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Abstract—Content-based publish/subscribe systems have been
employed to deal with complex distributed information flows in
many applications. It is well recognized that event matching is
a fundamental component of such large-scale systems. Event
matching is to search in a space which is composed of all
subscriptions. As the scale and complexity of a system grow,
the efficiencies of event matching become more critical to the
system performance. Most existing methods suffer performance
degradation problem when a system has both large number of
subscriptions and large number of constraints. In this paper, we
present H-Tree (Hash Tree), a highly efficient index structure
for event matching. H-Tree is a hash table in nature which
is a combination of hash lists and hash chaining. A hash list
is realized on an indexed attribute by dividing the attribute’s
value domain into cells. Multiple hash lists are chained into
a hash tree. The basic idea behind H-Tree is that matching
efficiencies are improved when the search space is substantially
reduced by pruning most of the impossible subscriptions. We
have implemented H-Tree and conducted extensive experiments
in different settings. Experimental results show that H-Tree

outperforms its counterparts to a large degree. In particular,
the matching time is faster by three order of magnitude than
its counterparts when both the number of subscriptions and the
number of constraints are large.

I. INTRODUCTION

Content-based publish/subscribe (pub/sub) systems have
been employed in many applications, such as content dissem-
ination, information filtering, e-commerce, and online games.
A pub/sub system realizes decoupling of space, time, and
synchronization[1], which is desirable for large-scale dis-
tributed scenarios. Many research prototypes have been built,
including Siena[2], Hermes[3], Le Subscribe[4], Scribe[5],
and JEDI[6]. In addition, some commercial systems have
been implemented, such as IBM WebSphere MQ, TIBCO
Rendezvous and Oracle Streams Advanced Queuing.

It is well known that event matching is critical to large-
scale pub/sub systems because each broker performs this
task when receiving an event. Particularly, inner brokers are
junctions since most events pass through them. When the
number of received events is greater than an inner broker’s
processing capacity, the inner broker becomes a performance
bottleneck [7]. Therefore, sustaining fast event matching is
extremely necessary. In essence, event matching is to search
a space which is composed of all subscriptions. When both
the number of subscriptions and the number of constraints
contained in subscriptions, the search space is extremely huge.
Event matching is challenging when the system scale is large.

Many methods have been proposed to improve matching
efficiencies [8–13]. The basic strategy behind these methods
is that partially matched subscriptions are first computed and
then counting algorithms are utilized to get fully matched sub-
scriptions. However, when the number of constraints is large,
almost all subscriptions are partially matched. Therefore, the
matching performance of these methods degrades dramatically
when there are millions of subscriptions and each subscription
contains tens or hundreds of constraints.

In the paper, we present H-Tree (Hash Tree), an efficient
index structure for event matching. H-Tree is a hash table in
nature which is a combination of hash lists and hash chaining.
The value domain of each indexed attribute is divided into cells
on which a hash list is realized. Multiple hash lists are then
chained into a hash tree. The basic idea behind H-Tree is
that matching efficiencies are improved when the search space
is substantially reduced by pruning most of the impossible
matching subscriptions.

H-Tree is theoretically analyzed in terms of the time and
space complexities. The time complexity of pre-processing
is O(NindNsub), where Nind is the number of indexed at-
tributes and Nsub is the number of subscriptions. The time
complexity of matching is O(riNsub), where ri is index ratio
which indicates the index efficiency of an index structure.
The space complexity is O(Nsub). Extensive experiments
are also conducted to evaluate the performance of H-Tree
and experimental results show that H-Tree outperforms its
counterparts to a large degree. In particular, the matching time
is faster by three order of magnitude than its counterparts when
both the number of subscriptions and the number of constraints
are large.

The rest of the paper is organized as follows. Section II
introduces the background and the data model. Section III
presents the design of H-Tree. Section IV analyzes H-Tree.
Section V illustrates the results of performance evaluation.
Section VI discusses related work. Section VII concludes the
paper.

II. BACKGROUND AND MODEL

A. Background of Pub/Sub Systems

A pub/sub system is composed of publishers, subscribers,
and a middleware[1]. The middleware is composed of brokers
(servers or proxies) that process matching and routing tasks.
An example of a pub/sub system is shown in Fig. 1. It can
be noted that event matching is performed at all brokers once
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Fig. 1. A distributed pub/sub system where event matching is performed at
all brokers.

they receive events. For example, when E4 receives an event
from I3, event matching is immediately performed at E4 to
forward the event to the matched subscribers.

It can be easily observed that inner brokers have to process
more events since inner brokers act as dispatchers in the
network. When an inner broker receives an event from an
interface, event matching is carried out to decide whether the
event is forwarded through other interfaces to the next-hop
brokers. When the number of received events is greater than
an inner broker’s processing capacity, the inner broker becomes
a performance bottleneck. Therefore, achieving fast matching
is critical to large-scale pub/sub systems.

B. Data Model

A message is also called an event in the context of
content-based pub/sub systems. An event can be represented
as a conjunction of attribute-value pairs. Every attribute
name should appear only once in an event. For example,
{(current, 10.4), (voltage, 223), (power, 2300)} is an event
which describes the electrical status of a device. In real
applications, each attribute has its value domain which is
specified by minimum and maximum values.

Following the naming conventions of
Siena, a range constraint is a 4-tuple of
{name, lowV alue, highV alue, type}. Name is one
of the attribute names appeared in events. The value
type can be any of simple or complex data types,
such as integer, double or string. It is assumed
that range constraints are in inclusive form and are
normalized to [0,1.0]. A range constraint is equivalent
to a conjunction of two simple constraints. For example,
the range constraint {tem, 10, 20, integer} is equal to
{tem,>, 10, integer} ∧ {tem,6, 20, integer}. Other forms
of constraints can be converted into range constraints. For
example, if power is of integer type and has a minimum value
of 10 and a maximum value of 100, then a simple constraint
{power,6, 50, integer} can be transformed to a range
constraint {power, 10, 50, integer}. A range subscription is
a conjunction of multiple range constraints. Each subscription
is identified by a unique subID. In the paper, only range
constraints are considered. By analyzing the properties of
range constraints, we design an efficient index structure for
range subscriptions.

III. DESIGN OF H -Tree

A. Overview

In order to achieve fast event matching, subscription pre-
processing is necessary. It is common to organize subscriptions
into an index structure, which is applied equally to H-Tree.
If an index structure is efficient, then most unrelated items can
be filtered out when searching. In order to evaluate the index
efficiency of H-Tree, index ratio ri is defined as

ri =
nr

na
, (1)

where nr is the number of remained subscriptions after filter-
ing and na is the number of all subscriptions.

H-Tree is a combination of hash lists and hash chaining.
The value domain of each indexed attribute is divided into
cells on which a hash list is realized. Multiple hash lists
are then chained into a hash tree. When pre-processing a
subscription, the subID of the subscription is stored into one
bucket. The cellID of each indexed attribute is computed first
and the bucketID is calculated according to the cellIDs. When
matching an event, a small number of buckets need to be
checked. 2 or 3 cellIDs are computed for each indexed attribute
and bucketIDs are calculated according to these cellIDs.

The construction of H-Tree is described as follows. First,
indexed attributes are selected from the event attributes. Then,
the value domain of each indexed attribute is divided into cells
on which a hash list is realized. Finally, the hash lists realized
on all indexed attributes are chained into a hash tree. The
details of domain division and attributes chaining are described
in the following subsections.

B. Selection of indexed attributes

Indexed attributes are first selected from the event at-
tributes. The selection has obvious impacts on the performance
of H-Tree. It is more beneficial to select popular attributes
than infrequent ones because a hash tree built on infrequent
attributes is more likely to be skewed. Some heuristic rules are
given for the selection of indexed attributes. Firstly, popular
attributes are prioritized because a hash tree built on popular
attributes is less skewed. Secondly, attributes with smaller
range widths are taken first. Finally, the appropriate number
of indexed attributes is between 5 and 10 because the number
of buckets grows exponentially with the number of indexed
attributes.

C. Division of value domains

A range constraint is specified by a low value and a high
value. Center and width are two indispensable information to
describe a range constraint. Given an attribute value, any range
constraint is possible to match it. It is not feasible to hash
range constraints on one characteristic because the width of
a range constraint is unlimited. By putting a limitation on the
constraint width, range constraints that need to be checked can
be reduced. In reality, the width of range constraints specified
by users is usually a small proportion to the whole attribute
domain. By restricting the width of range constraints under
an upper bound, hashing is realized on the center of range
constraints.

2
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Fig. 2. A novel division of attribute spaces.

Suppose that the width of range constraints is smaller than
an upper bound W . (How to relax this bound is discussed
later.) After the selection of indexed attributes, the number
of cells Ncel that each attribute domain is divided into is
determined. The ceiling of Ncel is limited by W , which is
⌊ 1

W
⌋. By imposing this restriction, it is ensured that the width

of cells is not smaller than W . After dividing an attribute
domain into Ncel segments, two neighboring segments are
composed into a cell. In this way, two neighboring cells are
overlapped with a width of 1

Ncel
. The overlapped division

of attribute domains complies with the property of range
constraints.

The illustration is shown in Fig. 2. The upper bound W in
the example is 0.25, and 4 segments are divided. 3 overlapped
cells {c0, c1, c2} are composed with their centers at {0.25, 0.5,
0.75} respectively, as shown in Fig. 2 (a). The last cell, namely
c3, is specialized for the case where no range constraint is
specified on an attribute. When processing a subscription, the
cellID of each indexed attribute is computed. When computing
the cellID for indexed attributes, the rules are listed as follows.

(1) If no range constraint is specified on the indexed attribute,
the cellID is c3.

(2) If the center of the range constraint is located in interval
[0, 0.25] or [0.75, 1.0], the cellID is c0 or c2, respectively.

(3) Otherwise, the range constraint is located in two cells. The
cellID is determined by the distance from the center of the
range constraint to the center of the two overlapped cells.

In Fig. 2 (b), a range constraint, denoted as a dashed
rectangle, is located in two cells, c0 and c1. The cellID of
the constraint is c0, because the center of the range constraint,
denoted as a solid point, is closer to the center of c0 than to
the center of c1. In Fig. 2 (c), another range constraint with
the same width but at a different center is located in the same
cells, c0 and c1. But the cellID of the constraint is c1 because
the center of the range constraint is closer to the center of c1.

The above domain division assumes the uniform distri-
bution of the constraint values, so the attribute domains are
evenly divided. It is obvious that this will not work perfectly
when the distribution of the constraint values is skewed,
which are normal for real-world applications. However, given
the distribution function of the constraint values F (x), non-
uniform distribution can be converted into the uniform distri-

bution. According to the Probability Integral Transformation
theorem [14], let X be any continuous random variable with
a probability density p(x), and let F (x) be its cumulative
distribution function (CDF). A new random variable Y is
defined as Y = F (X). Then the Probability Integral Transform
theorem states that Y = F (X) has a uniform distribution on
[0, 1]. For example, when X is a random variable with a
standard normal distribution N(0, 1). Then its CDF is

F (x) =
1√
2π

∫ x

−∞

e−t2/2dt =
1

2
[1 + erf(

x√
2
)], x ∈ R, (2)

where erf() is the error function which is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt. (3)

As for pareto distribution, its CDF is

F (x) =

{

1 − (xm

x )
α

for x > xm

0 for x < xm
(4)

Without loss of generality, the constraint values and events
values are generated according to these two distributions to
evaluate the performance of H-Tree in the experiments. The
transformation is very simple without any costly computation.
Therefore, the cost of transformation is negligible.

D. Chaining of hash lists

After the overlapped division of attribute domains, the
hash lists of all indexed attributes are chained into a hash
tree, just like shown in Fig. 3. The chaining of indexed
attributes naturally corresponds to the conjunction relationship
of constraints in subscriptions. In nature, H-Tree is a hash
table by putting similar subscriptions in the same bucket. The
similarity of subscriptions is measured by the centers of the
range constraints. When the cellID of each indexed attribute in
a subscription is known, the bucket to store the subscription is
easy to calculate. Please note, only the subID of a subscription
is stored in the buckets, not the content of the subscription, so
the storage consumption is very small. When matching events,
2 or 3 cellIDs is figured out for each indexed attribute. The
bucketIDs that need to be checked are computed from these
cellIDs. The subID stored in these bucketIDs is used to retrieve
the content of subscriptions from the subscription list. Simple
matching method is employed to get the matched subscriptions.

This kind of dividing and chaining has many merits. First,
an attribute value is at most located in two cells by putting
an upper bound on the range width. Our aim is to design
an index structure which is capable of filtering out unrelated
subscriptions when matching events. When the number of cells
divided in each attribute domain is larger than 5, at least 40%
subscriptions are filtered out at each level in H-Tree. By
chaining multiple hash lists, subscriptions that finally need to
be checked are exponentially decreased with the number of
chained attributes.

Second, similar subscriptions are hashed into the same
bucket based on the center of multiple range constraints.
Subscriptions that need to be checked have high probability to
match events because most unrelated subscriptions are already
filtered out level by level. Therefore, H-Tree has the ability
to return the matched subscriptions earlier than traditional

3
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Fig. 3. An illustration of subscription pre-processing and event matching

TABLE I. THE LIST OF SUBSCRIPTIONS

SubID Content

s0 0.0 6 a1 6 0.1 ∧ 0.2 6 a2 6 0.3

s1 0.2 6 a1 6 0.3 ∧ 0.8 6 a2 6 0.9

s2 0.2 6 a1 6 0.3 ∧ 0.1 6 a2 6 0.2

s3 0.7 6 a1 6 0.8 ∧ 0.3 6 a2 6 0.4

s4 0.5 6 a1 6 0.6 ∧ 0.4 6 a2 6 0.5

s5 0.1 6 a1 6 0.2 ∧ 0.8 6 a2 6 0.9

s6 0.4 6 a1 6 0.5 ∧ 0.6 6 a2 6 0.7

s7 0.9 6 a1 6 1.0 ∧ 0.9 6 a2 6 1.0

s8 0.6 6 a1 6 0.7 ∧ 0.5 6 a2 6 0.6

s9 0.8 6 a1 6 0.9 ∧ 0.3 6 a2 6 0.4

matching algorithms. One advantage of this ability is that
events are forwarded as soon as possible at inner brokers and
the end-to-end latency is reduced in turn.

E. Example

An example is shown in Fig. 3. In the example, there are 2
attributes, a1 and a2. Each attribute is divided into 4 cells
numbered from 0 to 3. By chaining 2 attributes, there are
16 buckets from b0 to b15. 10 subscriptions are stored in the
system listed in Table I. When processing a subscription, the
cellID of each indexed attribute is computed according to the
center of the range constraint. For example, when processing
s3, the cellID of a1 is 2 and the cellID of a2 is 0. So
the subID of s3 is stored in b8. When receiving an event
e1[a1 = 0.24, a2 = 0.82], the cellIDs of a1 and a2 are {0, 3}
and {2, 3}, respectively, denoted by arrows in the figure. So
the buckets that need to be checked are b2, b3, b14 and b15.
The subIDs in these buckets are used to retrieve the content
of subscriptions from the subscription list. Simple matching
method is utilized to compute the matched subscriptions. In
this example, s1 is returned as matched for e1.

IV. ANALYSIS

H-Tree is analyzed in terms of the time and space com-
plexities. A subscription is called a small-range subscription
when all of its range widths are smaller than the upper
bound W . Otherwise, a subscription is called a large-range
subscription.

A. Analysis for Small-range Subscriptions

1) Pre-processing Time: For a small-range subscription, its
subID is stored only once. When computing the bucketID for
a subscription, the cellIDs of indexed attributes are computed.
The time complexity of pre-processing is O(NindNsub), where
Nind is the number of indexed attributes and Nsub is the
number of subscriptions.

2) Matching Time: The matching time has direct relation
with the index ratio ri. In the case of the uniform distribution,
all subscriptions are evenly stored in the buckets. The number
of buckets is Ncel

Nind . When matching events, 2 or 3 cellIDs
are figured out for each indexed attribute, so the number of
buckets that need to be checked is at most 3Nind . The index
ratio ri is

ri =
3Nind

Ncel
Nind

=
3

Ncel

Nind

, (5)

which is exponentially decreased with the number of indexed
attributes because Ncel is larger than 3. The time complexity
of matching is O(riNsub). When Ncel is 8 and Nind is 8, the
value of ri is 0.00039, which means that only 0.39 ‰ of total
subscriptions are remained to be checked after the filtering of
unrelated subscriptions.

3) Insertion time: Inserting a small-range subscription in-
volves computing the bucketID and adding the subID of the
subscription to the bucket. The time complexity of insertion is
O(Nind).

4) Deletion time: When giving the subID of a subscription,
the content of the subscription is first retrieved from the
subscription list. The bucketID storing the subscription is
determined. Then the subID of the subscription is removed
from the bucket by simple searching method. Only the subIDs
in one bucket are compared when deleting a subscription. On
the average, the number of subIDs in a bucket is Nsub

Ncel
Nind

, so

the time complexity of deletion is O( Nsub

Ncel
Nind

).

5) Storage Consumption: The subID of a small-range
subscription is stored only once. The space complexity is
O(Nsub).

B. Analysis for Large-range Subscriptions

The upper bound of the range width is addressed by
splitting a large-range subscription into multiple small-range
subscriptions. One defect of H-Tree is that the subID of large-
range subscriptions is stored in multiple buckets. Several as-
sumptions are made to analyze the time and space complexities
for large-range subscriptions, which are listed as follows:

(1) The generation of the event values and constraint values,
and the selection of constraint attributes fit the uniform
distribution.

(2) The average width of range constraints is w.
(3) “80/20 rule” applies to the distribution of the range width,

which means that 80% of the range width of the indexed
attributes are smaller than the upper bound and 20% are
larger than the upper bound.

(4) The number of cells is Ncel.

Under these assumptions, a large-range subscription is split
into Nspl small-range subscriptions, which is computed by

Nspl = ⌈ w

1/Ncel
⌉0.2Nind = ⌈(wNcel)⌉0.2Nind . (6)

1) Pre-processing Time: The pre-processing time is af-
fected when processing large-range subscriptions. The number
of small-range subscriptions after splitting is Nspl. The time
complexity of pre-processing is O(NsplNindNsub).
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2) Matching Time: Since the subID of a large-range sub-
scription is stored in multiple buckets, the average number of
subIDs in a bucket is increased. When matching events, the

index ratio ri is 3

Ncel

Nind
. The time complexity of matching

is O(riNsplNsub).

3) Insertion time: Just as discussed above, the complexity
of inserting a small-range subscription is O(Nind). A large-
range subscription is split into Nspl small-range subscriptions.
The time complexity of inserting a large-range subscription is
O(NsplNind)

4) Deletion time: When deleting a large-range subscrip-
tion, the subID is removed from multiple buckets. In each
bucket, the subID is searched by testing it against all subIDs.
The time complexity of deleting a large-range subscription is

O(
NsplNsub

Ncel
Nind

).

5) Storage consumption: For a large-range subscription,
the subID is stored in multiple buckets after splitting. The
space complexity is O(NsplNsub).

V. PERFORMANCE EVALUATION

Evaluation results are presented in this section. We measure
the matching time, insertion time, deletion time, and memory
consumption to compare the performance of H-Tree with
its counterparts. All experiments are conducted on a Dell
PowerEdge T710 with 8 2GHz cores and 32GB memory
running Ubuntu 11.10 with Linux kernel 3.0.0-12. Parallelism
is not utilized in all experiments. All code is written in C++
language.

A. Experimental Settings

The performance of an index structure is influenced by
many parameters. In order to extensively evaluate the perfor-
mance of H-Tree, these parameters are identified as shown in
Table II. Experiments are conducted to to observe the impacts
of these parameters on the matching performance.

Three methods are compared with H-Tree, namely
Simple, Siena, and Tama. Simple utilizes naive match-
ing policy which compares an event with all subscriptions.
This policy is optimized in two aspects. First, attributes are
numbered, so a range constraint compares quickly with the
corresponding attribute value, not needing a loop. Second,
when one range constraint in a subscription is not satisfied,
matching is turned to the next subscription. Siena is an exact
matching algorithm which is referenced as baseline in many
literatures [2, 10]. Tama is an approximate matching and
forwarding engine which is the fastest matching algorithm so
far to the best of our knowledge [13]. The discretization level
of Tama is set to 13 in the experiments.

B. Matching Time

The matching time is the most important metric to evaluate
a matching algorithm. The matching time is influenced by
many parameters. Comprehensive experiments are conducted
to observe the impacts of these parameters. 10000 events
are sent to measure the matching time per event in each
experiment. The average is plotted in figures and the stan-
dard deviation is presented in tables. In the experiments, the

TABLE II. THE PARAMETERS USED IN THE EXPERIMENTS

Parameter name Meaning

Nsub the number of subscriptions

Natt the number of attributes

Ncon the number of range constraints

Ncel the number of cells

Nind the number of indexed attributes

width width of range constraints

a parameter of Zipf distribution

constraint values, event values and constraint attributes are
generated uniformly unless stated clearly.

1) Matching time with the number of subscriptions: In
general, the matching time is linear with the number of
subscriptions. One observation found in the experiment is that
Simple is faster than Siena because Siena spends large time
on counting the partially matched subscriptions. When the
number of constrains in a subscription is large, the partial
matching probability of the subscription is high. Suppose that
the matching probability of a range constraint is 10% and range
constraints are independent. The full matching probability of
a subscription composed of 2 range constraints is 1% and the
partial matching probability of the subscription is 20%. When
the number of range constraints is 10, the probability of full
match is 10−10 and the probability of partial match is 100%.
H-Tree is 12 times faster than Tama when the number of
subscriptions is 5M. The results are shown in Fig. 4 where
y-axis represents the matching time in log-scale. The standard
deviation of the matching time is given in Table III(a). The
matching time of H-Tree is least fluctuated compared with
other three methods. The fluctuation of the matching time is
influenced by the distribution of the constraint values.

2) Matching time with the distribution of constraints val-
ues: We generate the constraint values according to three
different distributions, uniform, normal, and pareto. For the
normal distribution, the mean is 0.5 and the variance is 0.02.
For the pareto distribution, the mean is 0.5 and the scale is
2. The event values and constraint attributes are generated
uniformly. Compared with the uniform distribution, other
two distributions may cause H-Tree skewed. As mentioned
in Section III, converting non-uniform distribution into the
uniform is beneficial to balance H-Tree. We compare the
benefits obtained by distribution conversion. The results are
shown in Fig.5. Before distribution conversion, the matching
time of H-Tree under the normal and the pareto distribution is
larger than the one under the uniform distribution. The benefit
of conversion is obvious. The improved matching performance
is 12% and 25% for the normal and the pareto distribution,
respectively. The standard deviation of the matching time
is given in Table III(b). After distribution conversion, the
standard deviation under the normal and the pareto distribution
is reduced to the scale under the uniform distribution.

When subscriptions are evenly hashed into the buckets, the
distribution of event values has no effects on the matching
time. Another experiment is conducted to evaluate the impacts
of the distribution of the event values when the constraint
values are generated uniformly. There is no difference in
the matching time under the uniform, normal and pareto
distributions. The results are omitted due to the space limit.

3) Matching time with the number of constraints: We
present H-Tree for large-scale pub/sub systems in terms of
both the number of subscriptions and the number of constraints

5



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

100k 200k 400k 800k 1M 2M 3M 4M 5M
10

−2

10
−1

10
0

10
1

10
2

Number of subscriptions

A
v
e
ra
g
e
d
 m
a
tc
h
in
g
 t
im
e
 (
s
)

Simple

Siena

Tama

H−Tree

Fig. 4. The matching time with the number of
subscriptions, where Natt = 50, Ncon = 20,
width = 0.1, Ncel = 8, Nind = 8.
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Fig. 6. The matching time with the number of
constraints, where Nsub = 1M , Natt = Ncon ∗ 2,
width = 0.1, Ncel = 8, Nind = 8.

TABLE III.
(a) the standard deviation of fig. 4

Simple Siena Tama HTree

100k 0.010 0.013 0.010 0.006
200k 0.016 0.025 0.021 0.008
400k 0.082 0.069 0.041 0.014
800k 0.051 0.478 0.097 0.027
1M 0.123 0.198 0.119 0.032
2M 0.165 1.191 0.256 0.064
3M 0.262 1.404 0.409 0.096
4M 0.254 3.538 1.373 0.132
5M 0.265 6.024 0.692 0.164

(b) the standard deviation in fig. 5

Uni Nor Nor(C) Par Par(C)

100k 0.006 0.013 0.005 0.015 0.006
200k 0.007 0.024 0.007 0.023 0.008
400k 0.012 0.049 0.011 0.052 0.015
800k 0.021 0.096 0.021 0.106 0.026
1M 0.027 0.120 0.025 0.140 0.034
2M 0.053 0.258 0.051 0.267 0.068
3M 0.078 0.398 0.078 0.426 0.109
4M 0.104 0.523 0.106 0.518 0.135
5M 0.138 0.644 0.144 0.610 0.168

(c) the standard deviation in fig. 6

Simple Siena Tama HTree

5 0.081 0.133 0.083 0.007
10 0.066 0.220 0.128 0.010
20 0.111 0.614 0.133 0.017
30 0.080 0.633 0.231 0.022
40 0.089 0.512 0.181 0.029
50 0.218 0.633 0.400 0.034
100 0.111 4.038 0.884 0.061
150 0.167 2.918 1.240 0.090
200 0.578 2.714 0.878 0.118

in each subscription. H-Tree is especially capable of handling
matching tasks where the number of range constraints is at the
scale of tens or hundreds. The experimental results confirm
the advantage of H-Tree, which are shown in Fig. 6 where y-
axis represents the matching time in log-scale. On the average,
H-Tree is almost 30 times faster than Tama. The standard
deviation is presented in Table III(c).

One prominent merit of H-Tree is that the matching
performance is improved with the number of range constraints
consisted in subscriptions given the number of attributes. Ratio
of the number of constraints to the number of attributes (RCA)
is defined as

RCA =
Ncon

Natt
. (7)

The impacts of RCA on the matching time are shown in Fig. 7
where y-axis represents the matching time in log-scale. In the
experiment, the number of attributes is fixed to 100 and the
number of constraints is variant. Two observations are found
in the results. First, when the number of constraints is large,
Tama behaves similarly to Simple because the index ratio of
Tama is almost 100%. Second, H-Tree performs perfectly
with larger number of constraints, which can be explained that
subscriptions are more evenly hashed into the buckets with
higher RCA. The standard deviation of H-Tree decreases with
RCA. The standard deviation is shown is Table IV(a).

4) Matching time with the number of indexed attributes:
Index efficiencies are improved with more indexed attributes.
This is verified by the experimental results shown in Fig.
8 where y-axis represents the matching time in log-scale.
However, more indexed attributes mean more buckets given
the number of cells. As shown in the figure, the matching
time is reduced at least 29% by adding one indexed attribute.
When the number of subscriptions is 5M and the number of
indexed attributes is 4, H-Tree is almost 5 times faster than
Tama . However, when the number of indexed attributes is 8,
H-Tree is 35 times faster than Tama. The standard deviation
reduces with the number of indexed attributes, which is shown

in Table IV(b). The impacts of the number of cells are similar
to the number of indexed attributes. Due to the space limit,
the figure and the standard deviation are omitted.

5) Matching time with the distribution of attributes se-
lection: In some cases where the constraint attributes are
not uniformly selected from the event attributes. Some at-
tributes appear more frequently than others. Mathematically,
when something is shared among a sufficiently large set of
participants, there must be a number k between 50 and 100
such that k% is taken by (100 − k)% of the participants[15].
This phenomenon is called “80/20 rule” which is beneficial
to H-Tree because H-Tree built on popular attributes is less
skewed than on infrequent ones. We simulate the distribution
of attributes selection as Zipf. The value of a is changed. Fig.
9 shows the results where y-axis represents the matching time
in log-scale. When a is 1.0 and the number of subscriptions
is 5M, H-Tree is at most 2190 times faster than Tama. The
standard deviation of H-Tree decreases with the value of a
which verifies our discussion. The standard deviation is shown
in Table IV(c).

6) Matching time with range width: Range width has no
impacts on Simple and Siena. As for Tama, large range
width means more matching time because the subID of a
subscription is stored in more buckets. When the width of
range constraints is smaller than the upper bound W , the
performance of H-Tree is not impacted. Two experiments
are conducted to evaluate the impacts of the range width on
the matching time. The first experiment tests 1M subscriptions
with different fixed range width smaller than W . The results
are plotted in Fig. 10. Just as discussed above, Simepe,
Siena and H-Tree are not influenced by the width. However,
the matching time of Tama is increased linearly with the
width. When the width is 0.1, H-Tree is 44, 167 and 34
times faster than Simple, Siena and Tama, respectively. The
matching time of H-Tree is least fluctuated compared with its
counterparts, which is shown in Table V(a).

The second experiment tests random range width. The
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Fig. 7. The matching time with RCA, where
Nsub = 1M , Natt = 100, width = 0.1, Ncel =

8, Nind = 8.
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Fig. 8. The matching time with the number of
indexed attributes, where Natt = 50, Ncon = 25,
width = 0.1, Ncel = 8.
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Fig. 9. The matching time with the distribution of
attributes selection, where Natt = 50, Ncon = 20,
width = 0.1, Ncel = 8, Nind = 8.

TABLE IV.
(a) the standard deviation in fig. 7

Simple Siena Tama HTree

0.1 0.072 0.084 0.047 0.078
0.2 0.088 0.206 0.090 0.092
0.3 0.120 0.534 0.132 0.078
0.4 0.175 0.732 0.185 0.058
0.5 0.248 1.205 0.208 0.034
0.6 0.138 0.507 0.254 0.019
0.7 0.130 2.682 0.301 0.009
0.8 0.107 2.167 0.375 0.006
0.9 0.835 0.643 0.395 0.005

(b) the standard deviation in fig. 8

Tama ind=4 ind=6 ind=8

100k 0.012 0.012 0.006 0.006
200k 0.026 0.019 0.009 0.007
400k 0.050 0.038 0.018 0.009
800k 0.118 0.072 0.033 0.017
1M 0.153 0.092 0.043 0.020
2M 0.312 0.190 0.082 0.038
3M 0.500 0.288 0.136 0.058
4M 0.625 0.392 0.180 0.081
5M 0.845 0.461 0.243 0.097

(c) the standard deviation in fig. 9

Tama HT a=0.2 HT a=0.6 HT a=1.0

100k 0.010 0.005 0.005 0.005
200k 0.023 0.006 0.005 0.005
400k 0.041 0.009 0.005 0.005
800k 0.093 0.015 0.005 0.005
1M 0.121 0.017 0.006 0.005
2M 0.253 0.033 0.008 0.005
3M 0.471 0.051 0.011 0.006
4M 0.529 0.068 0.013 0.006
5M 0.683 0.085 0.016 0.006

lowV alue and highV alue of each range constraint are ran-
domly generated in the experiment. Large-range subscriptions
are split into multiple small-range subscriptions for H-Tree.
The results are shown in Fig. 11. The matching time of H-
Tree is slightly affected by large-range subscriptions because
the subID of large-range subscriptions is stored in multiple
buckets. The performance of Tama degrades quickly with
large number of wide range constraints, even slower than
Simple. The fluctuation of H-Tree is magnified because
large-range subscriptions are split and stored in multiple buck-
ets, which causes the size of buckets uneven, middle buckets
with more subscriptions. The standard deviation is shown in
Table V(b).

C. Maintenance Cost

The insertion time, deletion time and memory consumption
are measured for the comparing algorithms.

1) Insertion time: For Simple, inserting a subscription just
means adding it to the list of subscriptions. Siena, Tama and
H-Tree have specialized index structures. We measure the
time when inserting small-range subscriptions into the index
structures for these three algorithms. 10 runs of experiment
are conducted. The averaged insertion time is presented. The
results are shown in Fig. 12. H-Tree spends a little more time,
less than 10%, than Simple. However, the insertion time of
Tama is almost 2 times of Simple. The standard deviation is
small which is omitted.

The performance of H-Tree degrades when inserting
large-range subscriptions. We measure the time when inserting
subscriptions with random range width. The lowV alue and
highV alue of each range constraint are randomly generated.
The results are shown in Fig. 13 where y-axis represents the
matching time in log-scale. H-Tree spends 60% more time
than Simple when inserting 1M subscriptions. The matching
time of H-Tree is 200% faster than Simple. Compared with
the results of fixed width, the insertion time of Simple, Siena
and H-Tree changes little. However, the insertion time of

Tama fluctuates greatly. The standard deviation is listed in
Table V(c).

2) Deletion time: In Siena, the number of buckets to store
constraints is equal to the number of event attributes. When
the number of subscriptions is large, the size of the buckets is
also large. Deleting a subscription is very costly. As for Tama,
the subID of a subscription is stored in multiple buckets.
Deletion is also time-consuming as shown in Fig. 11 in [13].
Therefore, the deletion time is not measured for Siena and
Tama. We measure the deletion time per event by deleting
1000 subscriptions from different number of subscriptions for
H-Tree. The number of indexed attributes has impacts on the
deletion time. H-Tree is evaluated under different value of
Nind. The results are shown in Fig. 14. Given the number
of subscriptions, the size of the buckets decreases with more
indexed attributes. The deletion time of H-Tree is very stable
with little fluctuation. The standard deviation is omitted due
to the space limit.

3) Memory Consumption: A range constraint is specified
by a low value and a high value. The raw storage of a range
constraint is 16 bytes, 2 double for values. A subscription
needs 1 integer to store the subID. There is no additional
storage requirement for Simple. As for Siena, the number
of range constraints in the subscription should be stored for
event matching. Additional storage for Siena is 2 bytes for
each subscription. We analyze Tama in the case where the
range width is 0.1 and the discretization level is 13. The subID
of a subscription is at least stored 9 times which consumes
36 bytes. Just like Siena, the number of constraints in each
subscription needs to be stored which occupies 2 bytes. When
the range width is 0.1 and the number of cells is less than 10,
H-Tree just stores the subID of a subscription in one bucket.
Additional storage for H-Tree is 4 bytes for each subscription.
The memory consumption with the number of subscriptions is
plotted in Fig. 15. As shown in the figure, H-Tree consumes
a little more memory than Simple, but much smaller than
Tama.
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Fig. 10. The matching time with fixed range width,
where Nsub = 1M , Natt = 50, Ncon = 25,
Ncel = 8, Nind = 8.
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Fig. 11. The matching time with random range
width, where Natt = 50, Ncon = 25, Ncel = 8,
Nind = 8.
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Fig. 12. The insertion time with fixed width
subscriptions, where Natt = 50, Ncon = 20,
width = 0.1, Ncel = 8, Nind = 8.

TABLE V.
(a) the standard deviation in fig. 10

Simple Siena Tama HTree

0.01 0.074 0.639 0.008 0.017
0.02 0.101 0.191 0.015 0.016
0.03 0.086 0.180 0.026 0.017
0.04 0.074 0.402 0.042 0.017
0.05 0.077 0.654 0.054 0.018
0.06 0.109 0.415 0.075 0.017
0.07 0.074 0.700 0.093 0.018
0.08 0.149 0.743 0.108 0.018
0.09 0.062 0.605 0.129 0.019
0.1 0.093 0.197 0.146 0.019

(b) the standard deviation in fig. 11

Simple Siena Tama HTree

100k 0.010 0.028 0.062 0.147
200k 0.063 0.080 0.149 0.299
300k 0.043 0.114 0.200 0.426
400k 0.056 0.172 0.287 0.587
500k 0.044 0.280 0.338 0.772
600k 0.087 0.232 0.421 0.829
700k 0.067 0.258 0.520 1.075
800k 0.070 0.355 0.656 1.231
900k 0.076 0.751 0.677 1.355
1M 0.083 0.884 0.728 1.580

(c) the standard deviation in fig. 13

Simple Siena Tama HTree

100k 0.055 0.132 554.285 0.441
200k 0.202 0.168 632.224 0.442
300k 0.203 0.148 900.780 0.441
400k 0.227 0.282 811.669 0.593
500k 0.566 0.435 1095.445 0.709
600k 0.470 0.572 1194.138 0.594
700k 0.426 0.297 1270.297 0.982
800k 0.408 1.361 1593.709 1.141
900k 1.073 0.391 1247.413 1.132
1M 0.589 0.676 1241.538 1.501
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Fig. 13. The insertion time with random width
subscriptions, where Natt = 50, Ncon = 20,
width = random, Ncel = 8, Nind = 8.

100k 200k 400k 800k 1M 2M 3M 4M 5M
0

1

2

3

4

5

6

7

8

9

Number of subscriptions

D
e

le
ti

o
n

 t
im

e
 (

m
s

)

H−Tree index=5

H−Tree index=6

H−Tree index=7

H−Tree index=8

Fig. 14. The deletion time per subscription, where
Natt = 100, Ncon = 30, width = 0.05, Ncel =

10.
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Fig. 15. The memory consumption counted in mem-
ory space needed to store subscriptions and subIDs.

VI. RELATED WORK

Event matching is a critical component of large-scale
content-based pub/sub systems. Many methods have been
proposed to improve matching efficiencies. These methods can
be classified into three categories.

A. Counting Algorithm based

Different index structures have been proposed to improve
matching efficiencies based on counting algorithms [10, 11,
13, 16, 17]. The matching procedure of these methods is
separated into two phases. In the first phrase, partially matched
subscriptions are computed. Then fully matched subscriptions
are returned by utilizing counting algorithms. [10] and [13]
are two representative ones. In [18], bloom filters are used
to store matched primitive constraints. One disadvantage of
these methods is that a subscription may be returned multiple
times as partially matched subscription. The time complexity
of counting algorithms is linear with the number of partially
matched subscriptions.

B. Reducing Routing Table Size

The matching time is decreased when the number of
subscriptions is reduced. Therefore, reducing the routing table

size is another way to improve matching efficiencies. In [19],
subscriptions are summarized to reduce the routing table size
by using imperfect merging. Similar approaches are subscrip-
tion subsumption and covering, such as [20] [21] [22]. The
order of subscriptions, cover relation, matching history, and
routing destination are considered simultaneously to provide
efficient event matching in [23]. These methods are orthogonal
to our proposed method. However, the time complexity of
subscription subsumption is relatively high and one drawback
of imperfect merging is the waste of bandwidth due to the
existence of false positives.

C. Tree-like structures

Range subscriptions are composed of range constraints.
Therefore, subscriptions can be viewed geographically as
rectangular regions and publications are viewed as points in
the multi-dimensional space composed of event attributes.
Event matching problem equals to point enclosure problem,
which tries to check whether a point is contained by some
rectangular regions. Some traditional tree-like structures can be
used to index subscriptions, including R-Tree [24], and Interval
Binary Search Tree (IBS-Tree) [25]. In [8], subscriptions were
pre-processed into a matching tree which had the matching
complexity of O(N1−λ) at the cost of pre-processing time
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complexity O(NK) and space complexity O(NK), where N
is the number of subscriptions and K is the number of at-
tributes. Binary Decision Diagrams were utilized as a filtering
engine to speed up event matching in [9]. The performance
of these methods degrades when the number of subscriptions
and the number of constraints are both large. On the contrary,
H-Tree handles it more efficiently.

VII. CONCLUSION

In this paper, we present H-Tree, an efficient index
structure for event matching in large-scale content-based pub-
lish/subscribe systems. The basic idea behind H-Tree is that
matching efficiencies can be improved when the search space
is substantially reduced. H-Tree is a hash table in nature
which is a combination of hash lists and hash chaining. The
novelty is that hash lists are realized on the cells which are
overlapped. Extensive experiments are conducted to evaluate
the performance of H-Tree and experimental results show
that H-Tree outperforms its counterparts to a large degree,
especially in the case where the number of subscriptions and
the number of constraints are both large.
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