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Abstract—In recent past, the rapid developing of mobile
internet inspires the widespread use of WiFi (IEEE 802.11)
technology. In WiFi, the access control of a terminal to the router
remains a significant challenge because the PIN (password) and
MAC address are easy to guess and forge. In this paper, we
present FastID - a practical system that identifies WiFi terminals
in real-time by fingerprinting their clocks. Previous approaches
of clock fingerprinting require tens of minutes or even hours
for clock data collection, and thus cannot be applied into real-
time WiFi terminal identification. Even worse, unstable wireless
communications and unknown status of terminals’ OSes may
further degrade the accuracy of fingerprint computation. In
comparison, FastID performs fast clock fingerprinting based on
the timestamps carried by terminals’ ICMP packets. Moreover,
FastID employs simple but efficient techniques to remove outliers
of collected clock data and differentiate terminals based on
the similarity of their distributions, making it suitable for fast
terminals identification. FastID is implemented on an off-the-
shelf commercial WiFi router and extensively evaluated based
on 10 commodity WiFi terminals. Experimental results show that
FastID is able to identify terminals with high accuracy and low
cost within several seconds.

Index Terms—WiFi terminal; Identification; Clock skew.

I. INTRODUCTION

With the fast developing of mobile internet, the technology

of WiFi becomes one of most important technologies of

internet access. However, due to the importance in provid-

ing ubiquitous services and the inherent vulnerability of the

broadcast nature of the wireless medium, WiFi is becoming

the target of a number of attacks. One of the most severe

way in which WiFi can be attacked is unauthorized access

to WiFi routers (or access points, APs). To defend against

this attack, PIN (password) and MAC address binding have

been employed to identify WiFi terminals. However, these

techniques cannot perfectly protect routers from unauthorized

access as PIN and MAC address are easy to guess and forge.

For example, attackers can mimic a valid router and inveigle

authorized WiFi terminals to input their PINs and capture

their MAC addresses. Moreover, the access control to a router

requires fast terminal identification which means the router

must identify terminals within at most several seconds.

In this paper, we present FastID - a fast and practical

system that identifies terminals by inferring their physical

clock fingerprints with high accuracy and minimum overhead.

This scheme, like the approach proposed by Huang et al., [1]

to fingerprint devices in Bluetooth communication, is based

on estimating clock skews of wireless terminals in 802.11

communications. Basically, the operation of most digital cir-

cuit systems, such as computer systems, is synchronized by a

“clock” that dictates the sequence and pacing of the devices

on the circuit. The maximum speed at which a system can

run must account for the variance that occurs between the

various elements of a circuit due to differences in physical

composition, temperature, and path length. Thus, clocks on

different circuits at the same frequency may drift to each other.

The difference between these clock drifts is defined as clock

skews.

Previous studies illustrate that clock skew can be used

for identifying devices, such as PCs in wired networks [2]

and WiFi APs [3]. However, these schemes fail to finger-

print wireless terminals in 802.11 communications as they

exclusively rely on the timestamps carried by packet headers

to state transmission times, which can be easily delayed by

the unstable wireless communications as well as unknown

running conditions of operating systems on terminals. Fur-

thermore, these approaches cannot be applied in the real-time

circumstance like ours that needs fast fingerprint detection and

terminal identification. For example, Kohno et al.’s work [2]

needs hours of collecting sufficient data for fingerprinting. Jana

and Sneha [3] propose a scheme which identifies WiFi APs in

20 to 30 minutes. Another interesting work, BlueID [1], can

fingerprint Bluetooth devices in seconds based on the temporal

feature of Bluetooth baseband, but their scheme can only be

applied to frequency hopping based wireless systems rather

than 802.11 compliant ones.

The proposed FastID employs timestamps carried by ICMP

message type 13 [4] packets to compute clock skews of

WiFi terminals. Specifically, once a terminal is signing into

a router, the router intentionally sends ICMP time requests to

the terminal, and calculates the clock skew of the terminal

from timestamps in its responses. However, unlike the ap-

proaches aforementioned, to realize FastID, there are several

practical challenges must be addressed. First, sufficient data

for fingerprinting should be collected within very short time,

mostly less than several seconds. Thus, in our approach, we

exploit ICMP message type 13 to make a router actively

probe timestamps of WiFi terminals very rapidly. Second,

unstable wireless communications may incur some outliers in

timestamps and then degrade the accuracy of the calculated

clock skew. To address this issue, we design an efficient

preprocessing algorithm to filter outliers in timestamps. Third,ISBN 978-3-901882-68-5 c© 2015 IFIP



unknown status of the operating systems of WiFi terminals

may cause unpredictable delay on ICMP packet transmissions,

as all packets receiving and sending should be processed in

the kernel of OS. For example, the running of high CPU usage

process will delay the packet sending on the network driver. To

address this issue, we design a novel identification algorithm

based on the similarity of clock skew distributions to minimize

this impact of unknown OS status.

We implement FastID on a MERCURY MW150R wireless

router with OpenWRT [5] - an open source Linux distribution

for embedded devices which can be installed on commercial

WiFi routers. We extensively evaluate FastID based on 10 ter-

minals including three android smartphones, three tablets and

four laptops which have been installed both Ubuntu 12.04 and

Windows 8.1 operating systems. We measure the clock skews

in three residential settings: corridor, indoor and outdoor. We

test the accuracy of FastID under different distance between

the router and terminals and find that the accuracy of measured

clock skews are independent of distance. Also, we exam the

performance of FastID in terms of OS status. The experimental

results illustrate that clock skews remain consistent over time

on the same WiFi terminal and vary significantly on different

devices. These results validate the use of clock skew as a

reliable fingerprint for WiFi device identification. Our results

show that FastID can effectively identify WiFi terminals within

common communication range of WiFi with high accuracy

(99%), low delay (less than 6 seconds in identification) and

minimum computational overhead.

We highlight our contribution as follows.

• We present a robust and fast approach on WiFi routers

to identify terminals with high accuracy by efficient

filtering outliers and fingerprinting terminals based on the

similarity of clock skew distributions.

• We implement our approach on an off-the-shelf router

without any modification on the hardware to illustrate

the potential utility on a large scale of current deployed

routers.

• We conduct extensive experiments in different settings

and comprehensive analysis in terms of security and

performance. The results show that our approach can

effectively fingerprint and identify terminals with low

cost, and is resilient to timestamp spoofing.

The rest of this paper is organized as follows. We present

related work in Section II. Section III introduces the back-

ground of clock skew and gives the methodology of our

approach. We specify the design of FastID in Section IV

and its implementation in SectionV. Section VI evaluates the

performance of FastID. We discuss the security and some

design issues in Section VII. The whole work is concluded

in Section VIII.

II. RELATED WORK

Device fingerprinting serves many legitimate purposes, in-

cluding mitigating denial-of-service attacks, preventing fraud,

protecting against account hijacking, and curbing content

scraping, and other automated nuisances. Some researches

show that technologies of device fingerprinting can be used

to track users. Pang et al., [6] present a mechanism that can

identify users based on their patterns of network traffic, such as

the distributions of packet length and visited websites. A prac-

tical system, named Multi-Layer Device Fingerprinting [7],

has been developed to collect a comprehensive set of traffic

data that positively identifies a device. However, these traffic

based approaches need hours of data collection to achieve

satisfactory accuracy and cannot fulfill the requirement of real-

time identification.

Some approaches exploit driver level features to fingerprint

devices. The drivers of WLAN client can be fingerprinted

with the pattern of access point scanning [8], [9]. Similarly,

Mirza et al., [10] identifies 802.11 rate adaptation algorithms

by analyzing the bit rates of overheard packets. However, these

driver based approaches cannot separate devices which have

same type of drivers. Furthermore, the features used by these

traffic and driver based approaches are not actual fingerprints

of devices as they can be easily modified by changing the

configuration of devices.

Some approaches fingerprint wireless transmitters based on

their signal level features, such as modulation imperfections

[11] and transient states of RF [12]. A good but not yet

exploited feature - harmonic wave of oscillator, can be used to

differentiate wireless devices with pretty high accuracy. These

signal level based approaches, however, are infeasible to be

implemented on WiFi devices as measuring the signal level

features require prohibitively expensive instruments such as

Network Analyzer and Spectrum Analyzer.

Clock skew based approaches are cost efficient (i.e., no

specialized instruments required) and robust (i.e., exploit-

ing hardware) comparing with approaches mentioned above.

Huang et al., [1] present a practical scheme named BlueID

that can identify Bluetooth devices based on their clock skews.

However, BlueID can only be applied in the communication

systems with frequency hopping. Unfortunately, current WiFi

standards do not support the frequency hopping due to the

limited channel bandwidth. Jana and Sneha [3] exploit the

timestamp of periodic beacon to measure the clock skew

of WLAN access point. The most similar work to ours is

proposed by Kohno et al., [2] to measure the clock skew of a

remote PC in wired network based on the observed time drifts

in TCP/ICMP timestamps. However, these two approaches

passively receive packets from fingerprintee and thus needs

long time for data collection that is not suitable for the real-

time identification of terminals on wireless router.

Compared with these clock skew based approaches, our use

of clock skew to fingerprint a wireless terminal is not new.

However, our contribution is also significant because we apply

the clock skew based fingerprinting to the real-time scenario

where the identifications are much faster and more accurate

compared to the aforementioned clock skew based approaches.

III. BACKGROUND AND METHODOLOGY

In this section, we firstly introduce the background of clock

skews, then we present the methodology of the calculation of
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Fig. 1: Device-to-device skew tskew is the time difference of

two devices’ outputs

clock skews.

A. Clock Skews

Skew is the time delta between the actual and expected

arrival time of a clock signal. Skew can be either extrinsic or

intrinsic. The latter is internal to the driver (generator circuitry)

and defined as the difference in propagation delays between

the device outputs. On the other hand, extrinsic skew is the

time difference due to unbalanced trace lengths and/or output

loading.

In fact, the clock skew used in our work is the device-to-

device skew [13]. This kind of clock skews is defined as the

magnitude of the difference in propagation delays between any

specified outputs of two separate devices operating at identical

conditions, as shown in Fig.1. The devices must have the same

input signal, supply voltage, ambient temperature, package,

load, environment etc. In our work, we assume that wireless

network drivers of both the router and terminals have the

same hardware architecture and follow the same IEEE 802.11

standard, and thus, the clock skew of a terminal with respect

to the router is the difference in packet sending delays.

B. Methodology of Clock Skew Calculation

In an IEEE 802.11 infrastructure WLAN, there are two

kinds of ICMP message type 13 packets [4]. A router is

able to generate the ICMP timestamp request packet which

contains the value of its system timer when it sends the packet.

Once receiving the request packet, a terminal responds with an

ICMP timestamp reply packet that embraces two timestamps:

the timestamp in the received request packet and that when

the terminal sends the reply packet. For sake of simplicity,

we name these two kinds of timestamps probe timestamps

and response timestamps, respectively. Both these two types

of timestamps do not get affected by the random medium

access delays of the wireless medium as hardware sets the

timestamp just before real transmission. In addition, the timer

of a terminal is initialized at the time of its bootstrapping and

incremented once every millisecond.

Our solution uses these two timestamps in response packets

to estimate the device-to-device clock skew of a terminal

with respect to the router and employs the clock skew as the

terminal’s fingerprint. A terminal’s clock consists of primarily

two parts: oscillator and counter. The oscillator is under the

control of a crystal and ticks at a pre-fixed frequency. The

counter is used to track the number of ticks generated by

the oscillator. The exact frequency of a crystal is mainly

determined by the the type of the crystal and the shape that

it was cut relative to its axes. Nevertheless, due to the error

of mechanic work, two crystals will have slightly different

frequencies even they have the same type and the same cut

[14]. Thus, the clock skews can be used to fingerprint wireless

devices even they are made with similar clocks and in same

environment.

Assume that the router has sent n ICMP probe packets to

a terminal and get n response packets. Let the timestamp in

the i-th response packet be Ti and let ti be the timestamp

in the probe packet. Let Si be the size of the i-th response

packet and Ri be the data rate at which i-th response packet is

sent. Hence, the time that the router receives the i-th response

packet is Ti + Si/Ri, based on the terminal’s clock. The

difference between clocks of the router and terminal at the

i-th response packet and probe packet can be calculated as

Ti + Si/Ri − ti. Comparing with the clock difference at the

first packet, we define the offset for the i-th response packet

as oi. Then we can get

oi = (Ti + Si/Ri − ti)− (T1 + S1/R1 − t1)

In most of the cases, the data rate at the terminal remains fixed

and the size of response packets are fixed as well [15]. Hence,

Si/Ri = S1/R1 and we can get

oi = (Ti − T1)− (ti − t1)

Let xi = ti − t1 be the time difference between the first

received packet and the i-th packet at the router. If we plot

(xi, oi), we can find the transition of the clock difference

between the router and the terminal. Moreover, if the clock

skew of a particular terminal remains constant, it can be

estimated as the slope of this linear pattern. We call the set of

{(x1, o1), . . . , (xn, on)} the clock offset-set of the terminal.

IV. FASTID DESIGN

A. Overview

The system architecture of FastID consists of four compo-

nents: Data collector, Preprocessor, Clock skew calculator and

Decision maker. The data collector employs the probe packets

in ICMP to fetch timestamps of terminals in replied response

packets, then it outputs the clock offset-set to the preprocessor.

The clock offset-set cannot be directly applied to estimate the

clock skew as the packet sending on terminals is not stable

and can be affected by some unknown delays, for example, the

OS may unpredictably delay the packet sending at the network

driver. Based on our observation, a few outliers of clock offsets

can cause huge errors on clock skew calculation and fail the

terminal identification. Therefore, the preprocessor is designed

to filter those outliers based on the distribution of clock offsets.

The clock skew calculator is used to estimate the clock skew

from the filtered offset-set with a Linear Programming Method



(LPM). The Decision maker identifies the terminal that is

being interrogated by the router according to its clock skew.

To improve the accuracy of clock skew estimation, we design

a novel algorithm of identification based on the similarity of

distributions between the computed clock skew and those pre-

registered on the router, instead of simply comparing their

values of clock skews.

B. Data Collector

When a terminal is signing into the network via a WiFi

router, the router firstly suspends the request of connection,

and then sends an amount of ICMP probe packets to the

terminal. In this stage, we should consider two parameters

which determine the overhead of FastID: the number of probe

packets and the time interval between two consecutive probe

packets. In FastID, we set the number of probe packets and

time interval as 5,000 and 1 millisecond respectively based on

our experimental results. The specific description of parameter

selection is presented in Section VI-B.

C. Preprocessor

The function of the preprocessor is to remove outliers in the

clock offset-set. Outliers may be caused by the status of OS on

the terminal, the environment or some other unknown reasons.

Based on our observation, a small number of outliers can

significantly degrade the accuracy of the skew computation.

To address this problem, FastID filters outliers based on

the distribution of the clock offset-set. Specifically, every time

that the router gets the ICMP response packet is independent

of others, so the offset-set follows the normal distribution.

Compute the mean value Mean and the standard deviation

Std of the set, and then filter those offsets which are apart

from Mean more than 2Std. The reason that we select 2Std
as the threshold of filtering is: based on our experimental

results, more than 20% to 30% offsets would be filtered if

the threshold is set to the value of standard deviation. That

makes the result of the skew calculation become unstable due

to insufficient offsets. In contrast, some outliers could not be

filtered and the accuracy of clock skew calculation will be

degraded, if we choose the threshold more than 2Std. Repeat

this preprocessing iteratively for a couple of times to further

refine the offset-set.

Figure 2 illustrates an example of the effect of the pre-

processing. From this figure, we can see that the measured

clock skew is negative (-64 part per million, ppm) without

preprocessing due to outliers. With preprocessing, FastID

filters most outliers and makes the measured clock skew

become its real value (42ppm). It should be noted that we

use the measure parts per million, essentially µs/s, denoted as

ppm, to quantify clock skew.

D. Clock Skew Calculator

We use the Linear Programming Method, LPM, to estimate

the clock skew of a terminal from its clock offset-set. Given

an offset-set {(x1, o1), . . . , (xn, on)}, LPM finds a line δx+φ,

where δ is the slope of the line and φ is the y-axis intercept,
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Fig. 2: An example of the effect of the preprocessing. A few

outliers make the calculated clock skew (-64ppm) deviate from

the real skew (42ppm).

that upper bounds the points in the clock offset-set of the

terminal and outputs the slope of the line as the estimated

clock skew. Thus, the clock skew estimation δ is such that

any i = 1, . . . , n, δxi + φ ≥ oi, and the following function is

minimized:

1/n

n∑

i=1

(δxi + φ− oi)

We list the calculated clock skews of ten terminals used in our

experiment in Table I. Also, we can use Least-Square Fitting,

LSF, to estimate the clock skew of a terminal from its clock

offset-set. Given an offset-set {(x1, o1), . . . , (xn, on)}, LSF

searches a line δx+ φ such that

n∑

i=1

(oi − (δxi + φ))2

remains minimum. The slope of the line δ is estimated as the

clock skew of the clock offset-set.

One of the main differences of LSF from LPM is its lack

of tolerance toward outliers. A few outliers can cause the

clock skew estimated by LSF varying significantly from the

clock skew determined by the majority of the points. This

incurs problems while estimating clock skew from data with

outliers. Therefore, in FastID, we use the LPM for clock skew

estimation.

E. Decision Maker

The decision maker is used to separate the clock offset-sets

and then identify corresponding terminals. Basically, the router

can identify terminals directly according to their calculated

clock skews. That is, the decision space to differentiate a

terminal’s clock skew could be simply represented with its

mean and standard deviation. However, this basic method is

not resilient to overlapped decision spaces if two terminals

have close clock skews (e.g. terminal 2 and 3 in Table I), and

then, cannot achieve high accuracy of identification. Therefore,

we need other techniques to address this problem.

Fitting multiple lines to a data set is not a new problem.

Generalized Hough Transform (GHT) [16], [17] and Random-

ized Hough Transform (RHT) [18] are mature techniques for

this purpose in the field of computer vision. However, they
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Fig. 3: An example that FastID removes the deviated subset.

are computationally intensive and require a large amount of

storage. Another approach to solve this problem is to model

the data and employ the statistical method of expectation

maximization (EM) to separate the data [19]. However, the EM

algorithm should select the initial parameters very carefully

and the results heavily depends on the values of these initial

parameters.

In our FastID, we present a lightweight statistic method

based on the observation from our experiments: the mean of

an offset-set of a terminal in each measurement of clock skews

remains nearly same but the standard deviation varies due to

delays incurred by some reasons such as the environment and

the status of the OS of the terminal. Borrowing ideas from

the statistical method, we design the identification algorithm

as shown in Alg. 1.

As described in Section III-B, the distribution of the clock

offset-set of a terminal follows the normal distribution, and

the mean is the clock skew. Let distributions of n registered

terminals (i.e. the router allows these n terminals to access the

network.) be N (Mean(1), Std(1)), . . . ,N (Mean(n), Std(n)).
Where Mean(j) and Std(j) denote the mean and the standard

deviation of the registered terminal j, respectively. Thus,

the decision space for the terminal j can be [Mean(j) −
Std(j),Mean(j) + Std(j)]. When an unidentified terminal

is signing into the router, the distribution of the clock

skew of the terminal can be computed and represented as

N (Mean′, Std′). The router searches all registered terminals

and finds l registered terminals which have similar skews to

the unidentified terminal. We call these terminals as similar

terminals. That is, for a similar terminal j, |Mean(j) −

Algorithm 1 Terminal identification

1: Compute the distribution of unidentified terminal

N (Mean′, Std′);
2: for each registered terminal i do

3: if |Mean(i) −Mean′| < Std′ then

4: Denote the registered terminal i as a similar ter-

minal;

5: end if

6: end for

7: if There is no similar terminal then

8: Reject the connection request of the unidentified ter-

minal;

9: Return;

10: end if

11: for Each similar terminal j do

12: Divide the offset-set of the unidentified terminal into

m subsets G1, . . . , Gm;

13: for Each subset Gi do

14: Compute the distribution N (Meani, Stdi);
15: if Pr[Meani] > Pr[Mean(j) − Std(j)] then

16: Mark the ith bit of Vj as 1;

17: else

18: Mark the ith bit of Vj as 0;

19: end if

20: end for

21: Get the similarity vector Vj ;

22: end for

23: Combine all similarity vectors to be the similarity matrix

M ;

24: Find the row with maximum Hamming Weight in M ;

25: Recognize the unidentified terminal as the corresponding

similar one.

Mean′| ≤ Std′. If no similar terminal exists, the router rejects

the connection request of this unidentified terminal. Otherwise,

the router further identifies the terminal as following.

Based on our observation, Std′ is much larger than standard

deviations of similar terminals as the environment and the cur-

rent status of the unidentified terminal may give some delays

on packet sending. Therefore, the decision spaces of those

similar terminals may be overlapped to some extent, so that we

cannot directly recognize the unidentified terminal as a similar

one which has the closest mean. Let the unidentified terminal

be the similar one j. We can construct a new distribution

as N (Mean(j), Std′). To compute the similarity between the

unidentified terminal and the similar terminal j, we divide the

whole clock offset-set of the unidentified terminal into m non-

overlapped and consecutive subsets G1, . . . , Gm, and count

every distribution N (Meani, Std
′

i) of Gi.

The router firstly computes the probability Pr[Meani]
in the distribution of N (Mean(j), Std′), and then com-

pares Pr[Meani] with the probability of the thresh-

old Pr[Mean(j) − Std(j)] (or Pr[Mean(j) + Std(j)]). If

Pr[Meani] > Pr[Mean(j) − Std(j)], it means that the Gi

follows the distribution of the similar terminal j and the router



TABLE I: Terminal list in our experiments
Terminal ID Operating System Type Number Terminal Type Measured Clock Skew

1 Ubuntu 12.04 and Windows 8.1 AcerE1-471G Laptop 46.08±0.80

2 Ubuntu 12.04 and Windows 8.1 AcerE1-471G Laptop 41.623±0.59

3 Android 4.1 Teclast P88 Tablet 41.94±2.68

4 Ubuntu 12.04 and Windows 8.1 Acer Aspire 4755G Laptop 31.65±1.76

5 Android 4.1.2 Samsung GT-I9308 Smartphone 27.20±2.81

6 Ubuntu 12.04 and Windows 8.1 Asus R510VC Laptop 54.53±1.78

7 Android 3.4 Mi 1S Smartphone 47.43±3.12

8 Android 2.3.8 Motorola ME525 Smartphone -4.25±4.20

9 Android 4.1 Sony SGPT111CN/S Tablet 11.48±2.68

10 Android 4.1 Teclast P88 Tablet 44.86±1.33

marks the i-th bit Vj [i] of a vector Vj as 1 to record the result.

Where Vj is a m-bit long vector to represent the similarity of

the unidentified terminal to the similar terminal j. Otherwise,

Vj [i] is marked as 0. Repeating this comparing procedure for

each subset, we can get a similarity vector Vj in terms of

the similar terminal j. Figure 3 gives an example that FastID

removes the subset that does not follow the distribution of the

whole clock offset-set. From Fig.3(a),we can see that there is

a subset of the clock offset-set which deviates from the others,

so that the calculated clock skew also deviates from the real

skew. With our algorithm, FastID can effectively remove those

deviated subsets and makes the calculation of clock skew more

accurate, as shown in Fig. 3(b).

Repeat the procedure above for each similar terminal, we

can get a l × m matrix M of similarity by combining all

similarity vectors (V1, . . . , Vj , . . . , Vm). In this matrix, the

Hamming weight of each row represents the similarity of

the corresponding similar terminal to the unidentified one.

Thus, the router recognizes the unidentified terminal as the

similar terminal that corresponds to the row with the maximum

Hamming Weight in the matrix.

V. FASTID IMPLEMENTATION

We implement FastID presented in the last section on a

MERCURY MW150R WiFi router running OpenWRT Atti-

tude Adjustment Release (12.09) [5]. OpenWRT is a Linux

distribution for embedded devices. It provides a fully writable

filesystem with package management and allows users to

customize the device through the use of packages to suit any

application. The MERCURY router is equipped with Atheros

AR9331 chipset that works with the MadWifi driver. We

choose this router because it’s an off-the-shelf product and

can be supported by OpenWRT.

In order to timestamp the ICMP probe packets with high

resolution, we implement our approach in OpenWRT and then

burn the new firmware into the router. Specifically, FastID

firstly extracts the value of the system clock in millisecond

on board, and then translates the value to the format of ICMP

timestamp. FastID employs the Raw Socket [20] to generate

the probe packets. Where the Raw Socket is an internet

socket that allows direct sending and receiving of Internet

Protocol packets without any protocol-specific transport layer

formatting.

In addition, there are two methods to control the access of

a terminal to the internet before it has been identified. First,

the router establishes connection between the terminal and

the internet only after the terminal being identified as valid.

However, it is very difficult to be implemented as we have

to modify the kernel of the OpenWRT. Thus, we prefer the

second method: the router firstly lets a terminal connect to the

internet but blocks any traffic from the terminal till identified

as valid.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate FastID based on a set of

10 commodity WiFi terminals, including four laptops, three

smartphones and three tablets. Among these terminals, four

laptops are installed both Windows 8.1 and Ubuntu 12.04.

Tablets and smartphones are installed Android OS, as shown

in Table. I.

We test FastID in three environments which are most com-

mon for WiFi applications: indoor, outdoor and corridor. Also,

we evaluate the effectiveness of FastID under different distance

between terminals and the router. For each experiment, we

repeat testing for 1,000 times. Our evaluation focuses on three

aspects of FastID performance including: (1) The efficacy of

identifying terminals by clock skews; (2) The overhead and

(3) accuracy of FastID.

A. Efficacy of Identification

Identification range: We evaluate the identification range

of FastID in three environments: outdoor, indoor and corridor.

The results are plotted in Fig. 4. From the Fig. 4(a), we can see

that the clock skew of the terminal 2 remains nearly same in

different environments as well as distances between the router

and the terminal. Figure 4(b) and 4(c) show that the change of

clock skews is not significant in 10 and 20 meters, respectively.

We measure the clock skews at most 20 meters distance as the

transmission power of the router can only support this range,

but we should note that this range satisfies real applications

in most cases.

Impact of different operating systems: The whole TCP/IP

protocol stack including the ICMP protocol is implemented in

the kernel of OS. As a result, unproper implementations of

the TCP/IP protocol stack in operating systems may influence

the ICMP packets processing and incur errors in the clock

skew calculation. To this end, we measure clock skews of

four laptops which are installed both Linux Ubuntu 12.04 and

Windows 8.1. The result is plotted in Fig.5. From this figure,

we can see that FastID makes measured clock skews change

very slightly at the same terminal with out preprocessing and

identification algorithms.
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(a) Clock skew of terminal 2 in different distances
and environments.
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(b) Clock skews of all terminals at 10 meters away
from the router.
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(c) Clock skews of all terminals at 20 meters away
from the router.

Fig. 4: Clock skews measured in different environments and distances.
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Fig. 5: Measured clock skews in different operating

systems.
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Fig. 6: Measured clock skews VS percentages of

CPU usage.
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Fig. 7: Mean and standard deviation of calculated

clock skews VS the number of probe packets.

0 1 2 3 4 5 6 7 8 9 10 11
20

30

40

50

60

70

Time interval(ms)

C
lo

ck
 s

k
ew

(p
p

m
)

Fig. 8: Measured clock skew VS the time interval

between two consecutive probe packets.

Impact of running status of operating systems: In FastID,

ICMP response packets are automatically generated by the

operating system. Thus, the running status of the OS may bring

some delays to the processing of ICMP packets. For example,

the OS of a terminal may postpone the executing of network

processes if the CPU is busy on some computation intensive

tasks. As a result, unpredictable delays may be involved in

the timestamps of ICMP response packets on the terminal and

fail the clock skew computation on the router. Therefore, we

design an identification algorithm described in Alg. 1 based on

the similarity matrix (see Section IV-E) to minimize the impact

of those unpredictable delays. To verify the effectiveness of

this algorithm, we conduct an experiment to prove that clock

skews would not be influenced much by the status of operating

systems in our approach. In this experiment, we use the

percentage of CPU usage to depict the status of operating

systems and then measure clock skews. The result is plotted

in Fig. 6. From this figure, we can see that the usage of CPU

affects the value of clock skews very little and the terminal can

be still identified even its percentage of CPU usage is 100%.

B. Overhead of FastID

We now evaluate the overhead of FastID. As described in

Section IV-B, there are two major factors that determine the

overhead on the measurement delay and computation cost: the

number of probe packets and the time interval between two

consecutive probe packets.

Number of probe packets:Obliviously, more probe packets

lead to higher accuracy of clock skew calculation. However, a

large number of probe packets also cause unacceptable mea-

surement delay and computation cost. Therefore, we should

leverage the trade-off between the number of probe packets



and accuracy of clock skew calculation and choose a proper

value which is practical in real-life applications. Figure 7

depicts the relationship between the number of probe packets

and the clock skew computation. From this figure, we can

find that the mean becomes stable when the router have sent

5,000 probe packets, and the standard deviation also decreases

to a relative low value which means the router can identify

terminals accurately.

Time interval:We set the time interval between two con-

secutive probe packets from 1 to 10 milliseconds and plot

the result of clock skew in Fig. 8. This figure shows that

the change of clock skew is statistically not significant, so

we can use the minimum time interval, 1 ms, for fast probe

packets sending. By combining the results of the time interval

and number of probe packets, we can find that the least

measurement delay of FastID is about 1ms × 5, 000 = 5
seconds. We also measure the delay of clock skew computation

by setting a timer in the router to count the time consumption

of computation. The average computation delay among 1,000

computations is less than 0.1 ms. It means that FastID can

efficiently identify a terminal in less than 6 seconds.

C. Accuracy

To evaluate the accuracy of FastID, we use two concepts to

represent the false rate: False Accept Rate (FAR) and False

Reject Rate (FRR). FAR is the probability that FastID falsely

accepts an invalid terminal as a registered one, while FRR

means the probability that FastID rejects a registered terminal

in error. Through our experiments, we find that the FRR

is always zero under different settings, which means FastID

always accepts valid terminals, and the FAR is about 1% in

the condition of proper parameters. Part of results are listed

in Table II. In this table, we set the numbers of clock skew

measurements, clock skew measurements per terminal and

offsets per measurement are 1,000, 100 and 5,000 respectively.

Repeating our experiments for 1,000 times, we can see that

clock skews remain consistent over time for the same terminal

but vary significantly across terminals. By filtering outliers

and identifying terminals with the similarity matrix, FastID is

able to compute clock skews with small standard deviations

which are very suitable for fingerprinting WiFi terminals. The

result of experiments on different operating systems presents

that clock skews are independent of operating systems if we

can remove noise data caused by OS. FastID can provide

effective terminal identification in most common environments

of WiFi applications. Moreover, FastID has best performance

in indoor scenario as the multi-path effect of RF can provide

more reliable communication channel for packet sending and

receiving. The results of overhead illustrate that FastID can

efficiently identify a terminal within 6 seconds which is very

suitable for current terminal login applications.

VII. DISCUSSIONS

A. Timestamp Spoofing

Our approach to identify a wireless terminal is based on the

clock skew of the terminal. As probe and response packets are

TABLE II: Accuracy of FastID
Time interval

(ms)
# of subsets
in decision

Accuracy(%) FAR(%)

1 10 96% 4%

1 15 98% 2%

1 20 99% 1%

2 10 97% 3%

2 20 99% 1%

4 20 99% 1%

6 20 99% 1%

8 20 99% 1%

10 20 99% 1%

broadcasted by the router and terminal, an attacker can listen

to these packets, and then compute the relative clock skew of

the terminal with respect to the router’s. To defend against this

attack, FastID can set the router not to embed timestamps of

packet sending in probe packets. By which means, the attacker

can only infer the relative clock skew of the the terminal

with respect to its own. With this clock skew estimate, the

attacker may be able to impersonate the terminal by spoofing

timestamps by adding its own timestamps with proper offsets.

The timestamp spoofing is conceptually feasible, but infea-

sible in practice. The reason is: in the 802.11 wireless network

medium access control, the sender has to sense channel status

before sending any packet. If the channel is detected as idle

for the Distributed Inter frame Sequence (DIFS) duration, the

sender would randomly delay its transmission by a number

of time slots. The length of every time slot is chosen from

the interval [0, CW] at random, where CW is the contention

window size. The exact time between when the wireless

network driver hands over a wireless packet and when the

packet is actually sent is unpredictable due to these random

delays. As a result, the timestamp forged by the attacker cannot

reflect the real time of transmission.

B. Effect of NTP Synchronization of Routers Clock on Skew

Estimate

Clocks of routers that are connecting to a network are

synchronized through the Network Time Protocol (NTP) or

any other clock synchronization mechanism. In our approach,

we measure clock skews of wireless terminals relative to the

router. Therefore, clock skews of same terminals may vary

significantly once the clock of the router is synchronized to

clocks of other routers in the network, so that the router

has to re-calculate clock skews of terminals. However, our

approach can still work in this case. As aforementioned in

Section VI-B, our measurement time is small enough (less

than 6 seconds) and we measure clock skews in less than

millisecond. The accuracy of NTPv4 is within 10 milliseconds

over the internet and within 200 microseconds over an LAN.

The default minimum polling interval of NTP is 64 seconds

[21]. Thus, in our approach, the router enabled NTPv4 can

still calculate clock skews of terminals with enough accuracy.

Furthermore, we can leverage the NTP polling interval of the

router to a longer value, e.g. 10 minutes or longer, to reduce

the overhead of clock skew re-calculation.



C. Clock Skew Measurement with TCP Timestamps

Our approach can also use the TCP timestamps [22] to

fingerprint WiFi terminals with the same methodology. The

drawback of using the TCP protocol is that we have implement

a client and install it on terminals to reply the TCP probe

packets from the router, as there is no automatic mechanism of

packet response in TCP protocol. We thereby just implement

our approach based on TCP protocol for the purpose of com-

parison. The result is plotted in Fig.9. From this figure, we can

see that there is no remarkable difference on the measurement

of clock skews between TCP and ICMP protocols. It means

that our approach is flexible to network protocols and can

be applied in the network in which the ICMP protocol is

unavailable due to security concern.
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Fig. 9: Measured clock skews with both ICMP and TCP

protocols.

D. Operating Systems that Support Our Approach

Currently, our approach is supported by Linux, Android

and Windows 8. Regarding Windows 7, there is a bug in

its implementation of ICMP protocol that the accuracy of

timestamps is in second, which makes FastID is not compliant

to Windows 7. However, Microsoft is releasing a patch for this

bug in 2015, thus our approach is still available for Windows

7 in near future.

E. Impact of Channel Load

Load on WiFi channels could affect the packet sending rate

of WiFi routers. Like, heavy workload may slow down the

packet sending rate and then increase the time interval between

two probe packets sendings of FastID. In our experiments,

we do not exam the impact of channel load. However, from

Fig. 8 and Tab II, we can see that time interval makes no

difference on the accuracy of FastID. The only impact of

channel load on FastID is the time delay of identification. We

will do experiments to exam the performance of FastID under

different channel workloads in future for the journal version.

VIII. CONCLUSION

In this paper, we present FastID, a fast and accurate system

that identifies 802.11 wireless terminals using the clock skews

of their chipsets. Previous clock skew based approaches can

only passively listen to fingerprintees and extract clock skews

after long time (maybe hours or tens of minutes) of data col-

lection. In comparison, in FastID the router can actively send

probe ICMP packets to fetch timestamps of wireless terminals,

such that FastID can identify terminals within several seconds,

which significantly enhance the security of WLAN against

unauthorized access to wireless routers. To implement FastID,

we develop efficient algorithms, including outlier filtering and

identifying terminals based on the similarity of their clock

skew distributions, to achieve highly accurate fingerprinting

and identification. We realize FastID on an off-the-shelf

commercial WiFi router. Through extensive evaluations under

common used application settings, we demonstrate that FastID

enables efficient and effective terminal identification with high

accuracy, short delay and low cost.
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