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Abstract—The increasing demand for media-rich content has
driven many efforts to redesign the Internet architecture. As
one of the major candidates, information-centric network (ICN)
has attracted significant attention, where in-network cache is a
key component in different ICN architectures. In this paper,
we propose a novel framework for optimal cache management
in ICNs which jointly considers caching strategy and content
routing. Specifically, we propose a cache management framework
for ICNs based on software-defined networking (SDN) where a
controller is responsible for determining the optimal caching
strategy and content routing via linear network coding (LNC).
Under the proposed cache management framework, we formally
formulate the problem of minimizing the network bandwidth
cost by jointly considering caching strategy and content routing
with LNC. We develop an efficient network coding based cache
management (NCCM) algorithm to obtain a near-optimal caching
and routing solution for ICNs. We further develop a lower
bound of the problem and conduct extensive experiments to
compare the performance of the NCCM algorithm with the lower
bound. Simulation results validate the effectiveness of the NCCM
algorithm and framework.

I. INTRODUCTION

The increasing demand for media-rich content calls for
more efficient methods for content retrieval. Information-
centric network (ICN) is an Internet design approach that
fulfills such a demand by introducing named content and
enabling in-network caching [1]. In ICNs, a content router
(CR) with in-network caching capability can buffer some
(popular) data chunks for future access [2]. In-network caching
can greatly reduce the retrieval delay of content, the traffic in
the network, and the service load on the servers [3], [4].

To manage in-network caches in ICNs, two major issues
need to be jointly considered. One is the caching strategy that
determines which data chunks shall be cached at each CR,
and the other is content routing that determines where to route
content requests and how to deliver content.

This work is supported in part by National Natural Science Foundation
of China under Grants No. 61202378, 61272462, Shanghai Oriental Scholar
Program, Hong Kong General Research Funding under project CityU No.
9041787, a project from Huawei under CityU No.9231102 and China Post-
doctoral Science Foundation No. 2013M531402.

In the literature, there are two types of caching strategies:
non-cooperative and cooperative. In non-cooperative caching
strategies, a CR opportunistically caches the received data,
which may lead to frequent cache updates, sub-optimal cache
allocation and caching duplication [3]. In cooperative caching
strategies, a CR can sync with its neighboring CRs to deter-
mine which set of data chunks to cache [4]–[7].

For content routing, there are two different ways to utilize
the in-network caches. One is to only use caches along the path
to the original content server for that request and the other
is to utilize all nearby caches. The former does not require
any cooperation among CRs but may exhibit potentially longer
retrieval delay. The latter requires cooperation among CRs to
forward the request to the nearest off-path cache [8]. Either
way is closely coupled with content routing. In this paper, we
will focus on cooperative caching strategy and content routing
to fully utilize all distributed in-network caches.

To enable cooperation among distributed CRs, a cache
management framework is needed to collect cooperation-
related information (e.g., request rates and the current cache
status) and make caching and routing decisions. Software
defined networking (SDN), which decouples the control plane
and data plane, can satisfy this requirement. Typically, in
the control plane, a controller is responsible for collecting
network information and making routing decisions which
will be configured at routers. In the data plane, routers will
forward packets according to the flow tables configured by the
controller. Over the past few years, many new controllers has
been designed by using powerful multicore servers to scale up
to handle a large number of data flows in big networks. For
example, McNettle [9] can manage around 20 million requests
per second for a network with 5000 switches.

Recently, preliminary studies have been conducted to en-
able cache management in ICNs based on SDN [10], [11].
However, these works mainly focused on how to incorporate
cache related operations into the existing SDN architecture and
did not discuss the actual caching strategy. In this paper, we
will go one step further to study caching strategy and content
routing of ICNs based on SDN with the aim of minimizing the
network bandwidth cost, which is the total cost of bandwidth
consumption in the whole network.

Specifically, we will employ linear network coding (LNC)ISBN 978-3-901882-58-6 c© 2014 IFIP
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(a) With no In-network Cache. (b) ICNs without LNC. (c) ICNs with LNC.

Fig. 1. An example of content request in different network scenarios.

to jointly optimize caching strategy and content routing with
the objective of minimizing the network bandwidth cost. We
use an example shown in Fig. 1 to illustrate the benefits of
using LNC in ICNs. In this figure, a network consists of six
routers (v1–v6), and two servers (s1 and s2). The users are
all connected to routers v1, v4, and v6 and request a piece of
content, denoted as f1, that contains two unit data chunks, A
and B. We assume that each link has a unit cost. In terms of
bandwidth cost, we have the following results in three different
network scenarios:

• In Fig. 1(a), no in-network cache has been exploited
and the best way to obtain the designated content is by
IP multicast where five links are used in the routing
tree. To transmit two data chunks, the bandwidth cost
is 10.

• In Fig. 1(b), we further assume that there are three
CRs (v2, v3, and v5) and each of them can cache only
one data chunk. For ICNs without LNC, each CR can
cache one original data chunk. Fig. 1(b) shows the
optimal caching strategy and content routing, in which
the bold symbols shown on each CR denote the data
chunk cached at the CR. In this case, it requires a
total of 7 units of bandwidth cost, representing a 30%
improvement.

• Fig. 1(c) shows the optimal cache management in
ICNs with LNC. The three CRs can cache the linear
combination of the original data chunks. To recover
the original data chunks A and B, a user only needs
to obtain any two linearly independent coded data
chunks. With the optimal solution, i.e., each router
(e.g., v1, v4 and v6) can download two coded data
chunks from its two nearest CRs, the bandwidth cost
is 6, representing a 40% total improvement.

The above example demonstrates the advantage of jointly
considering in-network caching strategy and content routing
with LNC in ICNs, which motivates the work of this paper. The
main contributions of this paper are summarized as follows.

• We propose a novel SDN-based framework to fa-
cilitate the implementation of caching strategy and
content routing in ICNs with LNC. The framework
is based on the emerging concept of SDN, in which
a controller is responsible for determining the optimal
caching strategy as well as the optimal content routing
via LNC.

• We formulate the optimal cache management problem
for ICNs with LNC to minimize the network band-
width cost by jointly considering caching strategy and
content routing.

• We develop an efficient network coding based cache
management (NCCM) algorithm to obtain a near-
optimal cache management solution. Based on La-
grangian relaxation, the formulated problem can be

relaxed and then decomposed into a linear program-
ming problem and several simple integer maximum
weight placement problems, all of which can be solved
optimally within polynomial time. A near-optimal
feasible solution for the cache management problem
can be found in a reasonable amount of time.

• We develop a lower bound of the problem and conduct
extensive experiments to compare the performance of
the proposed NCCM algorithm with the lower bound.
Simulation results validate the effectiveness of the
proposed NCCM algorithm and framework.

The rest of the paper is organized as follows. In Sec. II,
we introduce a general cache management framework for ICNs
based on SDN. We formulate the optimal cache management
problem for ICNs with LNC, which aims to minimize the
network bandwidth cost by exploiting in-network caches and
LNC in Sec. III. To solve the problem in practice, in Sec. IV,
we design an efficient algorithm based on Lagrangian relax-
ation. We then conduct extensive experiments to illustrate the
performance of our framework in Sec. V. Finally, we discuss
related work in Sec. VI and conclude the paper in Sec. VII.

II. A NOVEL CACHE MANAGEMENT FRAMEWORK FOR

ICNS WITH LNC

In this section, we first introduce the main idea of the
cache management framework, which is based on the concept
of SDN. We then discuss several important operations to
implement the proposed framework.

A. The Main Idea of the Framework

In our framework, we consider an ICN that consists of CRs,
a controller, and LNC-enabled servers, as shown in Fig. 2. Note
that any router can be considered as a CR even if it does not
have cache capability. We will regard it as a CR with zero
cache capacity. We assume a content fn consists of mn data
chunks. We introduce the major functionality related to cache
management for ICNs based on SDN as follows.

1) Functionality of a CR: In our framework, a CR shall be
responsible for the following functionality:

• monitoring content requests at the content level (not
at the chunk level) received from its local end users;

• sending content request statistics to the controller
periodically;

• returning data chunks to end users directly if the data
chunks are available in local cache;

• delivering the received data chunks to end users based
on the tracks left by content requests;

• forwarding requests to other CRs according to the flow
table;

• forwarding requests for unknown content to the con-
troller; and

• retrieving desired coded data chunks from designated
servers if necessary.
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Fig. 2. A cache management framework.

2) Functionality of the Controller: In our design, the
controller shall be responsible for the following functionality:

• gathering content request statistics at the content level
(not at the chunk level) from each CR;

• determining the local popular content request set for
each CR vk, denoted as Qk, the route of which needs
to be pre-configured;

• predicting a popular content set, denoted as F , to be
cached;

• applying our optimal cache management scheme to
optimize the caching strategy and content routing;

• configuring CRs to cache popular content, route con-
tent requests and deliver content; and

• configuring CRs so that requests for non-popular con-
tent can be forwarded to servers.

B. Essential Operations

In this subsection, we will explain the main operations
related to cache management, including how to obtain content
request statistics, how to cooperatively cache content in differ-
ent CRs, where to route content requests and how to deliver
content to fully utilize all in-network caches.

1) Content Request Statistics Collection: In order to come
with optimal caching strategy and routing decisions, all CRs
shall report content request statistics periodically with a fixed
time period (Step 1 in Fig. 2). Here we note that, with
the content request statistics, the controller can adopt any
data analysis algorithm to understand the pattern of content
request, such as the popularity and the locality over time [12].
Nevertheless, the details about the statistics analysis are out of
the scope of this paper.

2) Caching Strategy: Based upon the content request s-
tatistics, the controller can determine the local popular content
request set (Qk) for each CR vk and the set of popular content
(F , F =

⋃
vk

Qk). For each content in F , the controller will
further determine the set of data chunks that each CR shall
cache (Step 2 in Fig. 2). Without using network coding, such
periodical and off-line cache placement schemes have been
proposed in [7], [13]. In practice, the time period can be
selected to balance bandwidth cost reduction and the system
computation/communication overheads.

To apply LNC, the controller may choose deterministic
LNC or random LNC. If deterministic LNC is used, the
controller shall send a set of global encoding vectors (GEVs) to
each CR so that the CR can forward a request to LNC-enabled
servers to obtain required coded data chunks. In this case, the
controller can guarantee that any set of coded data chunks of
each content cached in ICNs with size no more than the size
of the content is linearly independent. On the other hand, if
random LNC is used, the controller can send the number of
required coded data chunks to each CR, who will then forward
the request to LNC-enabled servers that can generate coded
data chunks with random GEVs. In such a case, coded data
chunks of the same content may be linearly independent to
each other with a certain (high) probability. The advantage
of the latter scheme is that the computation overhead of the
controller can be reduced at the risk of a possible compromise
of the linear independence of coded data chunks.

3) Content Routing: In our framework, we classify the
content requested by the local end users at each CR into
two types, popular and non-popular content. For each CR vk,
the controller should find the optimal route for each popular
content in Qk and configure flow tables in CRs on the route
accordingly. The flow entry for a content fn will have a list
of outgoing interfaces, each of which leads to a CR caching
coded data chunks of fn. This step (Step 3 in Fig. 2) can be
done after it achieves the optimal caching strategy described
in the previous operation.

In our framework, end users only need to obtain any mn

data chunks for content fn. They can request data chunks one
by one as normal. We slightly change the ICN forwarding
strategy (e.g., Named Data Networking (NDN)) to make the
router’s flow entry to record the number of data chunks that can
be obtained and have been got from each outgoing interface.
When CR vk receives a request from its local end users for
a piece of content in Qk, it will first check whether it has
forwarded another request for the same content with the same
sequence number and has not received the returned data chunk.
If so, it will not forward this request. If not, the CR will send
the request through an outgoing interface if the number of data
chunks obtained from this outgoing interface is less than the
number of data chunks that can be obtained from this interface
(Step 4 in Fig. 2).

If the cache is hit at a CR, the CR will generate a new coded
data chunk by randomly combining the cached data chunks of
content fn and send it back (Step 5 in Fig. 2). If the cache is
missed at a CR, the CR shall fetch the required data chunks
from one or more LNC-enabled servers (Step 6 in Fig. 2)
according to the flow table. Once the CR receives the coded
data chunks from servers, it will cache the coded data chunks
(Step 7 in Fig. 2) and return them to the end users (Step 8 in
Fig. 2).

For the request to non-popular content which is not in Qk,
Fig. 3 shows the operation procedure. In particular, when edge
CR v1 receives a request, it will first look up its flow table. If an
entry is found, the request will be forwarded accordingly. If an
entry cannot be found for the particular content, the edge CR
will forward the request to the controller, as shown in Step 2.
The controller will then determine an optimal routing scheme
and notify all corresponding CRs, which is Step 3. Next, the
request may be multicasted to multiple LNC-enabled servers,
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as shown in Step 4, to obtain the content efficiently using LNC,
which is Step 5.

III. OPTIMAL CACHE MANAGEMENT FOR ICNS WITH

LNC

In this section, we first state the system model and impor-
tant assumptions. We then elaborate on the formulation of an
optimal problem for cache management in ICNs with LNC.

A. The System Model

In this paper, we denote an ICN as a directed graph G =<
V,E >, where V is the set of CRs and E is the set of links
between CRs.

1) Notations: To facilitate further discussions, we summa-
rize the main notations to be used in the paper as follows.

• V : The set of CRs. V = {v1, · · · , v|V |}.

• E: The set of links between CRs. Both ei,j and ej,i
are in E, iff there is a link between CR vi and CR vj .

• ck: The cache capacityof CR vk in terms of data
chunks. ck ≥ 0, ∀vk ∈ V .

• Ci,j : The link cost of link ei,j ∈ E in terms of data
chunks. Ci,j ≥ 0, ∀ei,j ∈ E.

• F : The set of popular content needed to be cached,
F = {f1, · · · , f|F |}.

• mn: The size of content fn in terms of data chunks,
∀fn ∈ F .

• Sn: The set of servers for content fn, ∀fn ∈ F .

• Qk: The set of local popular content requests of CR
vk, Qk ⊆ F, ∀vk ∈ V .

2) Assumptions: In our design, we consider that each CR
is associated with (1) a cache with a certain capacity, and (2)
a set of requests (generated by local end users). As we have
explained before, such a general setting can also represent a
router with no cache, whose cache capacity is zero. Moreover,
we can also use it to represent a server, which not only always
stores content it serves but also may have a certain level of
cache capacity to cache the content it does not serve.

To facilitate cache management, we assume that the con-
troller already has the requesting popularity of each content fn
at each CR vk, defined as pk,n (

∑
vk∈V,fn∈F pk,n = 1). Then,
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it can mark content fn as a piece of local popular content at
CR vk iff its popularity pk,n is larger than a threshold p1. In
other words, the controller already knows the local popular
content request set Qk = {fn|pk,n > p} for each CR vk, and
the popular content set to be cached F =

⋃
vk∈V Qk.

When using LNC in ICNs, we assume that each content
is firstly divided into data chunks of fixed size. Next, coded
data chunks of each content will be generated by the LNC-
enabled servers. Consequently, the data chunks cached in the
CRs and transmitted in the network are linear combinations of
the original data chunks. Since different coded data chunks are
linearly independent or independent with high probability, the
user only needs to acquire a sufficient number of coded data
chunks from any set of CRs to recover the original content.
To facilitate further formulation, we assume that each CR
requesting content fn on behalf of its local end users can
decode and recover the original data chunks iff it receives no
less than mn coded data chunks of content fn.

B. An ILP Formulation

Based on the framework and system model we proposed
previously, we present an integer linear programming (ILP)
formulation for the optimal cache management problem. In
particular, the objective of the ILP is to minimize the network
bandwidth cost.

In our framework, CR vd can download content fn from
multiple CRs. Such a scenario is a typical many-to-one com-
munication for the CR. To formulate the problem, we can add
a virtual node v0 that has all the original data chunks for all
pieces of content in F . Moreover, we can add a virtual link
with limited capacity from v0 to each CR vd ∈ V . We set the
traffic load limitation of this virtual link equal to min(mn, cd).
We denote the graph as G =< V ,E > after transformation, in
which V = V ∪{v0} and E =

⋃
vi∈V {e0,i}∪E. For the case

that CR vk downloads data chunks of content fn from multiple
CRs in G, it equals to downloading from v0 in G. After such
transformation, the scenario for many-to-one communication
is equivalent to a unicast from v0 to CR vk in G.

1The value of p determines the number of popular contents which will be
cached in CRs.



Fig. 4(a) and (b) show the original graph G for the example
shown in Fig. 1 and the graph G generated by transforming
graph G. Specifically, the values shown on the links from the
virtual node v0 to other CRs are the traffic load limitation on
the links. Since CRs v2, v3 and v5 have unit cache capacity,
the traffic load limitations on these links are one. On the other
hand, since we treat server nodes v7 and v8 as CRs which
always have all data chunks of the content it serves, the traffic
load limitations on these links are two. For CRs v1, v4 and v6
with no available cache capacity, the traffic load limitations on
these links are zero and such links are not shown in Fig. 4(b).

We define the following decision variables:

• θk,n: amount of coded data chunks of content fn
downloaded by CR vk.

• βd,n: amount of coded data chunks of content fn
cached at CR vd. βd,n is a nonnegative integer.

• l
i,j
k,n: traffic load on link ei,j for CR vk downloading

content fn. Specifically, l
0,j
k,n denotes traffic load from

CR v0 to CR vj , i.e., the amount of coded data chunks
of content fn downloaded by CR vk from CR vj in
practice.

• ℓi,jn : bandwidth consumption of traffic on link ei,j for
downloading content fn.

Note that a network flow for content fn means a traffic flow
for downloading the coded data chunks of content fn from
different CRs (i.e., downloading from virtual node v0) to the
destination. To transmit content fn in G, with the network flow
constraints (shown in Eq. (2)–Eq. (4) below) on the unicast
for downloading content fn between v0 and vk, the traffic

load transmitting on link e0,j from v0 to vj in G, i.e., l
0,j
k,n, is

equivalent to the amount of coded data chunks of content fn
downloaded from CR vj by CR vk in G.

The ILP formulation P to minimize the network bandwidth
cost in ICNs with LNC is shown as follows:

Minimize:
∑

ei,j∈E

∑

fn∈F

Ci,jℓ
i,j
n (1)

Subject to:
∑

vj∈V

l
0,j
k,n = θk,n, ∀vk ∈ V, ∀fn ∈ Qk (2)

∑

j:ei,j∈E

l
i,j
k,n =

∑

j:ej,i∈E

l
j,i
k,n,

∀vk ∈ V, vi ∈ V − {vk, v0}, ∀fn ∈ Qk (3)∑

j:ej,k∈E

l
j,k
k,n = θk,n, ∀vk ∈ V, ∀fn ∈ Qk (4)

l
i,j
k,n ≤ ℓi,jn , ∀vk ∈ V, ∀ei,j ∈ E, ∀fn ∈ Qk (5)

θk,n ≥ mn, ∀vk ∈ V, ∀fn ∈ Qk (6)

l
0,d
k,n ≤ βd,n, ∀vk, vd ∈ V, ∀fn ∈ F (7)

βd,n ≤ mn, ∀vd ∈ V − Sn, ∀fn ∈ F (8)

βd,n = mn, ∀vd ∈ Sn, ∀fn ∈ F (9)∑

fn∈F

βd,n ≤ cd, ∀vd ∈ V (10)

βd,n ∈ N, ∀vd ∈ V, ∀fn ∈ F (11)

0 ≤ l
i,j
k,n, ∀vk ∈ V, ∀ei,j ∈ E, ∀fn ∈ F (12)

Constraints Eq. (2)–Eq. (4) are network flow constraints on
each CR for each content downloading session.

With LNC, if different CRs download different coded data
chunks of the same content fn and the downloaded data chunks
should be passing through the same link ei,j , then the traffic
load can be shared by generating and transmitting the random
linear combination of the downloaded data chunks. What is
more, the new generated coded data chunks passing through
link ei,j are useful to add new degrees of freedom with high
probability to recover all the data chunks of content fn at each

CR requesting it. Thus, only max
vk∈V

l
i,j
k,n data chunks need to be

transmitted through link ei,j , i.e., the total network bandwidth
consumption of traffic on link ei,j for downloading fn is

max
vk∈V

l
i,j
k,n. On the other hand, constraint Ineq. (5) equals to:

max
vk∈V

l
i,j
k,n ≤ ℓi,jn , ∀ei,j ∈ E, ∀fn ∈ Qk.

Since our objective is to minimize:
∑

ei,j∈E

∑
fn∈F Ci,jℓ

i,j
n ,

we have ℓi,jn = max
vk∈V

l
i,j
k,n. Therefore, the objective

∑
ei,j∈E

∑
fn∈F

Ci,jℓ
i,j
n means the total network bandwidth cost.

Constraints Ineq. (6) and Ineq. (7) give the content down-
loading constraints. Specifically, constraint Ineq. (6) means that
each CR needs to download sufficient number of coded data
chunks to decode and recover the original data chunks for
each requested content. Constraint Ineq. (7) shows that the
amount of coded data chunks for each content downloaded
from a CR is no more than the amount of data chunks of the
content cached in the CR. Constraint Ineq. (8) is the cache
capacity constraint for each content at each CR. Constraint
Eq. (9) shows that the servers for each content always have all
the original data chunks for this content. Constraint Ineq. (10)
gives the constraint that the amount of data chunks cached
at each CR does not exceed its cache capacity. Constraints
Ineq. (11) and Ineq. (12) enforce the variables’ value range.

After solving the above problem, for each content fn, fn ∈
F , we obtain a unicast network flow with flow capacity no less
than mn between node v0 and each CR vk ∈ V requesting fn.
Therefore, a multicast with LNC can be obtained to make sure
that each CR requesting content fn can decode and recover the
mn original data chunks [14]. In the obtained LNC scheme,
the coded data chunks transmitted on link e0,j , ∀vj ∈ V in G
are the coded data chunks to be cached at CR vj in G.

In our architecture, if the controller chooses deterministic
LNC to implement cache policy, it shall send a set of GEVs
to each CR, which indicates the coded data chunks the CR
should cache. On the other hand, if the controller chooses
random LNC, it only sends the number of required coded
data chunks to each CR. For each CR vi ∈ V , the amount
of data chunks of content fn transmitted to its neighboring
CR vj is ℓi,jn . If ℓi,jn is less than the amount of received data
chunks of content fn, then it generates ℓi,jn coded data chunks
by randomly linearly combining the received data chunks of
content fn and transmits them to vj . Otherwise2, it can simply
forwards ℓi,jn coded data chunks it receives to CR vj .

2In multicast with LNC, the traffic load on each outgoing link of a node is
no more than the summation of all the traffic load on its incoming links [14].



Fig. 4(c) shows the unicast network flows between v0 to
each CR v1, v4 and v6 for content f1. Specifically, the traffic
on link e0,2 targeted to CRs v1 and v4 is shared; the traffic on
link e0,3 targeted to CRs v1 and v6 is shared, and the traffic
on link e0,5 targeted to CRs v4 and v6 is shared. According
to Fig. 4(c), for the three nodes with available capacity, we
have β2,1 = 1, β3,1 = 1 and β5,1 = 1, which means that
each of CRs v2, v3 and v5 caches one coded data chunk for
content f1. With LNC scheme shown in Fig. 4(d), we can
obtain the optimal cache policy that data chunk A+B should
be cached at CR v2, data chunk A should be cached at CR v3,
and data chunk B should be cached at CR v5, which is shown
in Fig. 4(e). Moreover, the routing topology shown in Fig. 4(f)
can also be acquired according to Fig. 4(c) by removing virtual
node v0 and the links from v0 to other CRs. In this example,
the total network bandwidth cost is 6.

IV. AN EFFICIENT NETWORK CODING BASED CACHE

MANAGEMENT ALGORITHM

In this section, we design an efficient network coding
based cache management (NCCM) algorithm to obtain a near-
optimal solution of ILP P within polynomial computational
complexity. Based on Lagrangian relaxation and subgradient
algorithm, the NCCM algorithm can be efficiently implement-
ed.

A. Lagrangian Dual Problem

We relax the constraint Ineq. (7) to obtain the Lagrangian
dual problem as the resulting problem can be further decom-
posed into two sub-problems, each of which can be solved
within polynomial computational complexity.

Specifically, we first relax the constraint Ineq. (7) by
moving it to the objective function with associated Lagrangian
multipliers λk,d,n ≥ 0, ∀vk, vd ∈ V, fn ∈ F . We reformulate
the objective function of ILP P as follows:

∑

ei,j∈E

∑

fn∈F

Ci,jℓ
i,j
n +

∑

vk,vd∈V

∑

fn∈F

λk,d,n(l
0,d
k,n − βd,n) =

∑

fn∈F

(
∑

ei,j∈E

Ci,jℓ
i,j
n +

∑

vk,vd∈V

λk,d,nl
0,d
k,n)−

∑

vk,vd∈V

∑

fn∈F

λk,d,nβd,n.

Let λλλ denote the vector composed by elements
λk,d,n, ∀vk, vd ∈ V, fn ∈ F . Then, the Lagrangian dual
problem of ILP P is:

max
λλλ>0

L(λλλ), (13)

in which

Pλλλ : L(λλλ) = min
∑

fn∈F

(
∑

ei,j∈E

Ci,jℓ
i,j
n +

∑

vk,vd∈V

λk,d,nl
0,d
k,n)

−
∑

vk,vd∈V

∑

fn∈F

λk,d,nβd,n

under constraints Eq. (2)–Ineq. (6) and Ineq. (8)–Ineq. (12).

Obviously, constraints Eq. (2)–Ineq. (6) and Ineq. (12) are

only related with the group of variables {li,jk,n, ℓ
i,j
n , θk,n} and

Ineq. (8)–Ineq. (11) are only related with the group of variables

{βd,n}. Therefore, problem Pλλλ can be decomposed into two

sub-problems, Pλλλ
1 and Pλλλ

2 as follows,

Pλλλ
1 : Minimize :

∑

fn∈F

(
∑

ei,j∈E

Ci,jℓ
i,j
n +

∑

vk,vd∈V

λk,d,nl
0,d
k,n)

under constraints Eq. (2)–Ineq. (6) and Ineq. (12). And

Pλλλ
2 : Minimize : −

∑

vd∈V

∑

fn∈F

(
∑

vk∈V

λk,d,n)βd,n

under constraints Ineq. (8)–Ineq. (11).

Firstly, problem Pλλλ
1 is a linear programming (LP) problem,

which can be efficiently solved. For problem Pλλλ
2 , we can also

design a simple greedy algorithm to obtain its optimal solution,
which is shown in Sec. IV-B.

Given λλλ, Bλλλ denotes the value of the objective for problem

Pλλλ and it is a lower bound for problem P [15]. Bλλλ can be

obtained using the values of the objectives for problem Pλλλ
1 and

Pλλλ
2 , denoted as Bλλλ

1 and Bλλλ
2 , respectively. Thus, Bλλλ = Bλλλ

1+Bλλλ
2 .

B. Optimal Algorithm for Problem Pλλλ
2

For given λλλ, problem Pλλλ
2 can be optimally solved as

follows. We denote λ∗
d,n =

∑
vk∈V λk,d,n. We have:

−Pλλλ
2 : Maximize :

∑

vd∈V

∑

fn∈F

λ∗
d,nβd,n (14)

Subject to: Constraints Ineq. (8)–Ineq. (11).

Note that the solution of problem −Pλλλ
2 is equivalent to the

solution of problem Pλλλ
2 . However, the value of objective of

−Pλλλ
2 is −Bλλλ

2 . Problem −Pλλλ
2 can be further decomposed into

|V | sub-problems. For each CR vd ∈ V , we only need to solve
the following problem.

−Pλλλ
2,d : Maximize :

∑

fn∈F

λ∗
d,nβd,n (15)

Subject to: βd,n ≤ mn, ∀fn ∈ F , if vd ∈ V − Sn

βd,n = mn, ∀fn ∈ F , if vd ∈ Sn∑

fn∈F

βd,n ≤ cd

βd,n ∈ N, ∀fn ∈ F

The above problem is a maximum weight placement prob-
lem with capacity constraints. The optimal algorithm to solve
the problem is shown in Algorithm 1. The main idea is that
we first sort the set of popular content in decreasing order
of their weight λ∗

d,n. Then, CR vd caches as many data
chunks as possible for each piece of content in the sorted set
consecutively. Suppose Bλλλ

2,d denotes the value of the objective

for problem −Pλλλ
2,d. Then, Bλλλ

2 = −
∑

vd∈V

Bλλλ
2,d.

C. Selection of Multipliers

To find a good lower bound, the selection of multiplier
vector λλλ is important. We use the subgradient optimization
to iteratively select λλλ. At iteration t, subgradient vector γγγt is

computed by γt
k,d,n = l

0,d,t
k,n − βt

d,n, ∀vk, vd ∈ V, ∀fn ∈ F ,

in which l
0,d,t
k,n and βt

d,n denote the values of variables l
0,d
k,n



Algorithm 1 The greedy algorithm for optimally solving

problem Pλλλ
2,d

1: For a given node vd ∈ V and multiplier vector λλλ, compute λ∗

d,n =∑
vk∈V

λk,d,n;

2: Sort λ∗

d,n in decreasing order. Suppose that the ith largest value
is λ∗

d,ni
;

3: Let βd,n = 0, ∀fn ∈ F and C = cd;
4: for i = 1 to |F | do
5: if vd ∈ Si then
6: βd,i = mi;
7: C = C −mi;
8: end if
9: end for

10: j = 1;
11: while C ≥ 1 and j ≤ |F | do
12: if vd /∈ Snj

then
13: Cache βd,nj

= min(C,mnj
) data chunks of content fnj

;
14: C = C − βd,nj

;
15: end if
16: j = j + 1;
17: end while
18: return Bλλλ

2,d and βd,n, ∀fn ∈ F ;

and βd,n in the optimal solution of problem Pλλλ obtained
at iteration t. γγγt denotes the vector composed by elements
γt
k,d,n, ∀vk, vd ∈ V, fn ∈ F .

Multiplier vector λλλt+1 used in the (t + 1)th iteration can
be obtained by λλλt+1 = max{λλλt + stγγγ

t, 0}, in which λλλt is
the multiplier vector used in the tth iteration and st is a
positive step size. st can be acquired by a common method

[15] as follows: st =
ηt(zUP−zLB)

‖γγγt‖2 , in which 0 ≤ ηt ≤ 2 and

zUP (resp. zLB) denotes an upper (resp. lower) bound on the
optimal objective of problem P.

Let βββt be the vector composed by elements βt
d,n, ∀vd ∈

V, ∀fn ∈ F . To obtain a feasible solution for problem P at the
tth iteration, we let βββt be known parameters and solve problem
P with constraints Eq. (2)–Ineq. (7) and Ineq. (12). Since
the values of βββt have already satisfied constraints Ineq. (8)–
Ineq. (11), the obtained value of the objective for problem P

denoted as Bλλλt

(βββt) is an upper bound of the original problem
P obtained at iteration t. Moreover, the obtained solution is
obviously a feasible solution of problem P.

D. NCCM Algorithm based on Lagrangian relaxation

We now describe the NCCM algorithm which is designed
based on Lagrangian relaxation to solve problem P. Specifical-

ly, sub-problems Pλλλ
1 and Pλλλ

2 are solved with multiplier vector
λλλt at iteration t. At each iteration t, we can obtain a feasible
solution for problem P based on βββt and an upper bound of
the original problem P. We maintain an upper bound ztUP as
the smallest upper bound we have obtained within t iterations.
On the other hand, ztLB denotes the maximum value of the

objective of problem Pλλλ after t iterations, which is a lower
bound of problem P.

The NCCM algorithm shown in Algorithm 2 is stopped
when one of the conditions is satisfied: (1) the number of
iteration t reaches the iteration limit T ; (2) the difference
between ztLB and ztUP is less than a threshold ǫ∗; (3) the lower
bound does not increase for more than a number of iterations

Algorithm 2 Network Coding based Cache Management (NC-
CM) Algorithm

1: t = 1 and t′ = 0; z0UP = +∞ and z0LB = −∞; η1 = 2;
2: Let λ1

k,d,n = 10−5, ∀vk, vd ∈ V, fn ∈ F and ǫ1 = +∞;

3: while t < T and ǫt > ǫ∗ and t′ < T ′ do
4: Solve problem Pλλλ

1 ; Obtain Bλλλt

1 and l0,d,tk,n , ∀vk, vd ∈ V, ∀fn ∈
F ;

5: Solve problem Pλλλ
2 ; Obtain Bλλλt

2 and βt
d,n, ∀vd ∈ V, ∀fn ∈ F ;

6: Bλλλt

= Bλλλt

1 +Bλλλt

2 ;

7: Let ztUP = min(Bλλλt

(βββt), zt−1

UP );
8: if ztUP < zt−1

UP then
9: Let π∗ be the feasible solution of problem P obtained at

the tth iteration in which we let βββt be given parameters
and solve problem P with constraints Eq. (2)–Ineq. (7) and
Ineq. (12);

10: end if
11: Let ztLB = max(Bλλλt

, zt−1

LB );
12: if ztLB > zt−1

LB then
13: t′ = 0;
14: else
15: t′ = t′ + 1;
16: end if
17: if t′ ≥ 3 then
18: ηt+1 = ηt/2;
19: end if
20: ǫt+1 = ztUP − ztLB ;
21: Update Lagrangian multiplier vector λλλt+1 according to

λt+1

k,d,n = max{λt
k,d,n + stγ

t
k,d,n, 0}, ∀vk, vd ∈ V,

∀fn ∈ F, where

γt
k,d,n = l0,d,tk,n − βt

d,n and st =
ηt(z

t
UP − ztLB)

‖γγγt‖2
;

22: t = t+ 1;
23: end while
24: return zt−1

UP and π∗;
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Fig. 5. |F | = 10, cosize = 300, q = 3, casize = 100

T ′. After the algorithm is terminated, it returns the feasible
solution π∗ which reaches to the minimum upper bound during
the iterations.

V. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate the
performance of the NCCM algorithm. We compare the per-
formance of the NCCM algorithm with a lower bound of the
optimal solution that can be simply obtained by relaxing the
integer constraint Ineq. (11) in ILP P. In our experiments, we
generate a random network graph G by using a widely used
method developed by Waxman [16].

We let the region of the random network graph G be 20×
20. In the experiments shown in Fig. 5–Fig. 9, we set the
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Fig. 7. |F | = 10, q = 3, casize = 100, chsize = 19

network parameters for Waxman network model as follows: the
intensity of the Poisson process λ = 0.025, β = 0.7 and α =
0.7. Due to space limitations, we do not show the numerical
results under different network parameters (λ, β and α).

We have five parameters in our simulations.
• chsize: the data chunk size, chsize ∈ [1Mb, 300Mb].
• casize: the cache capacity, casize ∈ [50Mb, 200Mb].
• cosize: the content size, cosize ∈ [100Mb, 300Mb].
• |F |: the size of the popular content set, |F | ∈ [2, 10].
• q: the size of the local popular content request set,

q ∈ [2, 10].

The cost on each link is randomly selected from 0.3 to
1 (per Mb). The value of parameter Ci,j (per data chunk)
can be calculated by dividing the link cost (per Mb) by the
data chunk size. For each content in F , we randomly select
one CR as its server. The content request set of each CR is
composed by randomly selecting q pieces of content from F .
For each instance, we not only compare the network bandwidth
cost obtained by the NCCM algorithm with the lower bound,
but also show its relative error. Let Sh denote the network
bandwidth cost of the NCCM algorithm and Sl denote that of
the lower bound. The relative error of the NCCM algorithm is
defined as Sh−Sl

Sl
. We set the number of iterations T = 30.

In Fig. 5, the network bandwidth cost of the lower bound
does not change. When the integer constraint Ineq. (11) is
relaxed in ILP P, the result of the obtained LP formulation
is equivalent to the result of the ILP formulation for the
case where chsize is sufficiently small, such that the amount
of data for each content cached at each CR obtained by
LP formulation is integral multiples of chsize. Therefore, the
network bandwidth cost of the lower bound is not affected
by the data chunk size. On the other hand, both the network
bandwidth cost and the relative error of the NCCM algorithm
decrease as chsize gets smaller. The reason is that each content
contains more number of data chunks when chsize becomes
smaller, which leads to more number of coded data chunks
transmitted in ICNs with LNC that can be shared between
different requesting CRs. Note that when chsize = cosize, the
case of ICNs with LNC is the same as that without LNC.
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Fig. 9. |F | = 10, cosize = 300, casize = 100, chsize = 19

In Fig. 6(a), the network bandwidth costs of both the
lower bound and the NCCM algorithm decrease with the
increase of casize. When casize of each CR grows larger, more
data chunks can be fetched from nearby CRs. Therefore, the
network bandwidth cost can be reduced. Fig. 6(b) shows that
the relative error of the NCCM algorithm is always below 10%.

In Fig. 7(a), the network bandwidth costs of both the lower
bound and the NCCM algorithm increase with the increase of
cosize because the larger the content size, the more bandwidth
is consumed. On the other hand, since the effect that cosize
grows larger is equivalent to that of chsize becoming smaller,
as in Fig. 5(b), Fig. 7(b) shows that the relative error of the
NCCM algorithm decreases with the increase of cosize.

In Fig. 8(a), when q is fixed, the more pieces of content
are in F , the fewer CRs request the same content. It leads
to less coded data chunks transmitted in ICNs with LNC that
can be shared between different requesting CRs. Therefore,
the network bandwidth costs of both the lower bound and
the NCCM algorithm increase with the increase of |F |. The
decrease of traffic sharing gives smaller optimization space for
the NCCM algorithm. Fig. 8(b) shows that the relative error
of the NCCM algorithm increase with the increase of |F |.

Fig. 9(a) shows that the network bandwidth costs of both
the lower bound and the NCCM algorithm increase with the
increase of q. When |F | is fixed, as the number of requested
content increases at each CR, more bandwidth is consumed.
However, since more coded data chunks transmitted in ICNs
with LNC can be shared between different requesting CRs,
there is a larger optimization space for the NCCM algorithm.
Fig. 9(b) shows that the relative error of the NCCM algorithm
decreases with the increase of q.

Fig. 5–Fig. 9 show that the NCCM algorithm gets within
10% of a lower bound of the optimal solution under most
simulation scenarios.

In our experiments, we also simulate the relative errors of
the proposed NCCM algorithm vs the number of iterations
and run time. In particular, we run the NCCM algorithm on a
computer with Intel Core i5-2430 CPU and 4 GBytes memory.



We observe that, although the relative errors decrease with
the increases of the iteration times and the run time in all
the cases, to achieve a sufficiently low relative error (i.e., less
than 3%), the NCCM algorithm only needs no more than 6
seconds even if the number of popular contents, |F | and q are
sufficiently large (e.g., |F |=1000 and q = 20). Therefore, the
proposed NCCM algorithm can be efficiently implemented.
For a largescale ICN, the functionality of the controller can
also be performed by several cooperated controllers, each of
which will be responsible for managing the CRs in its domain
and will exchange information with each other.

VI. RELATED WORK

Several cache management systems have been proposed in
ICNs [5], [7], [10], [11]. Previous works that are most related
to ours are [10] and [11]. In [10], cache management is inte-
grated with the controller, but the actual caching strategy is left
unspecified. In [11], APIs are defined to support cache-related
operations, including caching decisions, cache notifications
and proactive caching. However, there is no discussion about
how to use these APIs to manage caches, nor any concrete
caching strategy algorithm is proposed.

There has also been some interests in cooperative caching
to improve the cache efficiency in ICNs [4]–[7]. In [4], CRs on
a path are coordinated in a distributed way. The data chunks
cached in the downstream CRs are recommended by the up-
stream CRs. In [5], a distributed cache management system is
developed to exchange cache information among all caches to
get a global information of the network. Then, cache decisions
are made based on the global information of the network by
each cache independently. In [6], data chunks are cached based
on the chunk number and CRs’ label. A complex algorithm is
designed to assign CR label for efficiently caching data chunks.
These distributed methods may cause complexity and extra
overhead to exchange information between CRs. Moreover,
there exists a convergence delay for the distributed method.
In [7], several centralized off-line replication algorithms are
used. Then, an advertisement and request/response mechanism
is employed to discover the cached content. Unlike them, we
jointly optimize caching strategy and content routing.

Caching strategies can also be found in CDN and web
caching [17], [18]. Various models have been studied under
different constraints such as link capacity, cache capacity and
predicted request demand to minimize average traversed hops,
bandwidth consumptions, etc. However, the caching strategy
and content routing problems are not jointly optimized for an
arbitrary network topology. Moreover, these works are file-
based caching strategy and do not employ network coding.

The feasibility and benefits of employing network coding
in ICNs are introduced in [19]. Some preliminary evaluation
results are given. Compared to that work, we propose a flexible
framework to facilitate collecting cooperation-related informa-
tion. It also can enable configuring caching and routing policy
in CRs. We also model the cache management problem in ICNs
with LNC, and an efficient NCCM algorithm is designed to
optimize caching strategy and content routing jointly.

VII. CONCLUSION

In this paper, we have explored the power of LNC to
reduce the network bandwidth cost in ICNs. We have proposed

a novel SDN based framework for cache management in
ICNs with LNC. The optimal cache management problem
for ICNs with LNC have been considered to minimize the
network bandwidth cost by jointly considering caching strategy
and content routing. In addition to minimizing the network
bandwidth cost, network security is another key challenge for
communication networks. In the future, we will explore the
potential of LNC to provide the content confidentiality and
privacy in ICNs. Moreover, we also will study the impact of
network code construction and ratio of popular content on the
performance of ICN with LNC.
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