Networking 2013 1569696597

ReSurf: Reconstructing Web-Surfing Activity
From Network Traffic

Guowu Xie*, Marios Iliofotou’, Thomas Karagiannist, Michalis Faloutsos* and Yaohui Jin®
*UC Riverside, {xieg, michalis} @cs.ucr.edu
TNarus, Inc., miliofotou@narus.com
fMicrosoft Research, thomas.karagiannis @ microsoft.com
§Shanghai Jiao Tong University, jinyh@sjtu.edu.cn

Abstract—More and more applications and services move to
the web and this has led to web traffic amounting to as much
as 80% of all network traffic. At the same time, most traffic
classification efforts stop once they correctly label a flow as web
or HTTP. In this paper, we focus on understanding what happens
‘“under the hood” of HTTP traffic. Our first contribution is
ReSurf, a systematic approach to reconstruct web-surfing activity
starting from raw network data with more than 91% recall
and 95% precision over four real network traces. Our second
contribution is an extensive analysis of web activity across these
traces. By utilizing ReSurf, we study web-surfing behaviors in
terms of user requests and transitions between websites (e.g.
the click-through history of following hyperlinks). A surprising
result is the prevalence of advertising and tracking services that
are being accessed during web-surfing that are without the user’s
explicit consent. In our traces, we found that with 90% chance a
user will access such a service after just three user requests (or
“clicks”). We believe that our methodology and findings provide
valuable insights into modern traffic that can allow: (a) network
administrators to better manage and protect their networks, (b)
traffic regulators to protect the rights of on-line users, and (c)
researchers to better understand the evolution of the traffic from
modern websites.

I. INTRODUCTION

HTTP is the new IP in the Web 2.0 world, and traffic
analysis methods need to adapt to this new reality. First, web
browsers are being widely used as the interface to a large
number of services and applications, such as Email, gaming,
file sharing, and video streaming. Second, today HTTP is the
most widely used protocol, contributing up to 80% of the
traffic on some networks [1]. One implication of these trends
is the limited relevance and applicability of traditional traffic
analysis and characterization tools [2], [3]. Assigning flows
to an HTTP category today conveys very limited information
with regard to the usage of websites/services and web users
behaviors.

Given the above trends, it is increasingly important for net-
work administrators to monitor and characterize web traffic for
operational and security purposes. First, understanding traffic
is important for managing and provisioning one’s network.
Second, such capabilities are important for security, since
more and more modern malware spreads via websites and
botnet command & control channels utilize HTTP. Overall,
the more information administrators have about the traffic,
the more effectively they can manage the network, identify
anomalies and prevent attacks. At the same time, extracting

information from network traffic is needed by regulators who
aim to protect the rights of the consumers and allow a healthy
competition between content providers and between ISPs. In
addition, analyzing web traffic is important for researchers
who want to study modern websites and their evolution [4],
[S].

The overarching problem we address in this paper is the
following. Given web traffic collected at a network link, we
want to be able to look “under the hood” and reconstruct the
user behaviors. Here is a list of motivating questions: (a) What
websites (e.g., google.com, cnn.com) are explicitly re-
quested by a user as opposed to being accessed automatically
by his browser in the background? (b) How much traffic
is generated by each request? and (c) What are the typical
web surfing user patterns and the typical referral relationships
across websites? We want to answer these questions starting
from raw network traffic, such as a tcpdump trace, or web-
proxy records.

Making the problem more specific, we can identify two sub-
tasks: (a) group together HTTP requests generated by a single
user request, such as a click, and associate them with the
primary website requested by the user; and (b) reconstruct the
click-through stream, i.e., the referral relationship between
user requests, to identify whether a user’s request to a website
is from a hyperlink clicked on an earlier website or from within
the same website. Figure 1 illustrates the above concepts.
Understanding web traffic at both the user request and click-
through levels provides insights into the user’s web-surfing
activity.

The problem of understanding web-surfing activity from
network traffic has been studied before in [6], [4], [7], but
not to the extent we do here. Schneider et al. [6] focus
on reconstructing the browsing activity in social networking
websites by using specialized features. The primary goal of
those studies is to understand user behaviors in social network-
ing websites and not to provide a generic methodology for
reconstructing web-surfing activity from different sites. Closest
to our work is the StreamStructure methodology proposed
in [4], which utilizes the web analytics beacons generated
by tracking services. By relying on tracking services, their
approach can identify websites that do send beacons, which
on average decreases the coverage by 40% (see Figure 5).
We extensively compare ReSurf with StreamStructure in Sec-

8.3

google.com/

S
—P(google.com/search?q=cnn]

=

0.2i/

0.4s 0.1s

\2.25

google.com/logos.png | | google.com/js/fcb.js news.google.com/tbn/6.jpg

google.com/s?hl=en&... google-analytics.com/__utm.gif | | cnn.com/img.jpg

User Request 1

User Request 2

User Request 3

Fig. 1: An example of a click-through stream with three user requests (large grey boxes): (a) visiting google . com, (b) querying Google
for CNN, and (c) following cnn.com from the results of the query. Each user request generates one head HTTP request, and each such
request generates zero or more embedded HTTP requests, shown as two requests in this example.

tion III and discuss related work in more detail in Section V.

In this paper, we make two main contributions:

(A) ReSurf: reconstructing web-surfing activity. We de-
velop a systematic method to reconstruct user requests and
their relationship in click-through streams. First, we create a
graph that represents the referral relationships between HTTP
requests. Second, we identify the HTTP requests that are
generated explicitly by the user, such as clicking on a link
or typing a URL in a browser’s address bar. Finally, we
reconstruct the user request by grouping “subordinate” HTTP
requests that are generated due to other requests, such as the
acquisition of a video, an image or a web advertisement.

(B) Extensive measurements and validation. Our exper-
iments with real data traces and our validation with both
real and synthesized data provide the following highlights:
(1) ReSurf can reconstruct web-surfing accurately. We show
that our approach can identify and reconstruct user requests
with more than 95% precision and 91% recall on all our
traces, while we highlights the limitations of the state-of-
the-art methods that rely on web analytics beacons [4]; (ii)
Web users are continuously being exposed to advertising and
tracking services. We observed in our traces that 50-60% of
user requests (i.g., clicks) trigger an interaction to a tracking
or advertising service. In fact, we observed that the chance of
a user triggering such as service after just three user requests
is close to 90%; (iii) Click-through streams are surprisingly
“shallow”, as the median number of websites in a click-
through stream is one or two, and only 5% of the click-through
streams have more than three websites.

II. TERMINOLOGY, PROBLEM DEFINITION, AND DATASETS

We present the necessary background, previous work, and
the web traffic traces used in our study.

Terminology: We use the term user request (UR) to
describe a single user action, such as clicking on a hyperlink,
visiting a page from one’s bookmarks, or submitting a web-
form, which includes a search engine query. Figure 1 depicts
three user requests represented by big gray boxes: one to
Google homepage, a Google query, and one to CNN, via
clicking a hyperlink returned by the query. A user request
generates one main HTTP request, which we refer to as
the head HTTP request indicated by the colored octagons
in the figure, and it usually accesses an HTML or XML

file. In practice, the head HTTP request will often generate
more HTTP requests that acquire different web-objects, such
as images, videos, or javascripts. We call these subsequent
requests embedded HTTP requests, which happen without
the user explicitly requesting them. In the example, we indicate
these requests as white boxes (i.e. google.com/logos.png).
Note that embedded HTTP requests can obtain objects from
different websites, such as ad servers and content distribution
networks (CDNs). We use the term primary website to
indicate the website requested by the head HTTP request,
which also represents the website that the user intends to visit.

A click-through stream (CTS) is a series of consecutive
user requests, where the later user requests in the stream
are follow-ups of the earlier user requests ones. Figure 1
shows an example of a click-through stream with three user
requests, as we discussed above. The Google query, which is
the second user request, would not have been possible without
the user having visited Google first, in the first user request.
Subsequently, the third user request is generated by the user’s
clicking on the returned results of the Google query.

Problem definition: Given web traffic collected at a
network link (think HTTP packet headers), we want to re-
construct the web-surfing behavior. We want to identify head
HTTP requests, and correctly group their associated embedded
requests. Simply put, in our example in Figure 1, we want to
identify the “grey boxes”. Once we do this correctly, we can
identify which websites users visit explicitly and how much
traffic is generated by each visit.

When analyzing web traffic, we have to work with informa-
tion available in the HTTP requests and responses. In Figure 2
we give an example of only three HTTP requests generated by
a visit to cnn . com. Following the above terminology, the first
HTTP request is the head request to the primary webpage (i.e.,
cnn.com) and the other two are embedded HTTP requests.
For each HTTP request, the domain name of the web server
is located in the Host field of the HTTP header. Even though
all three requests are triggered by the visit to cnn.com, in
this example, only one has www.cnn. com as the host name.
From this example, we see that by looking at HTTP headers in
isolation, it is hard to track which visits they originated from.

An important piece of information is the referrer field in
an HTTP header (visible in Figure 2). This field shows which

previous HTTP request triggered the current HTTP request.
Moving back to the graph of Figure 1, in “user request 1”
the request for google.com/logo.png has google.com in
its referrer field. In the same example, when a user visits
cnn.com by clicking a link in the Google search results,
the referrer field of the resulting HTTP request indicates the
Google search result page as the origin. In Section III, we
show how we can carefully combine the HTTP requests as a
graph and use it to identify head HTTP requests.

Challenges: Correctly attributing individual HTTP requests
to a user request and to the primary website is quite complex.
First, when looking at HTTP transactions in isolation, it is
hard to know which website the user intentionally visits. In
our traces, if we use the host field in HTTP headers to identify
the primary website, it results in only 20-40% accuracy. We
can see this from Figure 2 where only one of the three requests
has the intended website (www.cnn.com) as the host name.
Second, users often browse multiple websites at the same time,
which causes flows and HTTP requests to intermingle. Modern
web pages are fairly complex [S]; rendering a single page may
generate tens of HTTP requests towards different web servers.
In Figure 1, for clarity, we keep only a subset of web objects.
In reality, even within few minutes the size of the referrer
graph reaches several hundreds of nodes. In our traces, the
median size of the referrer graph over a ten minute interval
is 200 nodes for an IP address. Third, many websites, such
as CDNs, web-ad servers, and web analytics services are used
by many websites and shared across several services.

Data sets: The web traffic traces used in our study are
summarized in Table I. Our traces cover several thousands
of millions HTTP requests over long periods of time. They
include an ISP link trace, two university traces of different
sizes, a mobile traffic trace and a synthesized trace in a
control enviroment. We collected traces in both controlled and
uncontrolled environments, which allows us to both examine
user browsing activities in the wild as well as verify the
correctness of our methodology. The users in our traces are
also diverse: researchers in a university lab, residential ADSL
users, students and academic staff from a large university cam-
pus, as well as mobile device (smartphone and tablet) users.
This allows us to compare the browsing patterns between
different users. Details regarding the exact locations and the
names of the providers for all our traces are intentionally kept
anonymized due to privacy concerns.

We use the same traffic collection methodology for all the
traces and capture all the IP packets on TCP ports 80, 8000
and 8080 in both directions. More details can be found below.

LAB: We collected this traffic trace from a research
lab in a university in the US. In the lab, there are about
15 graduate students and 20 laptops/desktops. The collection
duration spanned six non-consecutive months over the period
of December 2010 until September 2011.

ISP-1: The trace was collected from an edge link of a
European residential ISP. We were given access to only the
first five packets of each unidirectional TCP flow.

MOB: We collected this trace from from a 3G/4G mobile

service provider in the US. The vast majority of the traffic is
generated by the mobile devices, such as smart-phones and
tablets.

CAM: The CAM trace was collected from a university
campus in China, containing the browsing activities of about
28.2K users. Our monitor device sits on the edge gateway
connecting the campus to the public Internet. All download
and upload traffic from the whole campus goes through the
monitor point. Due to the amount of traffic, we did not
store raw IP packets, instead logged all important HTTP
header fields for all HTTP transactions. Specifically, the fields
includes: timestamp of each request, client/server IPs, URL,
referrer, content-type, content-length, HTTP response code and
user-agents. To preserve privacy, client IPs are anonymized.
We applied our method to several different days of traffic.
The trends extracted from different days of traffic are very
similar. So we only show the results for one weekday in the
paper.

SYN: The trace was generated in a controlled environment
for the purpose of evaluating ReSurf. We generated the traffic
by replaying nine volunteers’ Google Chrome browsing his-
tory. We first extracted the timestamp, referrer and URL field
of each visit from their browsing history. Then, to establish
the ground truth, we replayed each visit using the following
procedure. We instructed Google Chrome to open each URL in
isolation. At the same time, we collected all the traffic on TCP
port 80, 443, 8000 and 8080 using a packet capturing software
(tcpdump). After 60 seconds, we closed the browser and saved
the captured HTTP traffic to an individual file. To emulate how
the traffic would be if it came directly from the user’s surfing
activity, we carefully adjusted the time stamps and referrer
fields of HTTP traffic according to Chrome’s browsing history.
After replaying all visits, we merge all these individual files
to form a complete traffic trace. Since each visit was collected
and stored separately, we effectivity have the ground truth for
each HTTP request in the trace.

III. THE RESURF APPROACH

Here, we present the ReSurf methodology, evaluate and
compare it with existing solutions. Finally, we discuss the
practical issues and limitations of our method.

A. The ReSurf Methodology. The goal of ReSurf is
to group HTTP requests into user requests (see definition in
Section II). Our approach works in two steps. First, we identify
the head HTTP requests by using different features from each
HTTP request. These features include: the size of the web-
object, the type of the object, the timing between successive
requests, and others. Second, we use the referral relationships
(see definition in Section II) to assign all the embedded HTTP
requests to their corresponding head request. We explain the
methodology step by step below.

Step 1. We form the HTTP referrer graph. We represent
the HTTP requests from the same client IP address as a
referrer graph. ReSurf builds such a graph for each
IP address over a period of time (e.g., every ten minutes).
An example of such a graph is shown in Figure 1, with the

(1) Head request to cnn.com
GET / HTTP/1.1

Host:
Accept-Language:

Host:
Referer:

Www.Cnn.com

en-us;g=0.5

(2) An embedded request caused by (1)
GET /html.ng/pagetype=main...
ads.cnn.com
http://www.cnn.com/

(3) An embedded request caused by (2)
GET /cnn/ad.gif HTTP/1.1

Host:
Referer:

i.cdn.turner.com
ads.cnn.com

Fig. 2: A simplified example of HTTP request headers issued by a browser during a visit to cnn.com.

Name CAM LAB ISP-1 MOB SYN
Starting date Mar 9 2012 Oct 3 2010 Aug 25 2011 Jan 7 2011 Aug 11 2011
Duration 2 mon 6 mon 24 h 3h 1 mon
of HTTP transactions 19B 1.2 M 1.7M 229 M 186K
of Clients (IPs) 28.2K 21 359 3,521 9
Ground truth available No No No No Yes
Payload HTTP header Full Full Full Full
Users | Students and staff in an university | Graduate students in a CS lab | Residential users | Smartphone, tablet users in 3G networks -

TABLE I: An overview of the web traffic traces used in our study.

exception that we don’t know which HTTP requests are in
which user requests (i.e. shown as grey boxes), until we use
our method. We provide a very high level description of this
graph creation. For generating the graph, we use the referer
field from each HTTP request to identify the previous request
that triggered the request to the current website (as indicated
by the host field). We generate a directed graph that captures
these referral relationships and we enrich it with edge weights
that represent the time difference between the two requests.
Figure 1 shows an example of the HTTP referrer graph of
a user accessing google.com and cnn.com. The nodes
in the HTTP referrer graph are web-objects annotated with
their complete URL. The directed edges capture the referral
relationship between nodes where a directed edge from A to
B means A is B’s referrer.

In practice, the construction of the referrer graph hides
many subtleties. First, character case, URL encoding and the
presence or absence of trailing slashes are very common
in HTTP headers. For the ease of string matching between
referrer and URL, we unify character case, unquote URL
encoding and strip all trailing slashes. Second, HTTP redi-
rection (HTTP status code 302) complicates the construction
of the referrer graph. We remove 302 HTTP redirections by
combining the endpoints of the HTTP redirection in referrer
graph into a new super node. Third, some web objects may
have empty referrers. From our experiments, we learn there are
two major reasons for such cases. (a) A Flash player plugin
in Firefox has a well-known bug that does not append the
referrer while requesting flash objects. (b) For some objects
whose URL are dynamically generated by javascripts, the
referrer fields in their HTTP requests are empty. Parsing the
javascript file can prove useful for identifying the referrer, but
only if payload is available. Without using payload, there are
two possible solutions for handling these HTTP requests with
empty referrer. The conservative one is to simply label them as
unknown. The aggressive one is to attach these to their closest
HTTP requests. In this paper, we use the conservative strategy
and opt for precision.

Step 2. We identify all the head HTTP request candi-
dates. ReSurf selects head request candidates according to the

following rules:

(a) The candidate should be an HTML/XML object.

(b) Since most modern web-pages are fairly complex, the
size of candidates should be larger than V' bytes and candidates
also should have at least K embedded objects.

(c) The time gap between candidates and their referrers
should be larger than a threshold 7. The reason is that
head requests are usually further away from their referrers in
time since they are initiated by users. By contrast, embedded
requests are very close to their referrers because they are
automatically initiated by browsers.

Step 3. We finalize the identification of the head requests.
We utilize the referral relationship between the head request
candidates. Specifically, a candidate is classified as a head
request if its referrer is also a head request or if it has no
referrer. In the referrer graph, nodes with no referrers have
no incoming edges. In Figure 1, the google.com/ in “User
Request 17 is an example of such a node with no referrer.
Such nodes are formed when a user, say, opens a web pages
from a browser bookmark or by directly typing the URL in
the browser. If the referrer is not empty, it means the user
navigated to a web page by following the links from a previous
web page. This implies that the referrer of a head request
should also be a head request.

Step 4. We assign embedded HTTP requests to head
requests. ReSurf associates embedded HTTP requests to head
requests by utilizing the timing information and referral rela-
tionship in the referrer graph. In fact, once we know the head
request of a user requests, it is easy to attribute the rest of
HTTP requests to user requests. For each HTTP transaction
(node), we traverse the referrer graph backwards until we reach
a head request. If an HTTP transaction (node) has more than
one incoming edges, we follow the edge with the smallest time
difference (i.e., smaller weight on the edge). In this way, the
path will eventually lead back to the head request that was
triggered by the user request. If a node has no referrer and is
not a head request, it is labeled “unknown.”

Below we will show that ReSurf outperforms the current
state-of-the-art [4], and provides high classification precision
and recall.

B. Evaluation. We use the standard classification metrics of

precision and recall. Precision is the number of true positives
(TP) divided by number of TP and false positives (FP),
P=TP/(TP+FP). Recall is the number of TP divided by
the number of TP and false negatives, R=T'P/(T P+F N). We
also use the F1 score which is the harmonic mean of P and
R, specifically, F1 = 2x 524

To evaluate the performance of ReSurf, we ask the following
complementary but slightly different questions.

Q.1: How accurately can ReSurf identify head HTTP
requests? We want to quantify how effectively ReSurf iden-
tifies the head requests from a large set of requests. Given
that the number of head requests is usually much less than the
total number of requests, this question allows us to focus only
on head requests. For example, if out of 100 requests one is
a head and the others are embedded, if a classifiers reports
all the requests as embedded its precision is 99%, but would
offer limited utility in solving our problem. For this reason,
we report the P and R on head requests separately.

Q.2: How accurately can ReSurf classify head and
embedded requests? We want to quantify how effectively
our approach classifies each HTTP requests as a head or an
embedded HTTP request. Unlike Q.1, we report results over
all HTTP requests and not only over the head requests. That is,
precision represents the number of correctly classified HTTP
requests compared to the total number of HTTP requests
classified by our algorithm. Note that ReSurf may leave some
requests unlabeled (a.k.a unknown). Recall expresses the total
number of classified HTTP requests compared to the total
number of existing HTTP requests in the trace.

Q.3: How accurately can ReSurf associate HTTP re-
quests to their corresponding user request? This is a more
demanding question than the classification for Q.1 and Q.2:
we want to associate each HTTP request with the generating
user request. This is a multi-class classification problem,
where each user request is a separate class. For example,
if an embedded HTTP request R is correctly identified as
embedded, but it is associated with the wrong user request,
we will consider it a misclassification. The precision captures
the number of correctly classified HTTP requests compared
to the total number of HTTP requests classified. The recall
reports the correctly classified HTTP requests compared by
the total number of HTTP requests in the trace.

We use the following values for the parameters in ReSurf:
T=0.5 seconds, VV=3000 bytes and K=2 embedded objects.
We justify this selection later in this section.

A key issue in evaluating any classifier is how to determine
the ground truth in the datasets. To address this challenge,
we use two different approaches: (a) using a synthesized trace
SYN, and (b) using the labels from a classifier that is based
on web analytics beacons.

(a) Validation using ground truth from the SYN trace.
In SYN trace, at each point in time we knew exactly which
website was being visited, and what requests were generated
by the visits to those websites. Details regarding the generation
of the SYN trace are given in Section II. Figure 3 shows the
precision, recall and F1 score when we apply ReSurf on the

SYN trace, for all three questions, Q1-Q3. As we see, all
metrics are above 90%, showing that ReSurf can successfully
identify the originating website for the vast majority of HTTP
requests. Moreover, we see that the precision of ReSurf is
very high, 96% and above, implying high confidence in our
classification of requests.

100 !] Precision ===
80 Recall ===
R 60 F1 o—
S
40
20
0
Q.1 Q.2 Q.3
Header Requestbinary Request
Detection Classification Association
Fig. 3: The precision, recall and F1 score in the SYN trace.
100 —=m 8 ! Precision Ex=x1
80 | Recall ===
60 | F1 o—
S
40
20 |

LAB ISP-1 MOB SYN CAM

Fig. 4: The precision and recall for detecting head requests (Q.1)

(b) Validation using web analytics beacons as ground
truth. For the CAM, LAB, ISP-1 and MOB traces, we do
not have the ground truth. Therefore, we evaluate ReSurf
based on the predictions given by the StreamStructure [4]
method. This method is based on the observation that many
websites use web analytics beacons to track their web
pages and objects. Intuitively, the web analytics beacons
report to the analytics server which page is visited. And
this helps us detect which is the head request and towards
which primary website. We consider web analytics bea-
cons from three major services: google—analytics.com,
pixel.quantserve.com and yieldmanager.com.

Here, we give a more detailed explanation of the beacon
method (i.e., StreamStructure), using the google-analytics bea-
con as an example. Once the object or web page tracked
by google-analytics is requested, a beacon is generated based
on the requested object’s URI and sent to a google-analytics
server in the form of “special” HTTP GET request. Unlike
regular HTTP GET requests, beacons’ URIs encode the URI of
the tracked object/page. Therefore, after some careful parsing
of beacon’s URI, we can identify the primary website of the
user request. We refer the reader to [4] for more details about
StreamStructure.

As we will discuss later in this section, StreamStructure
can be used for only a fraction of the requests, since only
a small percentage of requests use beacons. However, this
set of requests can help us determine the effectiveness of
ReSurf providing an additional ground truth set. To achieve
this, we first use beacons to identify as many head requests as
possible. We refer to this set of identified head requests as S.
Then, we compare how well ReSurf performs over the known

100 T T

|

SYN

Fig. 5: The recall for detecting head HTTP requests (Q.1) using
StreamStructure and ReSurf.

StreamStructure ==
ReSurf ===

% of detecting
head requests
N
o
T 1T 1 1

ALE

set S. Figure 4 shows the precision, recall and F1 for head
detection (Q.1) using beacons as ground truth. We observe
that ReSurf achieves above 96% precision in all traces and
91-98% recall. The results show that our approach performs
consistently well across all the datasets, which are collected
in different continents and during different time periods. Note
that we only use web analytics beacons here to establish the
ground truth, but ReSurf does not use beacon information
during its classification process.

Using web-analytic beacons is not enough. A natural
question is why we don’t just use web analytics beacons
exclusively for user request reconstruction. Even though the
use of beacons gives good results for those websites that
use them, we discuss one of identified limitations here. The
majority of user requests (~80%) do not have a beacon
in our data traces. In all our traces, we find that less than
21% of the user requests that were found by ReSurf have
beacons. Given the precision and recall of ReSurf in the
controlled dataset SYN, we are confident that this percentage
is reasonably accurate estimate of requests in the other traces.
To further verify this, we used the SYN trace, for which we
have the ground truth, and observe that only 23.9% of them
carry a beacon. In the ALE trace, the ratio of user requests
with beacons is roughly 60%. However, note that ALE does
not represent surfing patterns from real-users, and only covers
the popular website homepages as reported by Alexa. To
summarize, we observed that beacons can only successfully
identify approximately 21% of the user requests, compared to
above 91% we achieve with ReSurf.

Figure 5 shows the recall for detecting head requests in the
SYN and ALE traces using StreamStructure and ReSurf. As
we see, with StreamStructure the recall is 22% and 60% for
the SYN and ALE traces, respectively. The higher recall in the
ALE trace is due to the higher popularity of web analytics by
very popular websites. By contrast, ReSurf works consistently
well in both traces with recall above 92%. Unfortunately, for
the CAM, LAB, ISP-1 and MOB traces, we cannot repeat the
same experiment since we do not have ground truth. Overall,
we observed that ReSurf identifies double the number of head
requests in these traces compared to StreamStructure.

Using StreamStructure and ReSurf on the same trace results
in different result. In Figure 6 we plot the distribution of user
requests to the top websites for the CAM trace. We see that
the reduced number of identified requests by StreamStructure
leads to different results. For instance, the top website with
ReSurf corresponds to 18% of all user requests, whereas the
same value for StreamStructure is 8%.

100

80 b
& 60 .
=
8 40 T
20 - StreamStructure b
ReSurf
0 Il Il Il Il
10° 10" 10 10° 10* 10°

The rank of websites in term of user requests

Fig. 6: The user requests to top websites using StreamStructure and
ReSurf in the CAM trace.

Evaluating ReSurf over a different range of parameters.
We examine the effect of different parameters on the perfor-
mance of ReSurf. We only show the plots for Q.1 for brevity;
the performance for all questions is qualitatively the same. We
use the SYN trace to set our parameters and then apply them
to the rest of the traces.

Figure 7 shows the F1 metric for detecting head requests
(Q.1) using different values for the volume V and the out-
degree K over the SYN trace. We observe that the precision
increases and the recall decreases as we increase the value of
V. Intuitively, large html/xml files are more likely to be the
primary web-site of an actual user request compared to shorter
ones. Short html /xml files typically carry advertising related
content and are triggered by embedded requests. At the same
time, by further increasing V', we start considering only very
large html/xml files as head requests, which results to lower
recall. As we see from Figure 7, the combined behavior or P
and R captured by the F1 score, exhibits good performance
for V' in the range of 3000 to 5000 bytes. To achieve both
good precision and recall, we choose V=3000. In the same
figure, different lines show how the F1 score changes when
the out-degree K varies from 1 to 5. We find that the values
2 and 3 gave the best results, with K=2 performing slightly
better in the range of parameter V.

100 T

F1 (%)

40 K=l =—t—
K=2
20 K=3 wooomeen
0 L L L L L K=5 H\WEHM'
0 1000 2000 3000 4000 5000 6000 7000
V (Bytes)

Fig. 7: The F1 score of detecting head requests (Q.1) with different
parameters.

Regarding T', we found that our approach exhibits good
performance as long as T is less than 1 second and more
than 0.1 second. The results are not shown due to space
limitations. In the rest of paper, we use these setting: 7=0.5
seconds, V'=3000 bytes and K=2 embedded objects. Finally,
our observation interval for generating the referrer graphs and
performing our classification is 10 minutes. We experimented
with different intervals in the range of few seconds up to 30

minutes and we observe better results and faster computations
with windows in the range of 5 to 15 minutes.

C. Discussion. What about encrypted web traffic? ReSurf
uses information from the HTTP header, therefore, if the web
traffic is encrypted (e.g., using HTTPS) our approach cannot
classify those flows. However, by analyzing our real-word
traces (see Table I), we observed that the encrypted traffic only
amounts for 2% to 8% of the total web traffic. Unencrypted
web traffic is the norm today and we believe it will continue
to amount for a significant portion of the traffic in the future.
The analysis of encrypted web traffic remains an interesting,
open problem.

How is ReSurf affected by users behind network address
translation (NAT)? Having users behind NATs is very similar
to having users with very high activity. Since referrer graphs
are built per IP, NAT users will appear as one “heavy user”
with a complex referrer graph, for user accesses within the
same time windows. There are two cases here: If different
NAT users browse completely different websites, their referrer
graphs will not be connected and ReSurf will distinguish
different requests. On the contrary, in the worst case where
two users request the same web page at the same time, ReSurf
will combine them as one large request. However, it will still
be able to attribute their traffic to the originating website.
Finally, there may be cases where some embedded requests
are “multiplexed” between more than one user request and
disambiguating is hard; however, we have not observed that
to be a problem in our study. Note that our goal is twofold:
i) Group HTTP requests to identify the initial user requested
page, and ii) identify the user click-through stream. Hence,
having users behind NATs does not affect the first goal, while
the second is impacted if users follow the same stream of
pages at the same time.

Can ReSurf classify traffic in real-time? We have not
applied and tested ReSurf in real-time classification. From the
offline experiments with our current implementation, ReSurf
can classify ten minutes of one thousand users’ HTTP traffic
in 5-8 minutes. However, Step 1 requires the collection of
traffic for several minutes before ReSurf can analyze the
referrer graph and classify the requests. Therefore, ReSurf can
only classify requests a few minutes after their creation. As
mentioned earlier, off-line analysis of web traffic is useful to
operators that want to understand how their network is being
used, as well as for researches that want to study modern
trends and changes in web activity. Real-time classification
can be important to network operators that want to enforce
different policies and achieving this requirement is left as
future work.

IV. USING RESURF ON REAL WEB TRAFFIC

We now use ReSurf to group HTTP requests into user
requests and analyze how users behave in our four web traffic
traces. We focus on three main directions:

100

80 | B
& 60} :
[
8 40 ¢ R
User request
20 / Flow 7
Byte ---ee-ee
0 1 1 1
10° 10 10? 10° 10* 10°

The rank of websites

Fig. 8: The top websites in the CAM trace in terms of user requests,
flows, and bytes. The x-axis (rank) is in logarithmic scale.

100
LAB ===
80 ISP-1 ===
MOB s
60 - CAM ——
0\0
40 +
0 || K[e [

1 2 3 >3
The number of websites in click-through streams

Fig. 9: The number of user requests in click-through streams (CTSs).

A. We study the popularity of websites in terms of user
requests.

As expected, in all our traffic traces we observed that some
websites are more popular than others. Figure 8 shows the
cumulative share of user requests, bytes, and flows for the top
websites in the CAM trace. We observe that the byte-curve
is more skewed compared to the others, with the traffic to
the top website (115.com, an online file sharing
website) accounting for 40% of the total traffic in bytes. The
corresponding cumulative share of flows and user requests for
this top site is lower at 16% and 17% respectively. In our
traces, we found the flow and user request rankings to be
similar; which is also supported by how close the two curves
are together in Figure 8. That is, the top websites in terms of
flows are usually the websites that have the most user requests
and vice versa. Intuitively, the more user requests a website
receives, the more flows will be generated.

We also observed the traffic volume of a website depends
on the content it distributes. That is, the top websites in terms
of bytes usually are multimedia streaming websites, such as
youtube.com, and sites featuring adult-content video. On
the other hand, the top websites in terms of user requests and
flows correspond to social networking and search sites, such as
facebook.com, baidu.com, and google.com. To give
an example of how different the byte ranking and user request
ranking for different website are, in the CAM trace 115. com
ranks the first in terms of bytes and 16th in terms of user
requests. It covers a remarkable 40% of the byte volume and
only 2% of the number of user requests. Our observations
suggest the existence of two categories of websites in terms
of the traffic they generate: (a) high traffic volume sites, and
(b) high flow/user request sites.

& Qg
SR 0‘(\006\ oi\,& e L SR
SRS P P
R A SR T s
R 2 S S i Y e T S
, IO PP LE L@ P PP PN
15 L * % To website
SEERR o
0.5 | *ox ok
0 From web5|t>é KRR X x
0/50 6@ 5, m049@00/5 6@, 6@/ 0,6@,0,6’0%, Oé 4 «-’g; O
7‘}9 0000 oO<, eo ooo ,)%0 06‘ ooo%
%, % /,>"7 @Oo,bz%% RN

Fig. 10: The top website transitions for the CAM trace.

B. We follow the click-through streams of users and study
modern web browsing behaviors.

In Figure 9 we show the distribution of the number of
websites traversed in a single click-through stream (CTS). The
definition of CTS is given in Section II. Here we assume
that a CTS ends after an inactivity period of 30 minutes '
Surprisingly, the vast majority of CTSs span only up to two
different websites. In fact, the percentage of CTSs with more
than three websites is less than 5% in all our traces. These
observations suggest a browsing behavior that is “focused” on
a particular task. For example, the user starts with a particular
goal in mind, searches for something on a popular search
engine, and stops when he clicks on the correct link that takes
them to that website they are looking for. This behavior is
further supported by the most popular external referrals shown
in Figure 10. Our measurements show that “referrer” websites
are usually web portals, search engines, and social networking,
while “referred-to” websites are content providers, like news
sites, online video, and information sites (e.g., wikipedia).

Mobile traffic: Finally, we want to highlight that the
“focused” browsing is more prevalent in mobile traffic where
we see in Figure 9 that 98% of CTSs have a maximum
length of two. We believe this is due the fact that the lower
bandwidth available to these users deters them from initiating
long browsing sessions that span over multiple sites.

C. We study the exposure of users to advertising (ad) and
tracking services

Our goal is to determine the percentage of user requests
in our traces that involve: (i) advertising (ad) services, (ii)
tracking services (i.e., web analytics beacons), or (iii) either
an ad or a beacon. We summarize the results of this study in
Figure 11, where we show the percentage of user requests
to web pages that have at least one ad or trigger at least
one analytic beacon to a tracking site. In order to identify
popular ad services we use the popular keywords and patterns
compiled by open source Ad-blocking software [8]. To identify
beacons, we use the approach described earlier in Section III.
From Figure 11, we see that 18-36% of all user requests,
depending on the trace, involve tracking services, 40-50% of
them directly access at least one ad, and 50-60% access either

'We experimented with inactivity periods of 5-60 minutes and we observe
similar results.

2 60 | ' Beacon ©===1
g Ad ==
g Either
© 4}
2
S 20
3 [
X0
CAM ISP-1 MOB
Fig. 11: The percentage of user requests to web pages with beacon,

ad, and either in our four traces.

100

@
o
T

[o2]
o
T

N
o
T

Probability (%)

n
o

Beacon ——
Ad

Either ----%---
1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Every X consecutive user requests

o

Fig. 12: The probability of encountering at least one beacon, ad, and
either in every X consecutive user requests in the CAM trace.

a beacon or an ad. This suggests that more than half of the
user requests (e.g., clicks) in the web traffic involve some form
of advertisement or tracking!

We take this study one step further and try to understand
the probability of a user encountering ads, beacons and either
as a function of the number of user requests (e.g., clicks)
that he makes. For this experiment, we treat each distinct IP
address as a single user and use ReSurf to create a sequence
of consecutive user requests for each IP. In the CAM trace, IT
regulations enforce that no NAT is being used, which increases
our confidence about IPs used by a single user at any time.
Then, we randomly select X consecutive user requests from
all IPs and caculate the probability of them containing at least
one ad, beacon, and either. We summarize these results for
the CAM trace in Figure 12. We see that, the probability
of encountering an online ad or beacon after three clicks is
close to 90%! We repeated the same experiment for the other
traces and observed very similar trends even for our mobile
trace. We also want to stress the fact that Figure 11 represents
user requests from all users (IPs) grouped together, whereas
Figure 12 focuses on what happens to different users.

V. RELATED WORK

The recent growth of network services provided over HTTP
has been attracting the interest of the research community.
Labovitz et al. [1] brought to light the fact that most inter-
domain traffic is HTTP. Schatzman et al. [9] present a method-
ology to identify web-based mail servers, and distinguishing
between services, such as Gmail and Yahoo mail. Erman et
al. [10] analyze traffic from residential users and find that
a significant part of HTTP traffic is generated by hand-held
devices and home appliances, while a large fraction is machine
generated (e.g., OS/Anti-virus updates, ads). Li et al. [11]
present methods to identify the type of the object transferred
over HTTP (e.g., video, xml, jpeg). The recent work from

Schneider et al. [12] characterize the inconsistencies between
observed HTTP traffic and what is advertised in its HTTP
header. Bermudez et al. [7] understand the tangle between
the content, content providers, and content hosts based on
DNS traffic. All this previous work try to understand HTTP
traffic from different perspectives, but they do not focus on the
reconstruction of web-surfing at the user request level from
HTTP traffic as we do here.

Regarding the problem of reconstructing web-surfing activ-
ity, existing work usually fall into one of four categories. In the
first category, people assumes that any HTTP request for an
HTML object is the head HTTP request of a user request [13].
The second category of methodologies are based on the timing
information of HTTP requests: if the idle time between two
HTTP requests is smaller than a predefined threshold, they
belong to the same user request [14], [15]. Both methods
were effective in the early days of the web, but are no longer
due to the complexity of modern WWW. The third category
is based on web analytics beacons. A representative example
is StreamStructure in [4]. To understand the evolution
of modern web traffic and web-pages, Thm et al. proposed
a web analytics beacon based method to detect “primary”
web pages requested by users from web proxy server logs.
A key limitation of StreamStructure is its dependence
on web analytics beacons, which seem to form the basis of
their reconstruction algorithm without which accuracy drops
significantly. Recall that as high as 80% of user requests may
not contain any analytics beacons (see Figure 5). The last
category relies on the patterns in the requested URI. E.g.,
Schneider et al. [6] proprosed to reconstruct user requests (user
actions) in several online social networking sites by matching
previously compiled patterns with URI. This kind of method
is customized for target websites and hard to be generalized
because of various website architectures.

The click-through streams are also studied in the previous
work. To understand the behavior of searching the Web,
Kammenhuber et al. in [16] extract issued search term, search
results returned from Google and the subsequent clicks on re-
sults from network traffic traces. The reconstructed sequences
of clicks after the query is used for profiling users prevalent
search patterns. Schneider et al. [6] extract click streams within
online social networks from HTTP traffic to characterize
the interaction between users and social network websites.
However, both studies characterize user browsing behaviors
on a specific kind of websites. Instead, our study shows user
browsing behaviors in general.

Web analytics beacon is pervasive in modern web
pages [17]. Krishnamurthy et al. [18], [19] study the privacy
issues arising from the wide use of web analytics beacons in
web pages. Thm et al. in [4] show web analytics beacon can
be used to detect pages and understand modern traffic.

VI. CONCLUSIONS

Network traffic has been increasingly dominated by web
traffic and HTTP protocol has become the most prevalent

means for applications to provide their services. In this pa-
per, we framed and addressed a relatively novel problem:
reconstructing web-surfing behavior from web traffic. The
problem is far from trivial given the complex and intercon-
nected websites of today. We made two key contributions.
The first is developping a systematic approach ReSurf which
can reconstruct user requests with more than 95% precision
and 91% recall. As our second contribution, we showcase
interesting results that one can obtain from raw network traffic
using ReSurf. We observed that web users are continuously
being exposed to advertising and tracking services and that in
our traces 50-60% of user requests (think clicks) interacts with
tracking or advertising services. Another surprising result is
the “shallowness” of the click-through stream of users access-
ing websites. The the majority of streams have the maximum
length of two. This behavior suggests a more focused usage of
the web, where users have a specific goal in mind and are less
likely to click on links that take them to irrelevant websites.
In conclusion, we believe that ReSurf represents an enabling
capability for ISPs, network administrators, and researchers
that want to model and understand how users surf the web.

REFERENCES

[1] C. Labovitz and et al., “Internet Inter-Domain Traffic,” in ACM SIG-
COMM, 2010.

[2] T. Karagiannis and et al., “BLINC: multilevel traffic classification in the
dark,” in ACM SIGCOMM, 2005.

[3] I Trestian and et al., “Unconstrained endpoint profiling (googling the
internet),” in ACM SIGCOMM, 2008.

[4] S. Ihm and et al., “Towards understanding modern web traffic,” in ACM
IMC, 2011.

[5] M. Butkiewicz and et al., “Understanding website complexity: Measure-
ments, metrics, and implications,” in ACM IMC, 2011.

[6] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in ACM IMC, 2009.

[7]1 1. Bermudez, M. Mellia, M. Munafo, R. Keralapura, and A. Nucci, “Dns
to the rescue: Discerning content and services in a tangled web,” in ACM
IMC, 2012.

[8] “http://easylist.adblockplus.org/en/.”

[9] D. Schatzmann, W. Miihlbauer, T. Spyropoulos, and X. Dimitropoulos,

“Digging into HTTPS : Flow-Based Classification of Webmail Traffic,”

in ACM IMC, 2010.

J. Erman, A. Gerber, and S. Sen, “HTTP in the home: it is not just about

PCs,” in ACM SIGCOMM Computer Communication Review, 2011.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1925876

W. Li, A. Moore, and M. Canini, “Classifying HTTP traffic in the new

age,” in ACM SIGCOMM Poster, 2008.

F. Schneider, B. Ager, G. Maier, A. Feldmann, and S. Uhlig, “Pitfalls in

HTTP traffic measurements and analysis,” in International Conference

on Passive and Active Measurement (PAM), 2012.

P. Barford and et al., “Generating representative web workloads for

network and server performance evaluation,” in ACM SIGMETRICS

Performance Evaluation Review, 1998.

B. Mah, “An empirical model of http network traffic,” in IEEE INFO-

COM, 1997.

F. Smith and et al., “What TCP/IP protocol headers can tell us about the

web,” in ACM SIGMETRICS Performance Evaluation Review, 2001.

N. Kammenhuber, J. Luxenburger, A. Feldmann, and G. Weikum, “Web

search clickstreams,” in ACM IMC, 2006.

D. Martin, H. Wu, and A. Alsaid, “Hidden surveillance by web sites:

Web bugs in contemporary use,” Communications of the ACM, vol. 46,

no. 12, pp. 258-264, 2003.

B. Krishnamurthy and C. Wills, “Generating a privacy footprint on the

internet,” in ACM IMC, 2006.

, “Privacy diffusion on the web: A longitudinal perspective,” in

ACM WWW, 2009.

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

