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Abstract—Online social networking has become ubiquitous.
For a social storage system to keep pace with increasing amounts
of user data and activities, a natural solution is to deploy more
servers. An important design problem then is how to partition
the data across the servers so that server efficiency and load
balancing can both be maximized. Although data partitioning is
well-studied in the literature of distributed data systems, social
data storage presents a unique challenge because of the social
locality in data access: we need to factor in not only how actively
users read and write their own data but also how often socially
connected users read the data of one another. We investigate
the socially aware data partitioning problem by modeling it
as a multi-objective optimization problem and exploring the
applicability of evolutionary algorithms in order to achieve
highly-efficient and well-balanced data partitions. Especially, we
propose a solution framework that is closer to being optimal than
existing techniques are, which is substantiated in our evaluation
study.

I. INTRODUCTION

To cope with rapid growth, a typical way to scale an
online social network (OSN) is adding more servers to expand
storage capacity and mitigate server bottleneck. Subsequently,
a key problem is how to best partition the data across the
servers. While this problem is well-addressed in the literature
of distributed data systems [1]–[7], OSNs represent a novel
class of data systems. In an OSN, where a read query for a
user often requires fetching small data records of its neighbors
in the social graph (e.g., friends’ status messages in Facebook
or connections’ updates in LinkedIn), it is desirable to assign
the data of socially-connected users to the same servers so that
the number of servers required to process a query is kept small,
which, in turn, should lead to faster response time [8]–[11].
Therefore, social locality is an important factor a partitioning
design should take into account. This subject, however, was
not brought up until just recently [11].

A great challenge for sharding social data across a number
of servers while preserving social locality is due to the
competing requirements on keeping the server load small (for
good response time) while providing a good load balance (for
bottleneck avoidance). The server load could be minimized
by storing the entire data on a single server (so social locality
is maximally preserved), but doing so incurs the worst load
imbalance. On the other hand, excellent load balancing could
be achieved if using DHT to assign user data on random
servers, as in the partitioning implementation of today’s most
popular OSNs [12]–[14], but social locality would be broken

due to the randomness nature of DHT. Because it is impos-
sible to achieve both objectives, minimization of server load
and maximization of load balancing, existing socially aware
partitioning techniques [8], [9], [11] have to settle for a trade-
off, emphasizing on one objective at the cost of the other.

Our motivating question is, while a trade-off is unavoid-
able, can we obtain the best trade-off or something that is
close? To answer this question, we propose to model socially
aware partitioning as a multi-objective optimization problem
in which server efficiency and load balancing are optimized
taking into account not only the social connectivity of the users
but also their social activity, namely how often a user reads or
write data of its own and how often connected users want to
read one another’s data. We then investigate the applicability
of evolutionary algorithms (EA) to find a set of partition
assignments that offer the best trade-offs between the two
optimization objectives. Our contributions are below:

• Although EA is widely used to solve multi-objective
optimization problems, our effort is the first to apply EA
to the socially aware partitioning problem. This is not a
trivial application of EA, though, due to the large size of
the social graph. Indeed, we show that EA is not effective
in converging to good partitioning solutions if EA starts
with a typical population consisting of random candidate
solutions (such as random partitions produced by DHT).

• To preserve social locality, previous socially aware solu-
tions commonly rely on classic k-way graph partitioning
algorithms to divide the social data graph into equally-
sized components with minimum edge-cut [8], [9]. Al-
though better than DHT, we show that this approach
is far from being optimal. This is explainable because
OSNs exhibit a strong community structure with power-
law community size distribution, unseen in traditional
random graphs for which graph partitioning algorithms
are most suitable.

• We propose S-PUT, an effective EA-based solution
framework that substantially outperforms both DHT- and
graph-based approaches. Unlike conventional EA, the
first generation in S-PUT is populated with a set of
solutions to a classic graph partitioning problem that
is transformed from the optimization problem. During
the EA process, a final set of partition assignments can
quickly be reached, offering excellent trade-off between
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server efficiency and load balancing. This is substantiated
in an evaluation study we have conducted with Facebook
and Gowalla datasets.

The remainder of this paper is structured as follows. We
discuss the related work in Section II. We define the socially
aware partitioning problem formally in Section III. The pro-
posed solution framework is described in Section IV. The
results of our evaluation study are reported in Section V. The
paper is concluded in Section VI with pointers to our future
work.

II. RELATED WORK

Horizontal scaling has been a de facto standard when it
comes to managing data at massive scale for most OSNs.
Instead of adding more hardware resources to the existing
servers, the system, with horizontal scaling, is scaled “out”
by adding commodity servers and partitioning the workload
across these servers.

On top of a distributed infrastructure of commodity storage
servers, popular OSNs today adopt a hashing-based mecha-
nism for data partitioning, e.g., range-based hashing used in
Gizzard [12] of Twitter or consistent hashing in Cassandra
[13] of Facebook and Dynamo [14] of Amazon. The common
drawback of these schemes is that hashing data to random
servers does not preserve social locality. It has recently been
shown [11] that network I/O can substantially be improved at
the server side by keeping all of the relevant data of each query
local to the same server. Even on a disk, these data should be
stored closely together to improve disk response time [15].

Aimed to improve system performance and scalability,
socially aware data partitioning and replication schemes have
been proposed. SPAR [11] is aimed to preserve social locality
perfectly, i.e., every two neighbor users must have their data
colocated on the same servers. This is impossible if each user
has only one copy of its data and so replicas are introduced
and placed appropriately. Unlike SPAR which sets no limit
on the maximal number of replicas for each user, S-CLONE
[10], designed solely for replication, is aimed to preserve
social locality as much as possible under a fixed space budget
for replication. SCHISM [8] is a workload-driven scheme
that partitions the data based on transaction patterns such
as how often different data are retrieved together. While the
queries targeted by SCHISM should be static and frequently
repeated, OSNs often exhibit time-dependent queries (e.g.,
status messages of Facebook are frequently refreshed with
more recent ones). This observation motivates the partitioning
technique in [9] which takes as input an activity graph that is
changing over time to better represent social locality.

The last two aforementioned, [8] and [9], are the only
socially aware partitioning techniques that take into account
the heterogeneity in how often a user reads/writes its own
data and how often socially-connected users want to see the
data of one another. They both rely on METIS, a classic
graph partitioning algorithm highly effective for very large
graphs, to partition the social data graph. We will show that
the data partitions resulted from this approach are far from

optimal. Much better partitions can be obtained by a simple
yet effective evolutionary-based approach to be presented in
this paper.

III. PROBLEM FORMULATION

Consider a storage system with M servers to store data for
a social graph of N users. We assume that each user’s data
is of small size and so it is desirable to minimize the number
of servers required to access a given number of data records.
We assume a three-tier system architecture, User-Manager-
Server, in which the users do not communicate with the servers
directly. Instead, the Manager, providing API and directory
services, serves as the interface between the users (frond-end)
and the servers (back-end). The API is used for the users to
issue read and write requests. Assisted by the directory service,
each request for a user is always directed to its primary server
who is responsible to fulfill the request on the user’s behalf.
The directory service can be implemented either as a global
map or as a DHT. The connectivity information of the social
graph is assumed to be available at the Manager.

The system is characterized by the following parameters:

• Partition assignment P : a N×M binary matrix represent-
ing the primary assignment of user data across the servers.
In this matrix, each entry pis has value 1 if and only if
user i is assigned to server s. The mapping from a server
to a user is surjective, i.e.,

∑M
s=1 pis = 1 ∀i ∈ [1, N ].

• Write rate W : a N -dimensional vector representing user
write request rates. Each element wi is a positive real
number quantifying the rate at which user i issues a write
request. A write request for a user is always sent to its
server.

• Read rate R: a N -dimensional vector representing user
read request rates. Each element ri is a positive real
number quantifying the rate at which user i issues a read
request. A read request for a user is always sent first to
its server, requesting to retrieve its data and possibly the
data of its neighbors. Whether a neighbor’s data is also
retrieved is determined by social bond strength, which is
defined below.

• Social relationship E: a N ×N real matrix representing
the social relationships in the social graph. In this matrix,
each entry eij is a value in the range [0, 1] quantifying
the social bond between user i and user j. A stronger
social bond indicates stronger probability (tendency) to
read each other’s data. The value 1 means the strongest
and 0 means no relationship. It is noted that although i
and j are socially connected, the values of eij and eji are
not necessarily identical because the likelihood that user i
wants to read its neighbor j’s data may be different from
the likelihood that user j wants to read user i’s data.

We assume that the values for parameters W , R, and E can be
obtained based on monitoring and analysis of actual workload.
In practice, these values may vary over time and so we can
divide the time into periods and update the values periodically.
In the scope of this paper, we focus on one such period.
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A. Server Load

Minimizing the server load and maximizing load balancing
are among the most important objectives of any distributed
storage system. The server load is categorized into three types:
read load, write load, and storage load. We formulate these
objectives below.

1) Read Load: To understand the server read load , consider
a read request for user i. This request needs to be directed to its
server, say server s, which will provide the data for i. Suppose
that user i is also interested in the data of user j, one of its
neighbors. To retrieve this data, there are two cases:

• User j’s data is located on server s: The data of j can
be provided by server s, requiring no additional server
request.

• User j’s data is not located on server s: The data of j
needs to be retrieved from the server of j, requiring one
additional read request sent to this server.

The amount of data returned to user i is the same in both cases,
but the number of read requests that need to be processed at
the server side is different, and, especially, worse if i and j do
not colocate. More read requests result in more traffic and CPU
processing at the server side. Therefore, an important objective
is to minimize the server load due to read requests, which we
refer to as read load, given the social relationships between
the users and the rate at which they initiate read requests.

Given a server s, its read load is computed as

λreads =

N∑
i=1

ripis +

N∑
i=1

ri(1− pis)
N∑
j=1

pjseij

=

N∑
i=1

ri

pis + (1− pis)
N∑
j=1

pjseij

 .

This load consists of read requests that are initiated by (1)
users i assigned to s and (2) users i not assigned to s that
have neighbors j assigned to s. The number of read requests
belonging to the latter group depends on the social strength
matrix E which determines whether a neighbor’s data needs
also to be retrieved.

The total read load of all the servers is

Λread =

M∑
s=1

λreads =

M∑
s=1

N∑
i=1

ri

pis + (1− pis)
N∑
j=1

pjseij


which can be re-written as

Λread =

N∑
i=1

ri

1 +

N∑
j=1

eij

M∑
s=1

(1− pis)pjs

 (1)

(derived using the equality
∑M

s=1 pis = 1 ∀i ∈ [1, N ]).
As visible in the above formulas, to minimize the total read

load and/or balance the read load across the servers, we have
to take into account how the data is partitioned (P ) and the
social relationships among the users (E).

2) Write Load: We refer to the number of write requests
a server has to process as its write load, which depends on
the number of users for whom the server stores data and the
rate at which they initiate write requests. The write load of a
server s is

λwrite
s =

N∑
i=1

wipis (2)

and the total write load of all the servers is

Λwrite =

M∑
s=1

λwrite
s =

M∑
s=1

N∑
i=1

wipis =

N∑
i=1

wi. (3)

While individual write loads depend on how the data are
partitioned, the total write load is fixed regardlessly.

3) Storage Load: We compute the storage load of a server
as the number of users whose data is stored at this server. The
storage load of a server s is λstores =

∑N
i=1 pis and the total

storage load of all the servers is

Λstore =

M∑
s=1

λstores =

M∑
s=1

N∑
i=1

pis = N.

Similar to write load, the total storage load is fixed regardless
of the data partition scheme, whereas individual storage loads
are affected by how the data is partitioned.

B. Multi-Objective Optimization

Ideally, we want to simultaneously minimize the total read
load, total write load, and total storage load of all the servers
while balancing individual loads across the servers. These ob-
jectives, however, are conflicting with each other. For example,
we could place all the data on the same server to minimize
the read load, resulting in a read load of

∑N
i=1 ri, but this

would incur severe imbalance of the storage load and of the
write load. Also, the write load and storage load cannot be
balanced at the same time, nor can they be minimized, because
of the write rate vector W . Thus, trade-offs are inevitable and
we should be specific about which objectives are given more
priority before we design the system.

Since OSNs exhibit high read/write rates, in this paper, we
address the case where our priority is to minimize the total
read load and balance write load (note that the total write
load is a constant regardless of any partition). A solution to
this case can easily be adapted to work for systems that want
low read load and balanced storage load (instead of balanced
write load) because the formulas for storage load are just a
special case of the formulas for write load. Indeed, by setting
W = {1, 1, ..., 1}, λwrite

s and Λwrite will exactly equal λstores

and Λstore, respectively.
To represent the degree of load balancing across the servers,

a variety of measures of statistical dispersion can be used, such
as coefficient of variation, standard deviation, mean different,
and Gini coefficient. Our framework does not enforce any
specific measure. For the purpose of illustration, in this paper,
we formulate the problem based on the Gini coefficient. Gini
coefficient can be used to compare load balancing of different
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distributions independent of their size, scale, and absolute
values. This measure naturally captures the fairness of the load
distribution, with a value of 0 expressing total equality and a
value of 1 maximal inequality.

Assuming that servers are ranked in the increasing order of
write load, the formula for the Gini coefficient is

Γwrite =
2

(M − 1)Λwrite

M∑
s=1

sλwrite
s − M + 1

M − 1
.

Replacing λwrite
s and Λwrite with Eq. (2) and Eq. (3), respec-

tively, we have

Γwrite =
2

(M − 1)
∑N

i=1 wi

M∑
s=1

s

N∑
i=1

wipis −
M + 1

M − 1
. (4)

The range of Γwrite is 0 ≤ Γwrite ≤ 1. To balance the server
load, we need to minimize this Gini coefficient.

The optimization problem is expressed as follows:

Problem III.1 (Optimal Socially-Aware Partitioning). Find P

minimize
P

[
Λread,Γwrite

]T
subject to 1)

M∑
s=1

pis = 1 ∀1 ≤ i ≤ N

2)

N∑
i=1

wipis ≤
N∑
i=1

wipit ∀1 ≤ s < t ≤M

where

Λread =

N∑
i=1

ri

1 +

N∑
j=1

eij

M∑
s=1

(1− pis)pjs


and

Γwrite =
2

(M − 1)
∑N

i=1 wi

M∑
s=1

s

N∑
i=1

wipis −
M + 1

M − 1
.

IV. PROPOSED FRAMEWORK

Problem III.1 belongs to the class of non-trivial multi-
objective optimization problems for which we cannot identify
a perfect solution simultaneously optimizing all the objectives.
To problems of this kind, an alternative goal is to look for
Pareto-optimal solutions. A Pareto-optimal solution is one
that is not “dominated” by any other solution; solution A is
dominated by solution B if A is no better than B in every
objective and worse in at least one objective.

A popular approach to finding Pareto-optimal solutions is
to use evolutionary algorithms (EA) [16]. EA, after many
generations of crossover and mutation, can eventually result in
a good approximation of these solutions. The drawback of EA,
however, is due to its slow convergence to a stable solution
state. In our case, the size of the solution space is NM , with
N unknown variables (the server assignment for each of the
N users), the value for each variable anywhere between 1 and
M . A social graph can contain millions of users, making the
search space too large for a typical EA process to be effective.

Our proposed solution framework, which we hereafter refer
to as S-PUT, relies on EA for its eventual guarantee toward
Pareto-optimality, but applies it in a much more effective
way. Specifically, S-PUT consists of two phases. In the Initial
Partitioning phase, a graph partitioning algorithm is used to
obtain the initial population for the EA process. In the Final
Partitioning phase, the EA process takes place to result in the
final set of optimized partition assignments.

A. Initial Partitioning

It is observed that if we denote fij = rieij +rjeji, the total
read load can be expressed as

Λread =

N∑
i=1

ri +
1

2
×

N∑
i=1

N∑
j=1

fij

M∑
s=1

(1− pis)pjs.

Thus, to minimize Λread, we need to minimize
N∑
i=1

N∑
j=1

fij

M∑
s=1

(1− pis)pjs.

This quantity is the sum of fij of pairs of socially-connected
users, i and j, who are assigned to different servers.

Consider an undirected weighted graph G formed by the
vertices and links of the original social graph, where each
vertex i of G is associated with a weight wi and each link
(i, j) of G with a weight fij . Our optimization problem is
equivalent to finding an optimal partitioning of graph G into
M components such that:
• The edge cut, i.e., sum of the weights of inter-component

links, is minimum (so that Λread is minimized), and
• The total vertex weight of each component is balanced

(so that Γwrite is minimized).
This is a classic constrained weighted graph partition-
ing problem known to be NP-hard [17]–[20], but approx-
imation algorithms have been proposed. Among them is
METIS [18], arguably the best approximation algorithm
for partitioning a large graph into equally-weighted com-
ponents with minimum edge cut. According to its website
(http://glaros.dtc.umn.edu/gkhome/views/metis), METIS can
partition a 1-million-node graph in 256 parts in just a few
seconds on today’s PCs.

In our framework, our first step is to obtain a set of
partition assignments, each being a result of applying METIS
on graph G using a different “seed”. Seed is a random factor
used in METIS; a different assignment can be obtained by
using a different value for the seed. These METIS partition
assignments are used to populate the first generation of EA.
The number of these assignments is equal to the “population
size”, an input parameter for the EA process, explained in the
next section.

B. Final Partitioning

EA is an iterative process of generations, starting with an
initial population of candidate solutions in the first generation
and iteratively improving the population from one generation
to the next, eventually reaching the final solutions in the last
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generation’s population. The evolution of the population is
driven by three main mechanisms: recombination, mutation,
and selection. Recombination and mutation create the neces-
sary diversity, thus facilitating novelty in the population. After
recombination and mutation, a selection step takes place to
select the best quality individuals for the next generation’s
population. A fitness function is used to determine the quality
of each individual.

Among many evolutionary algorithms, the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [21] and Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [22] are de facto
for solving multi-objective optimization problems. Although
either can work in our framework for the evolution process,
here we describe this process using SPEA2, which we have
evaluated in our simulation study.

1) Representation of a Population: We represent a pop-
ulation as a set of individuals, each being a base-M string
of length N , s1s2...sN , corresponding to a possible partition
assignment: user i is assigned to server si. For example, for a
network of 1000 nodes to be partitioned across 16 servers, an
individual is an array of 1000 integers, each having a value
between 0 and 15.

2) Evolution Process: SPEA2 maintains two types of pop-
ulation, Ph (called the “regular population”, size |P|) and Ah

(called the “archive”, size |A|), for each generation h. These
populations, Ph and Ah, are updated as follows.

1) First generation (h = 0): P0 is the initial population
of |P| individuals (result of applying METIS with |P|
different seeds) and A0 is set to empty.

2) Generation (h+ 1):
a) Ah+1 = set of non-dominated individuals of
Ph ∪ Ah (truncated to |A| individual if the pop-
ulation size is larger than |A|, or padded with
lowest-fitness individuals among the dominated if
the population size is less than |A|).

b) Ph+1 = set of |P| individuals after application of
recombination and mutation on Ah+1.

When the maximum number of generations, h∗ (given as
input), is reached, the final partition assignments will be the
non-dominated individuals in the final archive Ah∗ .

3) Recombination Mechanism: In the recombination mech-
anism, a number of pairs of individuals, called parents, are
randomly selected from the current population and each pair
will be replaced by two new individuals, called offsprings. We
use the Two-Point Recombination mode (the other modes pro-
vided by SPEA2 are One-Point Recombination and Uniform
Recombination). Suppose that the two parents are s1s2...sN
and s′1s

′
2...s

′
N . First, two random positions in the string are

chosen, i and j (1 < i < j < N ). Then, the offsprings are
s1...si−1s

′
i...s

′
jsj+1...sN and s′1...s

′
i−1si...sjs

′
j+1...s

′
N . The

number of parent couples to be replaced in the recombination
mechanism is determined by a probability precombine (given as
input). Therefore, we should expect |A| × precombine parents
to be replaced by their offsprings.

4) Mutation Mechanism: In the mutation mechanism, a
number of single parents are randomly selected from the

current population, each to be replaced by an offspring. The
offspring is created by setting a random value at each of a
number of random bits of the parent string. For example,
if only one position is to be assigned a random value, an
offspring of a parent s1s2...sN can be s1..si−1tsi+1...sN ,
where i ∈ [1, N ] and t ∈ [0,M − 1] are both chosen at
random. There are two probability parameters for the mutation
mechanisms: mutation probability pmutate and gene mutation
probability pgene mutate. The number of single parents to be
replaced is |A| × pmutate and the number of random bits to
be randomized in each parent is N × pgene mutate.

5) Dominated-ness and Fitness Function: An individual
p dominates an individual q, denoted by p � q if the
corresponding partition assignment of p is no worse than
that of q in terms of both Λread and Γwrite, with at least
one objective strictly better. The fitness of an individual p in
generation h is defined as

fitness(p) =
∑

q∈Ph∪Ah:q�p
strength(q) +

1

σp,k + 2

where strength(q) is the number of individuals dominated
by p in the set Ph ∪ Ah and σp,k denotes the distance in the
objective space from individual p to its k-nearest individual.
As common setting, k is set to

√
|P|+ |A|.

V. EVALUATION STUDY

We present here the results of a simulation study to evaluate
S-PUT in comparison with the conventional EA and graph-
based approaches to our data partitioning problem. We used
SPEA2 to represent the traditional EA approach and METIS
the classic graph partitioning approach. To simulate the social
graph, we have obtained two real-world samples: a Facebook
graph obtained from a dataset made available by Max-Planck
Software Institute for Software Systems and a Gowalla graph
made available by the University of Cambridge. The Facebook
graph contains N = 63, 392 users in New Orleans region,
with 816,886 links resulting in an average degree of 25.7. The
Gowalla graph has N = 196, 591 users and 950,327 links
resulting in an average degree of 9.7. The latter graph has
many more nodes but sparser connectivity.

We assume that the read and write rates of a user are pro-
portional to its social degree, thus these rates are given values
in the range (0, 1) proportional to the degree. We consider two
models for the social strength between neighboring nodes: the
constant model where every relationship has identical strength
1 and the random model where the strength is uniformly
generated in the range (0, 1).

The number of servers is set to M = 16. The parameters for
SPEA2 are: regular population size |P| ∈ {100, 500}, archive
size |A| = |P|, recombination probability precombine = 0.8,
mutation probability pmutate = 0.5, gene mutation prob-
ability pgene mutate = 0.001, and number of generations
h∗ ∈ {100, 300, 500}.
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(a) Population: 100 individuals

(b) Population: 500 individuals

Fig. 1. SPEA2 after 100, 300, and 500 generations: Insignificant improve-
ment in terms of total read load, some improvement in terms of load balancing
which, however, is not needed

A. Effectivess of SPEA2

First, we evaluate the effectiveness of SPEA2, representing
the evolutionary approach to solving the proposed partitioning
problem. In this simulation, SPEA2 starts in the first gener-
ation consisting of random partition assignments (referred to
as RANDOM assignments).

Figure 1(a) shows the initial population of 100 individu-
als (RANDOM) and the final population of non-dominated
individuals after 100 generations, 300 generations, and 500
generations. The random assignments have a total read load
consistently around 124,500 and a load balancing coefficient
around 0.08. Gini coefficient below 0.1 implies excellent load
balancing. After 100 generations of applying SPEA2, we
observe some improvement. If we look at the final solution
of SPEA2 with best load balancing, the reduction compared
to the initial population is 19% (0.065/0.08 ≈ 81%). Although
19% is a good percentage number, this is an improvement over
a load distribution that is already excellent. What we wish to
see is a more significant improvement on the total read load.
However, if we look at the final solution with best read load,
the reduction compared to the initial population is only a tiny
2% (122000/124500 ≈ 98%).

Similar observations are observed in the case the population
size is 500 individuals, which are shown in Figure 1(b). In ei-
ther case, 100 individuals or 500 individuals, the improvement

(a) Population: 100 individuals

(b) Population: 500 individuals

Fig. 2. SPEA2 vs. METIS: While METIS offers excellent load balancing,
comparable to RANDOM and SPEA2, it is superior in terms of total read
load

does not seem to get much better after 300 generations and 500
generations, suggesting that we have seen the practical best of
SPEA2 (unless we have to run many more generations, which
is prohibitively long).

We have shown that SPEA2 is limited in its effectiveness.
On the other hand, evolutionary algorithms are typically
known as an effective way to result in Pareto-optimal solutions
for multi-objective optimization problems. Therefore, the next
question in our study is to see if indeed we cannot do better
than SPEA2. To answer this question, we compare the result
of SPEA2 after 500 generations to the METIS method that
finds partitioning assignments as described in Section IV-A.
This comparison is illustrated in Figure 2, which shows a
clear contrast between these two methods. While METIS
results in excellent load balancing, comparable to SPEA2 and
RANDOM, METIS is superior in terms of total read load.
In the case the population size is 100 individuals, an average
METIS partitioning assignment offers a total read load that is
an 40% improvement over RANDOM (compared to just 2%
improved by SPEA2). A similarly significant improvement is
also observed if the population size is 500 individuals. It is
noted that METIS is faster to converge than SPEA2.

What stood out in this study is that (1) a typical use of
an evolutionary algorithm, SPEA2 in our experiment, is not
effective in finding a good partition assignment, and (2) it

6



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

(a) Population: 100 individuals

(b) Population: 500 individuals

Fig. 3. S-PUT: a highly effective EA process with final partition assignments
substantially better than METIS and SPEA2

is possible to have a partitioning technique that runs faster
and offers substantially better optimization quality than SPEA2
does.

B. Effectiveness of S-PUT

Here, we discuss the results of running our proposed
technique, S-PUT. These results are illustrated in Figure 3.
There are two noteworthy observations from this illustration.
Firstly, the EA process in S-PUT is highly effective. After
100 generations, the improvement of S-PUT over its initial
population (METIS) in terms of total read load is as high
as 20% (60, 000/75, 000 ≈ 80%) for the case with 100
individuals, and 26% (55, 000/75, 000 ≈ 74%) for the case
with 500 individuals. The typical SPEA2 process improves
only about 2% over its initial population. The improvement
in terms of load balancing in S-PUT is no worse than that in
SPEA2. Secondly, the quality of S-PUT partition assignments
is remarkable compared to METIS and SPEA2. In the case
with 100 individuals, if we use the quality of RANDOM as
benchmark, on average, S-PUT offers a total read load that is
65, 000/124, 500 ≈ 52% of RANDOM, while the total read
loads for METIS and SPEA2 are 62% and 98%, respectively.
These percentage numbers are similarly observed in the case
with 500 individuals. Note that in this study, S-PUT stops after
100 generations whereas SPEA2 stops after 500 generations.

(a) Random strengths, 100 individuals

(b) Random strengths, 500 individuals

Fig. 4. S-PUT results: Facebook graph with randomly generated social bond
strengths

C. Effect of Input Social Graph and Social Bond Strengths

The results we have discussed above are with the Facebook
graph in which the social bond strength between adjacent
nodes is identical (E = 1). In this section, we will see
if S-PUT remains superior when the social bond strength
is randomly generated or when the social graph is different
(Gowalla graph).

Figure 4 shows the S-PUT results for the Facebook graph
in which the social bond strength is random. There is still a
clear contrast between the group of S-PUT/METIS results and
the group of SPEA2/RANDOM results, the former obviously
offering better partition assignments than the latter. All of these
methods offer excellent load balancing (Gini coefficient is less
than 0.1), but S-PUT is no question the clear winner in terms of
total read load. As an EA process, S-PUT is faster than SPEA2
to reach a good Pareto “front” (i.e., set of non-dominated
solutions). After 100 generation, S-PUT can improve the total
read load over its initial population by as much as 25%,
whereas SPEA2 after 500 generations can improve over its
initial population by only 2%, which is insignificant.

The case with Gowalla graph offers a slightly different
picture. As seen in Figure 5 and Figure 6, the EA process in
both SPEA2 and S-PUT is more effective than the case with
Facebook. In other words, with the Gowalla graph, it is quicker
for both SPEA2 and S-PUT to improve over their initial
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(a) Identical strengths, 100 individuals

(b) Identical strengths, 500 individuals

Fig. 5. S-PUT results: Gowalla graph with identical social bond strengths

population. This helps SPEA2 get closer to METIS, albeit
still inferior. Nevertheless, S-PUT clearly remains the best,
standing out from the other methods. Consider the case with
100 individuals as population size. For the same load balancing
(Gini coefficient narrowly around 0.8), looking at the solution
with the best total read load for the case of identical social
strength bonds, S-PUT’s load is 76% of METIS, 65% of
SPEA2, and 58% of RANDOM (Figure 5(a)). For the case
of random social strength bonds, the total read load of S-PUT
is 80% of METIS, 66% of SPEA2, and 60% of RANDOM
(Figure 6(a)). These percentage numbers only change slightly
for the case with 500 individuals as population size.

Throughout all the simulation runs with various configu-
rations, S-PUT consistently outperforms the other competing
methods by significant margins. Not only that it is faster than
the typical EA process to improve over the first generation but
it incurs significantly less total read load while maintaining
comparable if not better load balancing.

D. Run time

Since S-PUT is an EA-based framework, the computation
time is a trade-off for the quality of the final partition as-
signments. Table I presents the time for the EA process in
S-PUT to complete. Here, we show the time information for
the case E = 1, but for the case E is random the completion
time should be similar because changes in the values of E
do not affect the run time. For both graphs, as expected, the

(a) Random strengths, 100 individuals

(b) Random strengths, 500 individuals

Fig. 6. S-PUT results: Gowalla graph with random social bond strengths

EA completion time is linearly proportional to the population
size and the number of generations. For example, with 100
individuals, it took 30 minutes to run 100 generations on the
Facebook graph and 50 minutes on the Gowalla graph. This
time is roughly tripled with 300 generations and quintupled if
we continue to 500 generations or have a population size of
500 individuals. In our discussion of the simulation results in
prior sections, S-PUT with population size of 100 individuals
already outperforms the competing methods if it runs EA
for only 100 generations, which corresponds to 30 minutes
of running on Facebook and 50 minutes on Gowalla. This
is encouraging in terms of time complexity. Note that our
simulation runs on a moderate Linux workstation with 8GB
memory and 2.66GHz dual-core Intel Xeon CPU 3070.

VI. CONCLUSIONS

Social locality is a property that should be preserved in
the data storage of any OSNs in order to improve the server
efficiency. We have modeled the socially aware partitioning
problem as a multi-objective optimization problem aimed at
minimizing the total read load and balancing the write load,
taking into account the user read/write activity and social
relationship. As these are two competing objectives, a natural
approach is to employ an evolutionary algorithm (EA) to
find a Pareto-optimal solution. However, we have shown that
a typical application of EA does not work acceptably. We
have also shown that METIS, which is the basis for today’s
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TABLE I
COMPLETION TIME FOR THE EA PROCESS IN S-PUT FOR FACEBOOK AND GOWALLA GRAPHS: SIMULATION RUNS ON A LINUX WORKSTATION WITH

8GB MEMORY AND 2.66GHZ DUAL-CORE INTEL XEON CPU 3070

Facebook: 63,392 users, 816,886 links Gowalla: 196,591 users, 950,327 links
Population/Num. Gen. 100 gen 300 gen. 500 gen. 100 gen 300 gen. 500 gen.
100 individuals 30m 1h27m 2h30m 50m 2h25m 4h
500 individuals 2h23m 7h22m 12h10m 4h 12h 20h10m

partitioning techniques for OSNs, is far from being optimal.
Our proposed framework, S-PUT, presents a different way of
applying EA, simple yet highly effective. S-PUT is superior to
METIS in both total read load and load balancing. Although
run-time is a trade-off for any EA process, S-PUT has been
shown to converge to a set of excellent partition assignments
within a reasonable amount of time. In practice, social graphs
can be substantially so large that S-PUT may become too long
to converge. In this case, we recommend that the original graph
be partitioned into smaller subgraphs first and then S-PUT be
applied on each subgraph.

The current framework of S-PUT is most suitable for imple-
mentation in a storage system with identical communication
cost to go from one server to any other. In our future work, we
will extend S-PUT for the case where this cost may vary. Also,
we will investigate how to apply S-PUT to systems where
geographic locality needs to be factored in, not just social
locality. In S-PUT, once a partition has been determined, any
arbitrary permutation of the servers can be used to assign each
group of users to a separate server; S-PUT does not dictate
the choice of this permutation. Therefore, to accommodate
geographic locality, the application developer can choose a
permutation that tries to preserve this property. We will explore
this approach in our future research.
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