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Abstract—The migration of network functions (NFs) into
virtualized network infrastructures brings significant benefits to
enterprise networks, while creating opportunities for new cloud
service models (i.e., NF-as-a-Service). Network service embedding
(NSE) entails serious challenges, stemming from middlebox
policies prescribed by network operators and the implications
of NFs on network traffic (i.e., bandwidth conservation or
traffic amplification) that complicate the estimation of bandwidth
demands. The NSE problem is further exacerbated by the
location dependencies of certain NFs, which, in conjunction with
the limited geographic footprint of NF providers, raise the need
for network service mapping across multiple providers.

In this paper, we present a holistic approach to multi-provider
NSE. We introduce a new service model that simplifies the
specification of network service requests and the estimation of
bandwidth demands. We further define topology abstractions
tailored to NSE that are exposed to a network service compo-
sition layer (NSCL), interposed between the clients and the NF
providers. Based on this service model and topology abstractions,
we propose Nestor, a system that generates efficient network
service embeddings via network graph rendering, request parti-
tioning among datacenters (DCs), and request segment mappings
onto DC networks.

I. INTRODUCTION

Middleboxes embed a wide range of flow processing func-
tions into the network infrastructure, satisfying the increas-
ing needs of network operators and end-users. Despite their
widespread adoption, middleboxes exhibit significant limi-
tations in terms of customization, resource efficiency, and
manageability [21], [22]. More precisely, middleboxes are
typically built of specialized hardware and offer single-purpose
functionality, leading to appliance sprawl, and increased cap-
ital and operational expenses for enterprise networks.

Network function virtualization (NFV) is an emerging con-
cept that aims at mitigating some of these problems by
enabling the consolidation of network functions (NF) on
platforms built of commodity components [2], [3]. This can
reduce the expenses for NF deployment either by deploying
consolidated software middleboxes in enterprise networks or
by outsourcing NFs to virtualized network infrastructures. The
latter, in particular, is very appealing to enterprises, since NF-
as-a-service (NFaaS) obviates the need to acquire, deploy, and
operate additional network appliances on clients’ premises,
leading to significant savings in operational and technology
investment costs. Furthermore, the recent trend of micro-
datacenter deployment by large Internet Service Providers

(ISPs) [13] leads to a larger number of NFV Points-of-
Presence (PoP) and essentially better NFaaS offerings for
clients.

Middlebox deployment is commonly driven by certain
policies, i.e., traffic should traverse a set of middleboxes in
a specific order. In enterprise networks, such policies are
enforced with careful middlebox interposition. Middlebox
policies should be preserved when NFs are migrated to a
virtualized infrastructure. Ideally, NF outsourcing should be
indistinguishable from on-site middlebox deployment in terms
of policy. This entails significant challenges for network ser-
vice embedding (NSE) and provisioning. While recent work
has addressed some of the network service provisioning issues
(e.g., packet header modifications hindering policy enforce-
ment) by employing flow tagging [12] or NF-graph transfor-
mations [14], [7], existing solutions for NSE are limited to
heuristic algorithms that primarily aim at minimizing inter-
rack traffic in data-centers (DC) [7], [14].

The NSE problem is further exacerbated by the location
dependencies of certain NFs (e.g., proxies and caches should
be placed in proximity to the enterprise network, while packet
filters should be deployed close to traffic sources for increased
bandwidth conservation at the event of DoS attacks) and the
limited footprint of NF Providers (NFP). More precisely, a
single NFP may not satisfy the location constraints of all
NFs in a service chain, raising the need for NSE across
multiple providers. Such embeddings should satisfy the objec-
tives of clients (e.g., expenditure minimization) and providers
(e.g., revenue maximization), whereas embedding methods
should address the intricacies of multi-provider aspects (i.e.,
restrictions in the resource and network topology information
disclosed by network providers to third parties) [9]. Existing
solutions for multi-provider virtual network (VN) mapping [9],
[16] generate embeddings based on VN graphs with specific
bandwidth demands on each edge. This highly abstract service
model cannot represent network service compositions and the
NF implications on traffic (i.e., certain NFs reduce or amplify
traffic).

In this paper, we present a holistic approach to multi-
provider NSE. In particular, we propose a NSE orchestra-
tor, called Nestor, which generates efficient embeddings via
network graph rendering, request partitioning among DCs,
and request segment mappings onto the DC networks. In this
respect, we introduce a new service model, tailored to NSE,ISBN 978-3-901882-68-5 c© 2015 IFIP



that simplifies (i) the specification of network service requests
and (ii) the estimation of computing and bandwidth demands
for each request. We further define a topology abstraction that
facilitates request partitioning while obscuring any information
that is deemed confidential by NFPs. Nestor provides the
rendering of such topology abstractions from detailed topology
graphs accessed only by NFPs. We decouple network service
composition from NFPs by interposing a network service
composition layer (NSCL) between the clients and the NFPs.
The NSCL uses two variants of an integer linear program
(tailored to the client or the NFP) to assign NFs to DCs and
subsequently generates NF-subgraphs (i.e., request segments)
mappable to DC networks, by employing virtual gateways for
inter-segment traffic aggregation. Upon request partitioning,
each NF-subgraph is embedded onto the corresponding DC,
aided by the binding of the subgraph’s virtual gateway with
the DC network gateway. To this end, we present a heuristic
algorithm and a mixed-integer program, executed by each NFP.

The remainder of the paper is organized as follows. In
Section II, we introduce our service model and topology
abstractions for NSE. Section III provides an overview of
Nestor and discusses the steps required for the embedding of
a request across multiple NFPs. In Section IV, we present
methods for request partitioning and the mapping of NF-
subgraphs onto DC networks. In Section V, we present our
evaluation results and discuss the efficiency of Nestor. Section
VI discusses related work. Finally, in Section VII, we highlight
our conclusions.

II. SERVICE AND TOPOLOGY ABSTRACTIONS

Service chaining is a common abstraction for the expression
of network service requirements [14], [19]. A service chain
represents the exact sequence of NFs traversed by one or mul-
tiple flows. Fig. 1 illustrates an example of service chaining.
In particular, two different groups of enterprise network users
at one site (e.g., front-desk and sales) access a web server
cluster and a database server residing in another site. Traffic
from both groups traverse a cache, firewall, and a redundancy
elimination (RE) appliance, whereas the traffic of “Group A”
is sent through a load balancer and a web application firewall.

NSE consists in mapping service chains across multiple
DCs. We particularly consider DCs operated by multiple
NFPs, since the footprint of individual NFPs may not satisfy
the location dependencies of all NFs in a chain. NSE requests
are formulated by the client (e.g., an enterprise). Besides the
NFs that compose the service, a NSE request is associated
with bandwidth demands between pairs of NFs. NSE should
generate a service mapping, such that NF location dependen-
cies and resource requirements (i.e., CPU and bandwidth) are
satisfied.

Since NFP policies will hinder interoperability with third
parties and especially competitors, we interpose a network
service composition layer (NSCL) between the clients and
the NFPs. NSCL is delegated with the assignment of NFs
to DCs operated by multiple NFPs. This is a task that NSCL
can carry out with an abstract network view (Section II-B).

FW cache LB WAF RE

group A

group B

web 
servers

DB

FW: firewall
LB: load balancer
WAF: Web application firewall
RE: redundancy elimination

enterprise site enterprise site

Fig. 1. Service chaining example.

On the contrary, the assignment of NFs to servers requires
detailed knowledge of the network topology and resource
availability, and as such, it can be performed only by the
NFPs. These observations lead to the NSE problem decom-
position that Nestor employs. Before elaborating on our NSE
approach (Section III), we discuss two critical aspects of
NSE: (i) a service model that circumvents the difficulty in
specifying bandwidth demands in a service chain and (ii)
topology abstractions that facilitate NSE while adhering to
NFPs’ information disclosure policies.

A. Service Model

We aim at defining a service model that simplifies the spec-
ification of service requirements by clients and the estimation
of NF computing and bandwidth demands. The difficulty in
computing resource requirements stems from the effects of
NFs on traffic. More precisely, appliances, such as REs and
caches, conserve bandwidth, while other NFs (e.g., packet
multiplication, encryption) amplify traffic. The level of band-
width conservation or traffic amplification depends on various
factors, such as the size and hit ratio for caches, the amount of
duplicate content for RE appliances, and the volume of traffic
filtered by firewalls and intrusion detection systems (IDS). In
this respect, Table I summarizes the effect of widely-used NFs
on traffic and further shows the range of bandwidth saving or
traffic amplification for each NF, collected from various studies
[24], [5], [25]. Based on these observations, we introduce ϕi

p
which denotes the ratio of outbound traffic at port p of NF i
over the aggregate inbound traffic at all ports. We particularly
consider the traffic ratio per output port, since traffic may be
split between multiple output ports depending on the outcome
of packet inspection.

Our network service model consists of a NF-graph in which
each NF i is associated with a traffic ratio ϕi

p per port p
(Fig. 2). Essentially, ϕi

p is used for the estimation of the
bandwidth demand over each link, given the aggregate inbound
traffic rate at each NF. The adjustment of ϕi

p for a given NF can
be derived based on traffic statistics from middleboxes with
the same functionality, deployed on the client’s premises. In
case such information is not available, ϕi

p can be adjusted
based on statistics available from middlebox studies [24],
[5], [25] or other network operators. Since achieving a very
accurate estimation of ϕi

p may be difficult, ϕi
p can be set to

the lowest bandwidth saving or the highest level of traffic
amplification (assuming a known range of bandwidth saving
or traffic amplification, as shown in Table I). This approach
ensures that bandwidth allocation will be sufficient, while
any spare bandwidth can be distributed proportionally to the
clients. After ϕi

p has been adjusted for each NF in the service



TABLE I
EFFECTS OF NETWORK FUNCTIONS ON TRAFFIC RATE.

Network function Bandwidth
preservation

Outbound/inbound traffic
rate (ϕ)

Flow monitoring Yes -
Load balancer Yes -
NAT Yes -
RE No 40–70% [24], 59–74% [5]
VPN (IPsec) No 105–228% (for 64–1500-byte

packets) [25]

chain, the client simply needs to specify the rate of the traffic
generated at each end-point.

The computational requirements for each NF can be derived
using the inbound traffic rate and the resource profile of
each NF (i.e., CPU cycles per packet). Resource profiles are
available for a wide range of NFs [11], [10], while existing
profiling techniques [26] can be applied to any flow processing
workloads whose computational requirements are not known.
This obviates the need to specify any computing demands for
the NFs in the service chain.

B. Topology Abstractions

Topology abstractions are crucial for the generation of effi-
cient embeddings considering the information disclosure poli-
cies of NFPs. We seek to identify topology abstractions that
conceal any information deemed as confidential by NFPs. To
this end, we rely on information disclosed by ISPs and cloud
providers. ISPs often publish simplified PoP-level topologies
[23], while cloud providers advertise resource types across
different availability zones [1].

We depart from a PoP-level topology view that includes
the Internet access points, NFV PoPs (i.e., DCs), and peerings
with neighbouring networks. Fig. 3(a) depicts such a topology
spanning four NFPs and two ISPs. Since the end-points (i.e.,
e1,e2) are fixed, we need a network view that simplifies
the estimation of the link costs between the end-points and
the DCs. Based on Fig. 3(a), we derive an abstract network
view that obscures the Internet access points and represents
(i) the connectivity between DCs and peering nodes within
each NFP, and (ii) the peerings among NFPs (Fig. 3(b)). This
topology abstraction combined with NF computing and link
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Fig. 2. Service model (R represents the traffic rate generated at an end-point
and ϕi

p denotes the outbound to inbound traffic ratio at the port p of the NF i).
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Fig. 3. Topology abstraction for request partitioning.

costs provides the necessary means for the estimation of the
overall NSE cost.

The edges of this network graph can be annotated with
weights assigned by each NFP, according to the NFP’s policies
(e.g., load balancing), similarly to the Multi Exit Discriminator
(MED) attribute of the Border Gateway Protocol (BGP). A
NFP may wish to incorporate DC utilizations into the weights
of the adjacent links, avoiding the explicit advertising of
DC utilization information. We particularly consider a link
weight offset which is dynamically adjusted according to the
DC utilization level. Link weights are used by our request
partitioning formulation variant which is tailored to NFPs
(Section IV-B).

III. NESTOR OVERVIEW

In this section, we provide an overview of Nestor and
discuss the sequence of steps for the embedding of network
service requests. Nestor processes and embeds requests spec-
ified based on the service model presented in Section II-A.
The topology abstraction in Section II-B represents the view
of the NSCL on the substrate network topologies. To embed
network service requests, Nestor implements a NSE control
plane, which is distributed across the NSCL, the NFPs, and
the DCs deployed by each NFP, as shown in Fig. 4. Along
these lines, Nestor decomposes NSE into the following steps:

Graph Rendering. Graph rendering consists in the trans-
formation of detailed topology graphs into topology abstrac-
tions that facilitate request partitioning while obscuring any
confidential information for NFPs. Each NFP generates the
topology abstraction for his own network and subsequently
annotates the edges of the graph with the link costs (i.e.,
expressed as cost per bandwidth unit) and optionally with
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Fig. 4. Nestor control plane overview.

weights representing link and DC preferences. The NSCL
collects the graphs from all participating NFPs and stitches
them together constructing an abstract network view that
spans all NFPs (i.e., Fig. 3(b)). New topology abstractions
are generated upon significant substrate topology changes or
the participation of new NFPs. Link weights are updated on
the existing network graphs in response to changes in resource
utilization levels or NFP policies.

Request Partitioning. Network service requests are parti-
tioned among NFPs, when there is no single NFP that satisfies
the location dependencies of all NFs in the request. More
precisely, the NSCL identifies a list of DC candidates for each
requested NF by matching NF location constraints against each
NFP’s footprint. Subsequently, the NSCL uses two variants of
an integer linear program for request partitioning, tailored to (i)
the client (i.e., expenditure minimization) or (ii) the NFPs (i.e.,
network load balancing), exploiting link and DC preferences
disclosed by NFPs. The request partitioning formulations are
discussed in detail in Section IV-B.

The request segments are derived from the ILP solver
output, i.e., the NF-to-DC assignment (Fig. 5(a)). First, the
NSCL computes the total inbound and outbound bandwidth
demand for each request segment (Fig. 5(b)). Next, the NSCL
generates a NF-subgraph, in which all inter-segment traffic
traverses a virtual gateway (VGW), as shown in Fig. 5(c).
This subgraph allows the binding of the VGW with the DC
network gateway, augmenting the mapping of each request
segment onto the assigned DC.

NF-subgraph Mapping. Each NF-subgraph is mapped onto
the assigned DC network by the corresponding NFP. This
process does not require any topology abstractions, since
each NFP has a complete view of the DC network topolo-
gies and the utilization of servers and links. We particularly
consider 2-level hierarchical DC network topologies (Fig. 6)
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that provide sufficient capacity for data transfers between
the few hundreds of servers deployed within each micro-
DC. Nevertheless, our NF-subgraph mapping methods are also
applicable to 3-layer fat-tree topologies, used for larger DCs.

We assign NF-subgraphs to DC networks using two meth-
ods: (i) a mixed integer program formulation for exact so-
lutions and (ii) a heuristic algorithm for approximate but
fast retrievable solutions. The objective of both methods is
the maximization of NF consolidation level and minimization
of inter-rack traffic. Further details on these NF-subgraph
mapping methods are given in Sections IV-C and IV-D.

IV. NETWORK SERVICE EMBEDDING METHODS

In this section, we present our methods for request partition-
ing and NF-subgraph mapping. We first introduce our request
and network model (Section IV-A). Next, we present an inte-
ger linear program (ILP) formulation for request partitioning
(Section IV-B). We also define a mixed integer program (MIP)
formulation (Section IV-C) and a heuristic algorithm for the
mapping of NF-subgraphs onto DC networks (Section IV-D).



Furthermore, we compare the MIP and the heuristic in terms
of NF-subgraph mapping efficiency (Section IV-E).

A. Request and Network Model

We briefly discuss our request and network model. Both
stem from the service model and topology abstractions pre-
sented in Section II.
Request Model. We use a directed graph GF = (VF ,EF) to
express a network service request. The set of vertices VF
includes all NFs and end-points that comprise the service
request. Each NF i is associated with an outbound/inbound
traffic ratio per port p, denoted by ϕi

p. Each end-point is
associated with a traffic generation rate, which, combined with
ϕi

p, gives the bandwidth demand di j for each edge (i, j) ∈ EF .
The computing demand di of each NF is estimated based on
the inbound traffic rate and the NF resource profile (i.e., CPU
cycles / packet).
Substrate Network Model. We rely on an undirected graph
GS = (VS,ES) for the description of topology abstractions
(Section II-B) and substrate network topologies. We use αu
and βuv to express the monetary cost of NFs and links,
respectively. As discussed in Section II-B, each graph edge
(u,v) ∈ ES is associated with a weight, denoted by wuv, which
is assigned by the NFP. Furthermore, substrate nodes and
links are associated with their residual capacity, represented
by ru and ruv, respectively. We use λi to denote the distance
tolerance of NF i, derived from the NF location dependence.
To enforce NF location constraints, we further introduce li

u
which represents the distance between the preferred location
(e.g., close to an end-point) and the DC u assigned to NF i.
A list of all notations is given in Table II.

TABLE II
NOTATIONS.

Symbol Description
αu monetary server cost at DC u in $/GHz
βuv monetary cost of link (u,v) in $/Mbps
di computing capacity demand of NF i in GHz
di j bandwidth demand of edge (i, j) in Mbps
f i j
uv flow demand of edge (i, j) assigned to the intra-DC link

(u,v) in Mbps
ϕi

p outbound/inbound traffic ratio per port p for NF i
li
u distance between the preferred location and the DC u

assigned to NF i in km
λi distance tolerance of NF i in km
ru residual capacity of server u in GHz
ruv residual capacity of link (u,v) in Mbps
wuv weight of link (u,v)
xi

u assignment of NF i to DC or server u
yi j

uv mapping of NF graph edge (i, j) onto PoP-level graph edge
(u,v)

zu assignment of any NF to server u

B. Request Partitioning

Request partitioning will be subject to objectives, such as
service cost minimization or network load balancing. In this

respect, we provide two ILP formulation variants, tailored to
the client and the NFPs. The ILP variants differ only in the
objective function. The objective function Min-C minimizes
the overall monetary cost for the client, by accumulating all the
monetary NF and link costs. On the other hand, the objective
function Min-W minimizes the link weights, disclosed by
NFPs. Since link weights express the utilization of links and
DCs, link weight minimization essentially leads to network
load balancing.

In the ILP formulations, we use the binary variable xi
u to

express the assignment of NF i to the DC u. Similarly, the
binary variable yi j

uv indicates whether the NF graph edge (i, j)∈
EF has been mapped onto the PoP-level graph edge (u,v)∈ES.
The request partitioning ILP is defined as follows:

Min-C:
Minimize ∑

u∈VS

αu ∑
i∈VF

dixi
u + ∑

(u,v)∈ES
(u 6=v)

βuv ∑
(i, j)∈EF

di jyi j
uv (1)

OR

Min-W:
Minimize ∑

(u,v)∈ES
(u 6=v)

wuv ∑
(i, j)∈EF

di jyi j
uv (2)

subject to:

∑
u∈VS

xi
u = 1 ∀i ∈VF (3)

∑
v∈VS
(u 6=v)

(yi j
uv− yi j

vu) = xi
u− x j

u

i 6= j,∀(i, j) ∈ EF ,∀u ∈VS (4)

li
uxi

u ≤ λ
i ∀i ∈VF ,∀u ∈VS (5)

xi
u ∈ {0,1} ∀i ∈VF ,∀u ∈VS (6)

yi j
uv ∈ {0,1} ∀(i, j) ∈ EF ,∀(u,v) ∈ ES (7)

Hereby, we briefly discuss the ILP constraints. Con-
straint (3) ensures that each NF i is mapped exactly to one DC.
Condition (4) preserves the binding between the NF and the
link assignments. More precisely, this condition ensures that
for a given pair of assigned nodes i, j (i.e., NFs or end-points),
there is a path in the network graph where the edge (i, j) has
been mapped. Condition (5) enforces NF location constraints.
Finally, the conditions (6) and (7) express the binary domain
constraints for the variables xi

u and yi j
uv. In addition, we fix the

assignment of each end-point k in the request to its respective
location u by setting xk

u← 1.
We rely on the branch-and-cut method for solving the ILPs.

The request partitioning ILP solver yields a mean runtime
of 210 ms (with the evaluation parameters shown in Table
III). Time complexity and solver runtime can be reduced by



employing relaxation and rounding techniques at the cost of
suboptimality [8].

C. NF-subgraph Mapping MIP

The MIP for NF-subgraph mapping aims at maximizing NF
co-location while minimizing the traffic within the DC. In this
respect, the binary variable xi

u denotes the assignment of NF i
to the server u, while the binary variable zu indicates whether
the server u has been assigned to any NFs (i.e., zu = 0 when
there is no NF assigned to server u; otherwise zu = 1). Based
on the multi-commodity flow problem formulation, we use
the term commodity, defined as Comi j = {i, j,di j}, to express
bandwidth demands di j between a pair of NFs i, j. In this
context, the flow variable f i j

uv denotes the amount of flow (i.e.,
bandwidth units) over the DC link (u,v) for the NF-graph edge
(i, j) ∈ EF .

The NF-subgraph mapping MIP is formulated as follows:

Minimize

∑
u∈VS

zu +
1

∑
(i, j)∈EF

di j · ∑
(u,v)∈ES
(u 6=v)

∑
(i, j)∈EF

f i j
uv (8)

subject to:

∑
u∈VS

xi
u = 1 ∀i ∈VF (9)

∑
v∈VS
(u 6=v)

( f i j
uv− f i j

vu) = di j(xi
u− x j

u)

i 6= j,∀(i, j) ∈ EF ,∀u ∈VS (10)

∑
i∈VF

dixi
u ≤ ruzu ∀u ∈VS (11)

∑
i, j∈VF

f i j
uv ≤ ruv ∀u,v ∈VS (12)

xi
u,zu ∈ {0,1} ∀i ∈VF ,∀u ∈VS (13)

f i j
uv ≥ 0 ∀(i, j) ∈ EF ,∀(u,v) ∈ ES (14)

The objective function (8) consists of two terms, i.e., the
number of assigned servers and the accumulated flow divided
by the total bandwidth demand. Essentially, the second term
yields 1 if all NF-graph edges (i, j) ∈ EF are mapped onto
single-hop links. The normalization of the second term pro-
vides a balance against the first term in the objective function.

We further discuss the constraints (9)–(14) in the MIP.
Condition (9) ensures that each NF i∈VF is mapped exactly to
one server. Constraint (10) enforces flow conservation, i.e., the
sum of all inbound and outbound traffic in switches and servers
that do not host NFs should be zero. The constraints (11)
and (12) ensure that the allocated computing and bandwidth
resources do not exceed the residual capacities of servers
and links, respectively. Finally, condition (13) expresses the

binary domain constraint for the variables xi
u and zu, while

constraint (14) ensures that the flows f i j
uv are always positive.

We further assume that the first element in VF represents the
virtual gateway which we bind to the physical gateway GW
by setting xVF (1)

GW ← 1.

D. NF-subgraph Mapping Heuristic

Similar to the MIP, the NF-subgraph mapping heuristic
strives to maximize NF co-location and minimize inter-rack
traffic. To this end, the algorithm sorts (i) the racks in de-
creasing order, according to the available bandwidth between
their top-of-the-rack (ToR) switch and the root switches, and
(ii) the servers in each rack in decreasing order, according to
their residual computing capacity. Subsequently, the algorithm
examines the feasibility of assigning the NF-subgraph into
any of the racks, taking into account the residual computing
and link capacity within each rack. If this is not feasible,
the algorithm splits the NF-subgraph into two segments using
min-cut. This ensures that the most heavily communicating
components are assigned to the same segment, reducing the
traffic between the segments and, thereby, between the racks.
For any of the segments that do not fit into any of the racks, the
algorithm performs additional iterations partitioning segments,
till all segments have been assigned; otherwise, the request is
rejected.

E. NF-subgraph Mapping Efficiency

We hereby investigate the suboptimality of the heuristic
compared to the MIP, in terms of DC mapping efficiency. To
this end, we assign 5000 non-expiring NF-graphs onto a DC,
using both mapping variants. Each NF-graph contains 2 to 20
NFs. The evaluation parameters used for this test are the same
with our NSE evaluation in Section V (see Table III).

We aim at comparing the level of NF consolidation and
inter-rack traffic of both NF-graph mapping variants. In this
respect, Fig. 7(a) illustrates the relative utilization of DC
servers and racks. The heuristic results in marginally higher
server utilization, while rack utilization remains the same for
both DC mapping methods. In the long run, both variants
achieve a CPU utilization of around 92.5%. This indicates
that NFPs can generate equally high revenues from NFaaS
offerings.

We further investigate whether the heuristic generates addi-
tional traffic within the DC, compared to the MIP. According
to Fig. 7(b), the heuristic results in marginally higher volume
of inter-rack traffic and a more perceptible increase (i.e., up
to 8%) in the traffic within the racks. This indicates nearly no
suboptimality in terms of inter-rack traffic minimization for
the heuristic. Since inter-rack traffic is associated with NF-
graph partitioning among racks, we infer that the heuristic has
a higher tendency to partition NF-graphs within the same rack
rather than across racks. This justifies the marginally higher
utilization of servers by the heuristic, as illustrated in Fig. 7(a).

Eventually, the heuristic yields only marginal suboptimality
compared to the MIP. This mainly stems from a slightly
lower NF consolidation level. However, the heuristic exhibits
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Fig. 7. NF-graph mapping with MIP and heuristic algorithm.

a substantially lower runtime (4 ms) compared to the MIP
(80 ms)1, which we deem that outweighs its suboptimality.
As such, we employ the heuristic into Nestor for NF-subgraph
mapping in our NSE evaluation study (Section V).

V. EVALUATION

In this section, we assess the efficiency of NSE across
multiple NFPs with Nestor. We mainly focus on request parti-
tioning and particularly on the impact of different partitioning
objectives on service cost, load balancing, request acceptance,
and generated revenue. To this end, we rely on the two request
partitioning ILP variants, introduced in Section IV-B. Upon
partitioning, the mapping of NF-subgraphs to DCs is generated
with the heuristic algorithm presented in Section IV-D. In
the following, we present our evaluation environment (Sec-
tion V-A) and discuss our evaluation results (Section V-B).

A. Evaluation Environment

We have implemented an evaluation environment for multi-
provider NSE in C/C++. Our implementation includes the
Nestor NSE framework (Section III), a service chain generator,
and a substrate network topology generator. We rely on
CPLEX as optimizer for our ILP/MIP. Below, we provide
further details on the substrate network and service chain
specifications, as used in our evaluations.
Substrate Network. We generated a PoP-level substrate topol-
ogy with 12 NFPs covering a region with the size of the US
state California. The substrate spans 50 homogeneous DCs,
each one containing 200 servers in 10 racks. For each DC, we
have generated a 2-level hierarchical network topology, similar
to Fig. 6.
Service chains. Network service requests are generated based
on service chain templates. These templates are composed
of NFs that correspond to real middlebox applications (e.g.,
firewall, load balancing, RE). Each NF is associated with
the outbound/inbound traffic rate (ϕ), adjusted according to
the statistics summarized in Table I. The NF computational
requirements and bandwidth demands are derived from our
network service model (Section II-A), given the ϕ adjustments
and the traffic rate at the end-points. The traffic rate is
randomly sampled from a uniform distribution. The end-points

1Tests are carried out on a server with two quad-core Intel Xeon CPUs at
2.53 GHz.

TABLE III
EVALUATION PARAMETERS.

Substrate network (PoP-level topology):

NFPs / DCs 12 / 50
Intra-domain link cost unif. distrib. [0.002, 0.006] $/Mbps
Peering link cost unif. distrib. [0.006, 0.018] $/Mbps
Server cost unif. distrib. [0.05, 0.10] $/GHz

Substrate network (Data Center topology):

Root switches 5
Racks per DC 10
Servers per rack 20
Server capacity 16 · 2 GHz
ToR-to-server link capacity 4 Gbps
Inter-rack link capacity 16 Gbps

Service chains:

Number of NFs uniform distrib. [10, 20]
Traffic generation rate uniform distrib. [10, 100] Mbps

are randomly selected out of 50 possible locations with a
minimum distance of 250km to each other. Table III provides
a list of the evaluation parameters.

We use the following metrics for the evaluation of NSE
efficiency:

• Service cost represents the client’s expenditure for the
network service.

• DC load balancing level is defined as the maximum over
the average server CPU load across the DCs.

• Acceptance rate is the number of successfully embedded
requests over the total number of requests.

• Revenue accumulates the CPU and bandwidth units
leased to clients.

B. Evaluation Results

We perform a comparative study between the two request
partitioning ILP variants (Section IV-B), i.e., embedding cost
minimization (Min-C) and link weight minimization (Min-W).
In addition, we use a greedy algorithm as baseline. This
algorithm binds each NF with one of the end-points, depending
on the NF location constraint or the order in the service chain
(for NFs without location dependencies), and assigns each NF
to the DC which is most proximate to the corresponding end-
point.

Fig. 8 illustrates the evolution of the cumulative service
cost with 250K non-expiring requests. Both Min-W and the
greedy algorithm yield a higher service cost, compared to
Min-C which is formulated for service cost minimization.
In particular, Min-W exhibits an increase in the service cost
(relatively to Min-C) with the number of requests, eventually
converging to 20% additional service cost, which is steadily
incurred by the greedy algorithm.

The boxplots in Fig. 9 illustrate the decomposition of
service cost into the CPU and bandwidth cost, normalized per
resource unit. The lower service cost of Min-C stems from
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Fig. 13. Acceptance rate with diverse arrival
rates of expiring requests and weight-minimized
request partitioning.

the significantly lower bandwidth cost (Fig. 9), considering
that in absolute terms the fraction of bandwidth cost is one
magnitude higher than the fraction of CPU cost. Essentially,
Min-C achieves cost savings with the selection of DCs which
are reachable over less costly paths. The greedy algorithm
yields an average CPU cost of 0.075$/GHz, which corresponds
to the average CPU cost across all NFPs, since DC selection
is bound to randomly assigned end-points.

So far, Min-C appears very appealing for clients, since
it minimizes their expenditure. However, Min-C may entail
suboptimality for NFPs which we investigate in the following.
In this respect, Fig. 10 depicts the evolution of load balancing
level across the DCs. Since the greedy selection of DCs
close to the end-points does not lead to load balancing, we
focus on the load balancing levels of the two ILP variants.
According to Fig. 10, Min-W converges to near-optimal load
balancing after 100K requests, exploiting the DC utilization
levels disclosed via the link weights. In comparison, Min-C
yields a perceptible suboptimality. For instance, after 250K
requests the highest server load is 5.3% and 18.2% above the
average DC utilization, for Min-W and Min-C, respectively.

Fig. 11 shows the request acceptance rates for the three
request partitioning methods. Optimizing DC selection based
on the disclosed weights (i.e., Min-W) inhibits the assignment
of NF-subgraphs to highly utilized DCs, which usually leads
to request rejections. As such, Min-W yields a higher request
acceptance rate. Specifically, after 100K requests (which corre-
sponds to a server utilization level of 80% across DCs), Min-W

can embed 23% more requests than Min-C. On the other hand,
the greedy algorithm suffers from a large number of rejections,
due to the restrictions in DC selection.

Figs. 11 and 12 show a strong correlation between the
acceptance rate and generated revenue. The ILP variants gen-
erate substantially higher revenue from CPU and bandwidth,
compared to the greedy algorithm. For Min-W, the highest
acceptance rate is translated to a higher revenue, i.e., up to
14% more than Min-C. This essentially designates Min-W as
the preferred request partitioning method for NFPs.

Finally, we measure the acceptance rate of Min-W with
250K expiring requests and diverse arrival rates. Fig. 13 shows
that acceptance rates converge to a steady state, irrespective of
the arrival rate. This further indicates the efficiency of Min-W
ILP and our DC mapping algorithm for NSE across multiple
NFPs.

VI. RELATED WORK

We briefly discuss related work on NF-graph mapping and
request partitioning for network service and VN embedding.
NF-graph mapping. Existing work on NSE has mainly fo-
cused on NF-graph mapping onto DC networks. STRATOS
[14] and CloudNaaS [7] propose heuristic mapping algorithms
that seek to minimize inter-rack traffic within DC networks. A
similar approach is also taken by Oktopus [6], SecondNet [15]
and CloudMirror [18] for the assignment of virtual clusters to
DCs. Huan et al. propose a distributed algorithm for network
service placement assuming the ability to deploy NFs in the



data path [17]. MIDAS [4] employs a heuristic algorithm
for order-preserving NF assignment to middleboxes deployed
along the data path. Several studies have tackled the problem
of embedding VN topologies onto a shared substrate network,
relying on heuristic algorithms [27], [28] or linear programs
[8], [9], [16]. However, these embedding techniques are de-
signed for arbitrary virtual and substrate network topologies,
and are not optimized for NF-graph mapping onto DC network
topologies. Compared to all these approaches, Nestor provides
a holistic solution for the NSE problem across multiple NFPs,
including request partitioning, generation of NF-subgraphs
with DC gateway bindings, and NF-subgraph mapping.

Request partitioning. Authors in [16], [9] apply a similar VN
embedding problem decomposition, i.e., VN request partition-
ing among providers, followed by request segment mapping
onto each provider’s network. However, both frameworks [16],
[9] pertain only to VN embedding, as their request models
cannot represent service chaining while request partitioning
has been formulated assuming only the knowledge of provider
peerings. In contrast, Nestor couples service chaining with NF
traffic ratios to simplify the estimation of bandwidth demands,
uses a topology abstraction tailored to NSE, and optimizes
request partitioning with respect to the client’s expenditure
and NFPs’ policies.

VII. CONCLUSIONS

In this paper, we presented Nestor, a NSE orchestrator that
addresses the main challenges faced by the assignment of
service chains across multiple NFPs. Nestor encompasses a
service model that simplifies the estimation of computational
and bandwidth requirements in service chains, and topology
abstractions that augment request partitioning, while obscuring
any confidential information for NFPs. Nestor relies on a
broker (i.e., NSCL) for request partitioning and the generation
of NF-subgraphs mappable to DC networks. We presented
request partitioning ILP variants optimized for the client and
the NFPs. The mapping of NF-subgraphs to DCs is computed
by a heuristic algorithm which yields marginal suboptimality
compared to a MIP.

Our evaluation results show the high efficiency of Nestor
with both request partitioning ILP variants. Our insights into
request partitioning uncover a trade-off between service cost
minimization and resource efficiency. In particular, service cost
minimization can potentially lead to cheaper NFaaS offer-
ings, attracting more clients, but at the same time generates
suboptimal embeddings that restrict the revenue of NFPs.
Conversely, partitioning optimizations driven by NFP policies
yield resource efficiency, maximizing the NFPs’ revenue, but
also entail more expensive and, thus, less competitive NFaaS
offerings.
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