
random walk to approximate the steady-state distribution can
be reduced by adjusting the transition matrix P = [pij] of the
Markov chain, where pij is the probability that node i chooses
node j as a next hop. Some algorithms for the design of the
transition matrix P have been proposed to reach the steady-
state distribution π, while performing as short as possible ran-
dom walks [18]. The typical algorithms include the maximum-
degree algorithm [19] and the Metropolis-Hastings algorithm
[20], which are easily adaptable to distributed implementation
in WSNs.

In this paper, we use a variant of the Metropolis-Hastings
algorithm [20] to compute the transition matrix P = [pij].
Consider a steady-state distribution π = (π1, π2, ..., πi, ...),
pij is computed as

pij =

min(1/Di, πj/(Djπi)), i 6= j and j ∈ N(i),
0, i 6= j and j /∈ N(i),
1−

∑
i6=j pij , i = j,

(2)
where N(i) denotes the set of neighbors of node i, Di is the
node degree of node i. Note that each sensor node only needs
the local information (i.e., the steady-state probabilities and
the node degrees of its neighbors) to calculate the transition
probability pij . The transition probabilities pij (j ∈ N(i))
entries in the transition matrix P local to node i are referred to
as the probabilistic forwarding table. Each sensor node chooses
the next hops according to the probabilistic forwarding table.
The length of the random walk to approximate the steady-state
distribution π depends on the second largest eigenvalue |λ2|
of P as O(logN/(1− |λ2|)), where |λ2| has been proved to
be less than one [21].

III. SYSTEM DESCRIPTION

We model a WSN as a random geometric graph G(N, r),
where N sensor nodes are distributed uniformly at random in
a finite region, and two sensor nodes can directly communicate
if their distance is within the transmission range r. Each
sensor node has B buffers to store data packets, denoted by
b1, b2,..., bB (i.e., the buffer size of each sensor node is
B). Each buffer can store only one data packet. Consider
that a subset of K sensor nodes, referred to as the source
nodes, generate sensed data periodically. A time period T
consists of three time intervals: data sensing time interval, data
dissemination time interval and data collection time interval.
At the beginning, each source node generates an equal length
data packet containing the sensed data over the sensing time
interval. In the data dissemination interval, the data packets are
disseminated to a random subset of sensor nodes for encoding
by random walks. A data packet stops at an ending sensor
node of a random walk. In the data collection time interval,
a mobile base station queries any subset of sensor nodes to
collect data and performs decoding on the collected data.

Due to the randomization introduced by random walks,
the number of distinct data packets stopping at a sensor
node is uncertain. This number usually does not equal to the
code degree d generated from the Robust Soliton distribution.
Consider that the expected number of distinct data packets
stopping at a sensor node is more than the generated code
degree d. Thus, the sensor node can randomly choose d distinct
data packets from all the stopping data packets to do encoding.

We define expected degree as the expected number of dis-
tinct data packets stopping at a sensor node. And, define actual
degree as the actual number of distinct data packets stopping
at a sensor node. We use ed and ad to denote the expected
degree and the actual degree in a sensor node with generated
code degree d, respectively. Consider that the expected degree
is larger than or equals to the generated code degree, i.e.,
ed ≥ d (d = 1, ...,K). Let xd denote the redundancy for
generated code degree d, where ed = d + xd and xd ≥ 0.
By choosing a sufficiently large xd, the probability that the

actual number of stopping distinct data packets being less than
d (i.e., ad < d) can be made arbitrarily small. Therefore, the
distribution of the number of data packets used in encoding can
be arbitrarily close to the Robust Soliton degree distribution.

Note that two critical parameters should be computed be-
fore data dissemination, which are the number of random
walks launched from each source node and the steady-state
distribution. We use the methods in [11] to compute the two
parameters.

Let w denote the number of random walks launched from
each source node. The number of sensor nodes with generated
code degree d in the network is Nµ(d), where µ(d) is the
probability that a sensor node has generated code degree d,
as defined in equation (1). The expected number of distinct
data packets stopping at a sensor node with generated code
degree d is ed. Thus, the total number of distinct data packets
stopping at the sensor nodes is

∑K
d=1Nµ(d)ed, which equals

to the number of data packets disseminated from the K source
nodes. That is,

K∑
d=1

Nµ(d)ed = wK.

Then,

w =

∑K
d=1Nµ(d)ed

K
. (3)

We show how to compute the steady-state distribution π =
(π1, π2, ..., πK), where πd is the probability that a data packet
stops at a sensor node with generated code degree d. Since
the total number of data packets disseminated from all source
nodes is wK, the expected number of data packets stopping
at this node is wKπd. At the same time, the expected number
of data packets stopping at this node also equals to ed. From
equation (3), the stopping probability πd can be computed as

πd =
ed∑K

i=1Nµ(i)ei
. (4)

IV. PROPOSED LT CODES BASED DISTRIBUTED CODING
SCHEME

In this section, we propose a novel LT codes based
Distributed Coding (LTDC) scheme for efficient distributed
storage in WSNs. LTDC consists of two processes: data
dissemination process and data encoding process. In the data
dissemination process, we use random walks to disseminate a
data packet from a source node to a random subset of sensor
nodes by multicast. In the data encoding process, each sensor
node encodes the stopping data packets in a main packet with
a certain probability, without storing all the stopping data
packets.

Before the data dissemination and data encoding processes,
network initiation is necessary to compute the parameters. The
network initiation includes four steps, which are summarized
as follows.

Step 1: Degree generation. Each sensor node independently
generates a code degree d (d = 1, 2, ...,K) from the Robust
Soliton distribution in equation (1).

0

1

2

3

(b) Disseminate by five transmissions

4

(a) Multicast in one transmission

0

1

2

3

4

1

01
2t =

1

02
2t =

1

03
1t =

Fig. 1. Source node 0 disseminates the data packet to the next hops.

Step 2: Steady-state distribution computation. Each sensor
node computes the steady-state distribution by equation (4).

Step 3: Probabilistic forwarding table computation. Each
sensor node computes the probabilistic forwarding table by
equation (2) based on the steady-state distribution computed
in Step 2.

Step 4: Number of random walks computation. Each source
node computes the number of launched random walks by
equation (3).

A. Data dissemination

In the data dissemination process, each source node dissem-
inates its generated data packet to w random selected sensor
nodes through w random walks by multicast. Let L denote
the length of each random walk. A data packet is transmitted
for L steps in a random walk, and finally stops at an ending
sensor node at the last step. In each step of the random walks
launched by a source node, the sensor node first chooses the
next hops, then multicasts the data packet to all the next
hops. The next hops are chosen independently according to
the probabilistic forwarding table. Let tkij denote the number
of times that node i chooses node j as a next hop in the kth

steps of the random walks. As an example shown in Fig. 1
(a), source node 0 launches five random walks by multicast.
In the first step, source node 0 chooses nodes 1 and 2 as the
next hops twice respectively (i.e., t101 = t102 = 2), and chooses
node 3 as the next hop once (i.e., t103 = 1). It multicasts
the data packet to all the next hops in a single transmission.
Multicast reduces the data transmission times significantly.
Without multicast, source node 0 disseminates the data packet
to the next hops independently. As shown in Fig. 1 (b), source
node 0 disseminates the data packet to nodes 1 and 2 twice,
and to node 3 once. It needs five transmission times.

Note that tkij is also referred to as the number of random
walks assigned to node j from node i in the kth step, since
tkij random walks from node i will go through node j. The
value of k in tkij is also referred to as the step counter for the
assigned random walks. When k = L, i.e., the data packet in
the assign random walks has been transmitted for L steps, node
j will stop the assigned random walks without transmitting
the data packet to other nodes, i.e., the data packet in the
assigned random walks stops at node j. When sensor node i
chooses itself tkii times as the next hops, if k < L in tkii, before
multicasting the data packet, it continues to choose the next
hops tkii times and increases the step counter by one.

To enjoy the shared nature of wireless medium, we design
a new data structure for the data packet generated from the
source node to encapsulate the sensed data, as shown in Fig. 2.

Source node’s

ID
Sensed data

Forwarding header

Ft (i j)

Node j ’ s

ID

Forwarding task to node j

L L

Assigned random

walks

Fig. 2. Data structure of the data packet in node i.

The source node’s ID is to identify each data packet. We use
a forwarding header to assign the forwarding tasks to the next
hops. The forwarding header (in bits) is much smaller than the
sensed data (in bits). Let Ft(ij) denote the forwarding task
from node i to node j, which contains the next hop’s ID (i.e.,
node j’s ID) and the assigned random walks tkij .

When node j receives a data packet from node i, it will
perform the following steps.

Step 1: Node j checks the assigned random walks in Ft(ij)
(e.g., the value of tkij and the value of k). If k = L in tkij , the
tkij assigned random walks stop at node j.

Step 2: Node j calculates the number of random walks that
can be assigned to the next hops. Let mij denote the number
of random walks in Ft(ij) that can be assigned to the next
hops. mij equals to

mij =
∑

1≤k<L

tkij . (5)

Step 3: Node j chooses mij next hops. Each next hop is
chosen independently according to the probabilistic forwarding
table. The step counters are increased by one.

Step 4: Node j updates the forwarding header in the data
packet by attaching the next hops’ ID and the assigned random
walks.

Step 5: Node j multicasts the data packet to all the next
hops simultaneously in a single transmission.

If node j receives another data packet from node v before
step 5, it will check that if this data packet has the same
source node’s ID as the data packet received from node i. If
they have the same source node’s ID, node j will merge the
two received packets by merging the two forwarding tasks
Ft(i, j) and Ft(v, j). Node j repeats step 1, step 2 and
step 3 to Ft(v, j) by checking the assigned random walks
in Ft(v, j), calculating mvj for Ft(v, j), and independently
choosing mvj next hops. Node j merges these next hops’ID
and the assigned random walks from Ft(v, j) with that from
Ft(i, j) into one forwarding header in one data packet. Then
Step 5 is performed to multicast the data packet to all the next
hops.

The data dissemination method in LTDC reduces the data
transmission times significantly. As an example shown in
Fig. 3, source node 0 launches five random walks. The length
of each random walk is two. The transmission times in LTDC
is 4. In the data dissemination method of the EDFC scheme
[11], each random walk is launched independently. For the
same data dissemination case in Fig. 3, the transmission times
in EDFC is 10. Note that in both multicast and unicast, the

0

1

2

3

4

5

6

7

2

14
2t =

1

01
3t =

1

02
2t =

1

03
1t = 8

2

15
1t =

2

26
1t =

2

27
1t =

2

38
1t =

Fig. 3. Source node 0 launches five random walks. The length of each
random walk is 2. The transmission times in EDFC is 4

next hops are chosen from the neighbors of the sensor nodes.
The next hops are chosen independently according to the
probabilistic forwarding table. Thus, the probability that a
neighbor is chosen as a next hop by multicast is the same
as that by unicast.

B. Data encoding

The stopping data packets in a sensor node for encoding
are generated from different source nodes. The jth distinct
stopping data packet in a sensor node is denoted as cj (e.g.,
c1 is the first stopping data packet).

1) Encoding method: As long as a data packet stops at an
ending sensor node in a random walk (i.e., a data packet is
forwarded for L steps in a random walk), the ending sensor
node at the last step encodes this data packet in a main packet
with a certain probability. For a node i with generated code
degree d, the main packet is an encoded data packet which is
aimed at encoding d data packets randomly chosen from all
the distinct stopping data packets. The distinct stopping data
packets which are not encoded in the main packet are stored
as the backup packets. The main packet in node i is denoted as
fi. Each distinct stopping data packet is encoded in the main
packet fi with probability d

ed
. If a data packet is encoded

in the main packet fi, the corresponding source node’s IDs
is also attached in fi. Let C(fi) denote the number of data
packets encoded in fi. Since the actual number of distinct
stopping data packets in node i is ad, the number of data
packets encoded in the main packet fi equals to

C(fi) =
d

ed
· ad. (6)

Since the actual degree ad usually does not equal to the
expected degree ed, C(fi) usually does not equal to d. Each
sensor node uses the backup packets to adjust the main packet
fi. Let Sb denote the set of backup packets. The number of
backup packets equals to

|Sb| = ad − C(fi). (7)

If the main packet fi encodes less than d data packets, node
i will choose some backup packets to adjust fi, i.e., node i will
choose some backup packets to encode in fi. Let 4fi denote
the number of backup packets for adjusting. After encoding
4fi backup packets in fi, the number of data packets encoded
in fi equals to d (or is the closest to d). There are three cases
about ad: 1) ed ≥ ad ≥ d; 2) ad < d; 3) ad > ed. Let 4lfi
denote the number of backup packets that should be encoded
in fi in the lth case.

{ }2 4 5
, ,bS c c c=

1 3 6if c c c= ⊕ ⊕
1 3 6 4 5if c c c c c= ⊕ ⊕ ⊕ ⊕

Adjust

4 5i if f c c= ⊕ ⊕

Fig. 4. In the first case when d = 5, ed = 8 and ad = 6, node i chooses
some backup packets to encode in fi.

In the first case ed ≥ ad ≥ d, from equation (6), C(fi) ≤ d,
i.e., the number of data packets encoded in the main packet
fi is less than or equals to d. The number of backup packets
that should be encoded in fi is

41fi = d− C(fi). (8)

Since ad ≥ d, from equations (7) and (8), we obtain

41fi ≤ |Sb|. (9)

That is, the number of backup packets for adjusting is no more
than |Sb|. Node i will randomly choose 41fi backup packets
from Sb to encode in fi. After encoding 41fi backup packets,
fi encodes d packets.

We take an example to show the data encoding method in
the first case when ed ≥ ad ≥ d. In node i, the generated code
degree is d = 5, the expected degree is ed = 8, and the actual
degree is ad = 6. The stopping data packets are c1, c2, ..., c7.
Each data packet is encoded in fi with probability 5

8 . As shown
in Fig. 4, fi encodes three data packets c1, c3, c6. The set of
backup packets is Sb = {c2, c4, c5}. Since C(fi) = 3 and
d = 5, the number of backup packets that should be encoded
in fi is 4lfi = 2. Thus, node i chooses c4 and c5 from Sb to
encode in fi. After adjusting, fi encodes 5 data packets.

In the second case ad < d, the number of all distinct
stopping data packets in node i is less than d. To make C(fi)
the closest to d, all the backup packets are encoded in fi. The
number of backup packets for adjusting is

42fi = |Sb|. (10)

After adjusting, fi encodes all the distinct stopping data
packets. C(fi) is the closest to d.

In the third case ad > ed, from equation (6), C(fi) > d, i.e.,
the number of data packets encoded in fi will be larger than
d. Thus, node i stops to encode any data packets in fi when
fi has encoded d data packets. In this case, no backup packets
are encoded in fi. That is, the number of backup packets for
adjusting is

43fi = 0. (11)

During data collection, the sensor nodes queried by the
mobile base station will upload the main packets. The data
packets encoded in the main packets affect the decoding of
the original data packets. In EDFC [11], the d data packets for
encoding are randomly chosen from all the distinct stopping
data packets. We show that the probability of a stopping data
packet being encoded in the main packet in LTDC is the same
as that in EDFC through the following theorem.

Theorem 1: The probability of a stopping data packet being
encoded in the main packet in LTDC is the same as that in
EDFC.

Proof. Let PE and PL denote the probability of a stopping
data packet cj being encoded in the main packet fi in EDFC
and LTDC, respectively. We prove that PE = PL.

In EDFC, each sensor node randomly chooses d data
packets from the ad distinct stopping data packets to encode
in the main packet. If ad ≥ d, PE = d

ad
. If ad < d, all the

distinct stopping data packets are encoded in the main packet,
i.e., PE = 1.

In LTDC, a stopping data packet cj may be encoded in the
main packet fi directly after being received, or may be stored
as a backup packet and then chosen to encode in fi. Let PLd

denote the probability that cj is encoded in fi directly and
PLb

denote the probability that cj is encoded in fi after being
stored as a backup packet. Note that PLd

= d
ed

and cj is stored
as a backup packet with probability 1 − d

ed
. If ed ≥ ad ≥ d

(i.e., the first case), 41fi backup packets are chosen from the
|Sb| backup packets to encode in fi. Then,

PLb
= (1− d

ed
)(
41fi
|Sb|

). (12)

Form equations (6), (7), (8) and (12), we can obtain

PL = PLd
+ PLb

=
d

ad
. (13)

If ad > ed (i.e., the third case), none of the backup packets
is chosen to encode in fi (i.e., PLb

= 0). The probability that
cj is encoded in fi directly is PLd

= d
ed

. If ed stopping data
packets have been received, cj is not encoded in fi since fi has
encoded d packets. cj is encoded in fi only if cj is received
before the sensor node has received ed distinct stopping data
packets. The probability that cj is the first received ed distinct
stopping data packets is ed

ea
. Thus,

PL =
ed
ea
· PLd

=
d

ad
. (14)

From equations (13) and (14), we obtain PL = PE if ad ≥ d
(i.e., the first and third cases). If ad < d (i.e., the second case),
all the distinct stopping data packets are encoded in fi, i.e.,
PL = 1. That is PL = PE . �

Since the mobile base station decodes the data packets based
on the collected main packets, Theorem 1 implies that the data
decoding ratios in LTDC and EDFC are almost the same. We
will further evaluate the decoding ratios of LTDC and EDFC
in the simulation.

2) Bounds of the number of backup packets for adjusting:
We show the bounds of the number of backup packets for
adjusting in LTDC.

From equations (9), (10) and (11), the number of backup
packets that should be encoded in fi is

0 ≤ 4fi ≤ |Sb|. (15)

Note that the sensor nodes choose backup packets to adjust fi
in the first and second cases when ad ≤ ed. When ad ≤ ed,
from equation (6), equation (7) can be converted into

|Sb| =
ad
ed
· (ed − d). (16)

Since ad ≤ ed and ed−d = xd, from equation (16), we obtain

|Sb| ≤ xd. (17)

From equations (15) and (17), we obtain the bound of 4fi
as

0 ≤ 4fi ≤ xd. (18)

That is, in LTDC, the number of backup packets for adjusting
is an integer varying from 0 to xd.

3) Storage of the backup packets: Note that only in the
first and second cases when ad ≤ ed, the sensor nodes should
choose the backup packets to encode in fi. We consider the
backup packets storage in the first and second cases when
ad ≤ ed.

Without encoding the backup packets, each buffer can store
only one backup packet. Node i needs |Sb| buffers to store
the set of backup packets Sb. To adjust fi, node i randomly
chooses4fi backup packets to encode in fi.4fi is an integer
from 1 to |Sb|.

The storage overhead can be further reduced by encoding
the backup packets as encoded data packets. Let f ′k denote
the encoded backup packet that are stored in buffer bk, k =
1, 2, ..., B− 1. The main packet fi is stored in buffer bB . The
number of backup packets encoded in f ′k (1 ≤ k ≤ B − 1)
should satisfy

C(f ′k) ≤ 2k−1. (19)

Let c′j denote the jth received backup packet in Sb, j =
1, 2, ..., |Sb|. The backup packets are encoded in the encoded
packets from f ′1 to f ′B−1. That is, the first backup packet
is encoded in f ′1, then the next received backup packets are
encoded in f ′2 until C(f ′k) = 2 and so on.

Node i chooses some encoded backup packets which encode
4fi backup packets to encode in fi. After adjusting, the main
packet is

fi = fi ⊕ f ′p1
· · · ⊕ f ′pr

, (20)

where
C(f ′p1

) + · · ·C(f ′pr
) = 4fi, (21)

f ′pj
is the chosen encoded backup packet, pj is the sequence

number of f ′pj
, r is the total number of chosen encoded backup

packets, j = 1, ..., r.
Note that unless the last encoded backup packet f ′B−1 which

may encode less than 2B−1 backup packets, each f ′k encodes
2k−1 backup packets, k = 1, 2, ..., B − 2. For the sake of
convenience, we consider that if there is C(f ′k) = C(f ′B−1)
(or

∑
k∈{1,..,B−2}

C(f ′k) = C(f ′B−1)), f
′
k (or the combination

of C(f ′k), k ∈ {1, .., B − 2}) has the priority to be encoded
in fi. That is f ′B−1 is encoded in fi only if it encodes 2B−1

backup packets. Thus, equation (21) can be represented as

4fi = v12
0 + v22

1 + · · ·+ vB−12
B−2, (22)

where

vk =

{
1, f ′k is encoded in fi,
0, otherwise. (23)

if
' '

1 1
f c= ' ' '

2 2 3
f c c= ⊕

' ' ' ' '

3 4 5 6 7
f c c c c= ⊕ ⊕ ⊕

1
b

2
b

3
b 4

b

if
' '

1 1
f c= ' ' '

2 2 3
f c c= ⊕

' ' ' ' '

3 4 5 6 7
f c c c c= ⊕ ⊕ ⊕

1
b

2
b

3
b 4

b

' '

4 8
f c=

5
b

(a)

(b)

7bS =

8bS =

Fig. 5. The backup packets are stored as encoded data packets in node i.

We show that 4fi in equation (22) can represent the
integers from 1 to |Sb|. The B − 1 encoded backup packets
encode |Sb| backup packets. That is

C(f ′1) + · · ·+ C(f ′B−1) = |Sb|. (24)

Since C(f ′k) ≤ 2k−1 (k = 1, ..., B − 1), we have

C(f ′1) + · · ·+ C(f ′B−1) ≤ 20 + · · ·+ 2B−2. (25)

From equations (24) and (25), we obtain

|Sb| ≤ 2B−1 − 1. (26)

From equation (26), |Sb| < 2B−1. Thus, each of the integers
from 1 to |Sb| can be represented by the (B − 1)-bit binary.
If 2k is converted to binary digit, 4fi in equation (22) is the
(B − 1)-bit binary, in which vk is the value in the kth place
of the (B−1)-bit binary. Therefore, 4fi in equation (22) can
represent the integers from 1 to |Sb|.

Fig 5 shows how to encode the sets of backup packets Sb =
{c′1, c′2, ..., c′7} and Sb = {c′1, c′2, ..., c′8}. We can see that in
Fig 5 (a) (or Fig 5 (b)), each of the integers from 1 to 7 (or 8)
can be represented by the combination of C(f ′i) (i ∈ {1, ..., 7
(or 8)}.

4) Storage overhead: We consider the storage overhead
as the number of buffers for storing the data packets. If the
backup packets are not encoded, node i should store |Sb|+ 1
packets, which include |Sb| backup packets and one main
packet. Node i needs B = |Sb|+ 1 buffers for storage. From
equation (17), since |Sb| ≤ xd, the upper bound of storage
overhead in node i is xd + 1. The buffer size of each sensor
node is set to maximum{xd}+ 1.

By encoding the backup packets, node i stores B − 1
encoded backup packets and one main packet. Node i needs
B buffers for storage. Since B is an integer, from equation
(26) we obtain

B = dlog2(|Sb|+ 1)e+ 1. (27)

That is, node i needs dlog2(|Sb|+1)e+1 buffers to store the
encoded backup packets and main packet. Since |Sb| ≤ xd,
the upper bound of storage overhead in node i is dlog2(xd +
1)e + 1. The buffer size of each sensor node is set to
dlog2(maximum{xd} + 1)e + 1. Thus, encoding the backup
packets further reduces the buffer size of sensor nodes.

Note that the storage overhead in LTDC (both the cases of
un-encoding and encoding the backup packets) are less than
that in EDFC [11], since each sensor node does not store all the

original distinct stopping data packets in LTDC. In EDFC [11],
each sensor node should first store all the distinct stopping data
packets, then randomly chooses d data packets to do encoding.
For a sensor node with code degree d, the number of all the
distinct stopping data packets is ad. Including the encoded data
packet, the storage overhead in EDFC is ad+1. The buffer size
of each sensor node in EDFC should be maximum{ad}+1 =
maximum{xd + d}+ 1 = K + 1.

5) Effect of the redundancy of code degree: We have shown
that the upper bound of storage overhead in node i depends on
the redundancy xd. From equation (3), since ed = d+xd, the
number of data packets disseminated from the source nodes
also depends on the redundancy xd. Thus, the upper bound of
storage overhead and the number of disseminated data packets
can be reduced by reducing the redundancy xd. However, a
small value of xd may result in that the actual number of
distinct stopping data packets in many sensor nodes are less
than the generated code degree (i.e., ad < d).

Let Pr(ad < d) denote the probability that the sensor
nodes with generated code degree d receive less than d
distinct stopping data packets. Lin et al. [11] have proved that
Pr(ad < d) decreases exponential as O((d+ xd)/

√
K) and

Pr(ad < d) =

d−1∑
j=0

(
K

j

)
pj(1− p)K−j , (28)

where p = 1− e−(d+xd)/K when N →∞.
Our objective is to minimize the upper bound of storage

overhead in each sensor node, and also minimize the data
dissemination cost which is governed by the number of dis-
seminated data packets. Therefore, the optimization objective
is to minimize xd, subject to the constrains that the probability
Pr(ad < d) should be sufficiently low for d = 1, ...,K. The
optimization problem is formulated as follows.

minimize xd

subject to Pr(ad < d) ≤ δd

xd ≥ 0

for d = 1, ...,K, (29)

where δd is a small constant and Pr(ad < d) is given in
equation (28).

The optimization problem in equation (29) can be solved
off-line before network deployment [11]. Therefore, its com-
plexity is not a main concern. Each generated code degree d
has a optimal expected degree ed. The network initiation can
be set according to the suitable optimal values of expected
degrees.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed LTDC scheme
by simulations. Since EDFC [11] is well-known and typical,
we compare LTDC with EDFC in the simulations. We com-
pare LTDC with EDFC on data dissemination cost, storage
overhead and decoding ratio.

110 120 130 140 150 160 170 180 190 200
1.5

2

2.5

3

x 10
6

Length of each random walk

D
a

ta
 d

is
s
e

m
in

a
ti
o

n
 c

o
s
t

(
×
 1

2
0

 n
J
)

EDFC

LTDC

Fig. 6. Data dissemination cost vs. length of each random walk.

We distribute the sensor nodes uniformly on a unit square.
We set the number of sensor nodes as N = 1000 and the
number of source nodes as K = 100. The transmission range
r = 0.08, and LTDC is in the case of encoding the backup
packets in most experiments with exceptions explicitly stated.
The parameters in equation (1) for the generated degree are
set as δ = 0.05 and c = 0.02. When the mobile base
station performs data collection, the queried sensor nodes
upload the main packets. The mobile base station decodes the
collected data by using the Belief Propagation algorithm [17].
To mitigate randomness, for each data point in all figures, we
show the average and the 95% confidence interval from 100
independent experiments.

A. Data dissemination cost

We consider the data dissemination cost as the energy
consumption for disseminating the data packets from the
source nodes to a random subset of sensor nodes. The data
dissemination cost mainly depends on the energy consumption
for data sending and data receiving in each data transmission.
Since the energy consumption for data receiving are the same
in LTDC and EDFC, we compare LTDC with EDFC on energy
consumption for data sending by varying the length of random
walks. The energy consumption for sending a data packet is
set as 120 nJ. As shown in Fig. 6, the data dissemination
cost in the proposed LTDC scheme is lower than that in
EDFC. This is because in EDFC each random walk is launched
independently from a source node, while in the proposed
LTDC scheme all the random walks from a source node
is launched simultaneously by multicast. Multicast in LTDC
reduces the data transmission times significantly, which results
in the reduction of energy consumption.

B. Storage overhead

We compare LTDC with EDFC on storage overhead in the
sensor nodes. We consider the storage overhead as the number
of buffers for storing the data packets. The storage overhead in
EDFC depends on the actual number of distinct stopping data
packets (i.e., ad). The storage overhead in LTDC depends on
the number of backup packets. In LTDC, we show the storage
overhead both in the cases of encoding and un-encoding the
backup packets. Fig. 7 shows the storage overhead by varying

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of distinct stopping data packets

S
to

ra
g

e
 o

v
e

rh
e

a
d

EDFC

LTDC, un−encoding backup packets

LTDC, encoding backup packets

Fig. 7. Storage overhead vs. number of distinct stopping data packets.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

Length of each random walk

D
e

c
o

d
in

g
 r

a
ti
o

LTDC

EDFC

Fig. 8. Decoding ratio vs. length of each random walk.

the actual number of distinct stopping data packets in the
sensor nodes. The storage overheads in LTDC (both the cases
of encoding and un-encoding the backup packets) are much
lower than that in EDFC, since in LTDC the sensor nodes do
not store all the distinct stopping data packets while in EDFC
they have to. Specially, encoding the backup packets in LTDC
reduces the storage overhead much more significantly. The
storage overhead in the case of encoding the backup packets
in LTDC maintains low as the number of distinct stopping
data packets increases.

C. Decoding ratio

To evaluate the fault tolerance of the proposed LTDC
scheme, similar to that considered in [11], we define the
decoding ratio Rd as

Rd =
Kd

K
,

where Kd is the number of sensor nodes that should be queried
by the mobile base station for successful decoding, K is the
number of source nodes. The fewer sensor nodes that are
required for querying to decode all the data packets, a higher
percentage of sensor nodes are allowed to fail.

We compare LTDC with EDFC on the decoding ratio. Fig. 8
shows the decoding ratio by varying the length of each random
walk. Since the decoding ratios in the two schemes are very
close, we use histogram to show them clearly. To show the
degree of fault tolerance, we also show the decoding ratio

of the centralized LT codes. The two dashed lines represent
the 95% confidence interval for the decoding ratio of the
centralized LT codes. For both LTDC and EDFC, the decoding
ratios decrease as the length of each random walk increases.
The decoding ratios stay stationary on a certain value if the
length of random walk exceeds a threshold. This is because the
random walk approaches the steady-state distribution when the
length increases. In Fig. 8, when the length of random walk
is larger than 200, the decoding ratio stays stationary around
1.07, which implies that LTDC and EDFC achieve the same
degree of fault tolerance as the original centralized LT codes.
We also can see from Fig. 8, the decoding ratios in LTDC
and EDFC are almost the same, since the probabilities of a
stopping data packet being encoded in the main packet in the
two schemes are similar. This fact is also stated in the proof
of Theorem 1.

If some sensor nodes fail, the total number of sensor nodes
N and the number of source nodes K decrease. It is not
feasible to update K and N to all sensor nodes whenever they
change. The sensor nodes will overestimate the values of N
and K. We also evaluate the decoding ratio of LTDC under this
condition. Successful decoding is still achieved when K and
N decrease. The decoding ratio maintains low (around 1.07)
when only N decreases, while it increases as K decreases. Due
to the space limitation, we do not show the results in detail.
To maintain a low decoding ratio, we can let the sensor nodes
take turns to act as the source nodes, which can guarantee that
the number K is not too small. Update N and K periodically
is also a reasonable method to maintain a low decoding ratio
[11], [13].

VI. CONCLUSIONS

In this paper, we propose a novel LT codes based Distributed
Coding (LTDC) scheme for efficient distributed storage in
WSNs. In LTDC, we apply random walks by multicast to
improve the efficiency of data dissemination. During data
encoding, the sensor node encodes the data packet in a
main packet with a certain probability, without storing all the
original stopping data packets. The number of encoded data
packets in the main packet follows the distribution of LT codes.
The mobile base station is able to decode the original data
by querying any subset of sensor nodes (at least K sensor
nodes). The comprehensive performance evaluation has been
conducted through computer simulation. It is shown that the
proposed LTDC scheme has lower dissemination cost and
lower storage overhead while maintains the same level of fault
tolerance as the original LT codes.

ACKNOWLEDGMENTS

This work is partially supported by Grant-in-Aid for Sci-
entific Research of Japan Society for Promotion of Sci-
ence (JSPS), Research Collaboration Grant from NII, Na-
tional Natural Science Foundation of China (NSFC) project
(Nos. 91438121 and 61373156), Key Basic Research Project
(No.12JC1405400) and Shanghai Pujiang Program (No.
13PJ1404600) of the Shanghai Municipality, and Shanghai

Branch of Southwest Electron and Telecom Technology Re-
search Institute Project (No. 2013008).

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comm. ACM, vol. 38, no. 4, pp. 393–422,
2002.

[2] Y. Ren, V. A. Oleshchuk, and F. Y. Li, “Optimized secure and reliable
distributed data storage scheme and performance evaluation in unat-
tended wsns,” Computer Communications, vol. 36, pp. 1067 – 1077,
2013.

[3] G. Maia, D. Guidonia, A. Vianab, A. Aquinoc, R. Minid, and
A. Loureiroa, “A distributed data storage protocol for heterogeneous
wireless sensor networks with mobile sinks,” Ad Hoc Networks, vol. 11,
pp. 1588 – 1602, 2013.

[4] D. Leong, A. Dimakis, and T. Ho, “Distributed storage allocations,”
IEEE Transactions on Information Theory, vol. 58, pp. 4733 – 4752,
2012.

[5] M. Gerami, X. Ming, C. Fischione, and M. Skoglund, “Decentralized
minimum-cost repair for distributed storage systems,” in Proceedings of
IEEE ICC 2013. IEEE, 2013.

[6] A. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE Transactions on
Information Theory, vol. 52, no. 6, pp. 2809–2816, 2006.

[7] D. Wang, Q. Zhang, and J. Liu, “Partial network coding: Concept,
performance, and application for continuous data collection in sensor
networks,” ACM Transactions on Sensor Networks, vol. 4, no. 3, pp.
1–22, 2008.

[8] X. Ye, J. Li, and L. Xu, “Group data collection in wireless sensor
networks with a mobile base station,” in Proceedings of IEEE WCNC
2013. IEEE, 2013.

[9] A. Dimakis, V. Prabhakarna, and K. Ramchandran, “Distributed fountain
codes for networked storage,” in Proceeding of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2006.

[10] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
Maximizing sensor network data persistence,” in Proceedings of ACM
Sigcom 06, 2006.

[11] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor
networks with decentralized fountain codes,” in Proceedings of IEEE
INFOCOM 2007. IEEE, 2007.

[12] R. Beraldi, R. Baldoni, and R. Prakash, “A biased random walk routing
protocol for wireless sensor networks: The lukewarm potato protocol,”
IEEE Transactions on Mobile Computing, vol. 9, pp. 1649 – 1661, 2010.

[13] Z. Kong, S. Aly, and E. Soljanin, “Decentralized coding algorithms
for distributed storage in wireless sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 28, pp. 261 – 267, 2010.

[14] S. Jafarizadeh and A. Jamalipour, “Data persistency in wireless sensor
networks using distributed luby transform codes,” IEEE Sensors Journal,
vol. 13, no. 12, pp. 4880 – 4890, 2013.

[15] D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci,
“Rateless packet approach for data gathering in wireless sensor net-
works,” IEEE Journal on Selected Areas in Communications, vol. 28,
pp. 1169 – 1179, 2010.

[16] M. Luby, “Lt codes,” in Proceedings of the 43rd IEEE Symposium on
Foundations of Computer Science (FOCS 2002), 2002.

[17] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Info. Theory, vol. 47,
pp. 569 – 584, 2001.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing times for
random walks on geometric random graphs,” in Proceedings of SIAM
Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
2005.

[19] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equations of state calculations by fast computing machines,” Journal
of Chemical Physics, vol. 21, pp. 1087 – 1092, 1953.

[20] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM Review, vol. 46, pp. 667 – 689, 2004.

[21] A. Sinclair and M. Jerrum, “Approximate counting, uniform generation
and rapidly mixing markov chains,” Information and Computation,
vol. 82, pp. 93 – 133, 1989.

