
Design and Analysis of Schedules for
Virtual Network Migration

Samantha Lo, Mostafa Ammar, and Ellen Zegura
School of Computer Science, Georgia Institute of Technology

Email: {samantha,ammar,ewz}@cc.gatech.edu

Abstract—The Internet faces well-known challenges in realiz-
ing modifications to the core architecture. To help overcome these
limitations, virtual networks run over physical networks and use
Internet paths and protocols as essentially a link layer in the
virtual network. Effective use of the underlying network requires
intelligent placement of virtual networks so that underlying
resources do not incur over-subscription. Additionally, because
virtual networks may come and go over time, and underlying
networks may experience their own dynamic changes, virtual
networks may need to be migrated—re-mapped to the physical
network during active operation—to maintain good performance.
In this paper we consider the problem of scheduling the sequence
of node moves that take a virtual network from an original
placement to a new placement. We build on prior work that
achieves migration of a single node with minimal disruption to
develop a model for the migration cost and latency for a given
network migration schedule. We then develop algorithms for
determining an optimal single-node-at-a-time sequence of moves
to minimize migration cost and consideration of multiple node
moves in parallel to minimize migration time and cost. Our
algorithms are the first we are aware of to systematically address
the virtual network migration scheduling problem.

I. INTRODUCTION

The Internet faces well-known challenges in realizing mod-
ifications to the core architecture. The use of network virtual-
ization has been proposed to help overcome these limitations
(e.g.,[6], [18], [5], [7], [15]). Virtual networks run over physi-
cal networks and use Internet paths and protocols as essentially
a link layer in the virtual network. We focus in this work on
the specific form of virtualization where virtual routers are
instantiated in physical router hardware and where multiple
virtual routers belonging to different virtual networks may
share the same physical router. The structure of such networks
is illustrated in Figure 1, where two virtual networks are
sharing a common physical network. On each physical router,
the figure indicates which virtual routers are instantiated;
virtual links are denoted by dashed lines that may traverse
more than one physical link. This type of virtualization allows
a substrate network provider to be decoupled from (and offer
services to) overlay network providers.1

Virtual networks are attractive because they provide signifi-
cant flexibility in operations and in mapping their requirements
to physical network resources. Numerous studies have investi-
gated mapping virtual networks to physical substrate resources

1This form of virtualization is distinguished from peer-to-peer virtual
overlay networks, e.g. [7], where end users establish a network by using
physical paths between end systems.

in a manner that makes effective use of the physical network
[21], [16], [20], [8]. Virtualization also allows flexibility in
changing the mapping of a virtual network over time. Work in
this area has explored reasons for network reconfiguration (or
migration) such as changes in the traffic carried on the virtual
network [9] or because of other virtual networks that share
the same physical infrastructure have arrived or departed and
the substrate resources should be remapped [21], [16], [20],
[10]. Additionally, virtual network migration can form the
foundation of a “moving target defense” [4], where a virtual
network evades detection or attack by changing its location in
the physical network.

Fig. 1. The system architecture for virtual network migration

The work cited above considers questions of policy in
virtual network migration and determines when to initiate the
migration of an existing virtual network as well as the target
new placement based on performance or security objectives.
Our focus in this work is on questions of mechanism, i.e., how
to actually move the network. Keller et al. have performed
migration of the entire network on the software-defined net-
working (SDN) platform [14], [13]. However, they have not
considered migration scheduling in their work.

A virtual network migration mechanism needs to take into
account the specifics of the router virtualization technology.
It also needs to be guided by desired performance objectives
such as: 1) how to manage disruption to existing traffic on the
virtual network, 2) what is the additional overhead incurred
by the physical substrate while the migration is in progress
and 3) how long the migration process lasts.

Our work starts by leveraging prior work that designs a
single virtual router live migration mechanism [19]. That work
aims to perform virtual router migration in a manner that
does not disrupt current data flows using the migrating router.
We build on this single virtual router migration mechanism
(outlined in more detail in the next section) and use it as a
subroutine in the live migration of an entire virtual network.
Specifically, we are interested in determining, given a new

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

Fig. 2. Virtual router migration steps 1-5. The old and new physical routers
contain multiple virtual routers. (CP=Control Plane, DP=Data Plane)

target location within the substrate for a virtual network,
the best schedule of virtual router migrations that implement
the desired network move. We maintain the goal of not
disrupting current network traffic during the migration process
and consider how to design a schedule that minimizes the
overhead (cost) of network migration or the time it takes to
complete the migration task. Our work is the first we are aware
of that considers the question of scheduling a live network
migration.

We first give an overview of a single virtual router migration
and virtual network migration process. Then we present our
model in Section III that describes the cost and duration of a
network migration sequence. In Section IV, we develop three
algorithms for determining an optimal single-node-at-a-time
sequence of moves to minimize migration overhead (cost) and
schedules that allow for multiple node moves in parallel to
minimize migration cost or time. We evaluate these algorithms
in Section V with simulations of virtual networks on a physical
network. We conclude our work in Section VI with future
work.

II. BACKGROUND

In this section, we first review the process of migrating a
single virtual router. Then we describe the process of migrating
a virtual network and the system architecture that supports this
functionality.

A. Live Migration of a Single Virtual Router

Our work leverages the research in [19], which develops
a mechanism for the live migration of a single router with-
out disrupting current traffic traversing the virtual network.
That work assumes a router architecture with multiple virtual
routers instantiated on a physical router. Three features of vir-
tual router architecture make it “migrateable”: independence of
the virtual router through OS virtualization support, separation
of data and control planes, and the ability to dynamically bind
a router’s data plane to physical substrate interfaces. With this
router architecture, the work in [19] describes the following
sequence of actions that are required to move a virtual router.
The numbers in Figure 2 correspond to each step:

1) Setup a tunnel between the original and the final physical
locations of the virtual router.

2) Migrate control plane and copy memory: Create an image
of the virtual router’s control plane and transfer it through
the tunnel to the new physical router. At the same time,
collect the routing update messages for this virtual router
and forward them to the virtual router after the image
transfer is completed such that they can be processed in
the new location.

3) Clone the data plane based on the existing control plane
on the new physical node and repopulate the FIB. After
this is completed, both old and new data planes are
running at the same time.

4) Duplicate forwarding links between the virtual router
and its neighbors: Set up the outgoing virtual links from
the new physical router to its neighbors. Once these are
ready, set up original incoming virtual links to redirect
traffic from the neighbors of the original virtual router to
the virtual router in the new physical machine. The new
traffic flows are assigned to the new forwarding links.

5) Remove old forwarding links: Once old traffic flows at
the old forwarding links are complete, remove the data
plane instance in the original physical location.

We use this single virtual router migration process as a
subroutine to migrate each virtual router on a virtual network,
as described next. In the rest of the paper, we use the term
“virtual node” and “virtual router” interchangeably.

B. Network Migration Process

Figure 3 demonstrates a virtual network migration. The ex-
ample network has three virtual nodes, A, B and C, which are
moved one at a time, in three stages, across the substrate. Each
stage has two parts. During the preparation part, the control
plane moves to its new physical node and the data plane is
cloned (Step 1-3 in Section II-A). After the preparation part,
during the migration part, the duplicate forwarding virtual
links are created and eventually the old forwarding links are
removed (Steps 4-5 in Section II-A).

The migration sequence in the figure is (A, C, B). After
A’s control plane is migrated in the preparation part of Stage
0 in Figure 3(b), virtual links between the physical nodes of
A and its neighbors, B and C are set up and are working in
parallel with the original virtual links in the migration part
in Figure 3(c). After the migration of node A, the virtual
links between the migrated node A and its neighbors are not
finalized until all the neighbors have been migrated. We will
return to this issue when we analyze the cost of a move, but
for now we simply note that there are migration overhead links
that must be maintained in support of a migration in progress.
The length (physical network hop count) and the duration
(time maintained) of any overhead link is influenced by the
migration sequence. Our migration scheduling algorithms aim
to reduce length and duration of overhead links.

C. System Architecture for Virtual Network Migration

To enable the network to migrate and determine the migra-
tion sequence, we adopt a simple system architecture. Figure
1 shows our system architecture which is similar to some
existing overlay network architectures such as GENI [11].
In our architecture, the physical network has a controller to
initiate and synchronize the virtual network migrations. The
controller connects to all of the physical routers through in-
band or out-of-band tunnels. When a request for a virtual net-
work migration is initiated based on reconfiguration goals, the
controller is given initial and final virtual network mappings.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

(a) A virtual network with node A, B and C on their
initial mappings

(b) Stage 0: Preparation part:
copying the control plane of A

(c) Stage 0: Migration part: du-
plicating forwarding links be-
tween A and its neighbors

(d) Stage 1: Preparation part:
copying the control plane of C

(e) Stage 1: Migration part: du-
plicating forwarding links be-
tween C and its neighbor

(f) Stage 2: Preparation part:
copying the control plane of B

(g) Stage 2: Migration part: du-
plicating forwarding links be-
tween B and its neighbor

(h) Stage 2: Finished migration
Fig. 3. Migrating a virtual network with virtual node A, B and C. (Physical
network is not shown.) The migration sequence is A, C and then B.

The controller decides the node migration sequence using
algorithms running locally or remotely, and that are discussed
in Section IV. The controller initiates the steps for each single
node migration to accomplish the network migration.

III. PROBLEM STATEMENT

We now turn to a formal statement of the migration problem
and a model for the cost and time associated with a given
virtual node move sequence.

A. The Migration Problem

Let P = (R,E) be the physical network where R is a
set of physical routers and E is a set of physical links. Let
G = (V,L) be a virtual network where V is a set of virtual
nodes and L is a set of virtual links.

Let m : V → R be a function that maps the set of the virtual
nodes in G to a set of physical routers in P , i.e. m(v) = r
means a virtual node v ∈ V is mapped to a physical router
r ∈ R. A virtual link is mapped to a physical path (an ordered

list of connected physical routers) where the endpoints of the
virtual link are mapped to the first and last routers on the path
and each pair of physical routers in the list are joined by a
physical link.

We are given an initial mapping m0 : V → R and a final
target mapping mf : V → R. The goal of migration is to
determine the most efficient schedule to move virtual nodes
so as to accomplish the virtual network move from m0 to
mf , where efficiency may be measured by overhead cost of
migration, total migration time, or a combination of the two.

As explained earlier, network migration consists of a se-
quence of stages, where each stage migrates a subset of the
virtual nodes. Let S = (S0, S1, S2, . . .) be a sequence of node
migrations that move the virtual network from m0 to mf . At
stage i, the set of virtual nodes moved is Si ⊆ V such that
∀i 6= j Si ∩ Sj = ∅ and ∀i Si 6= ∅ and

⋃
i Si = V .

There is an additional constraint on the sets Si, namely that
a given stage, we cannot move two nodes that are neighbors in
the virtual network. This constraint arises because of the way
that links are maintained in the single node move procedure. If
two neighbors are moved at the same time, the virtual network
will enter an inconsistent state. When we devise algorithms to
move multiple nodes at a time, we are careful to satisfy the
no-neighbors constraint.

We are interested in two important performance metrics: 1)
the completion time of a virtual network migration, and 2)
the cost of a network migration representing the bandwidth
impact on the physical network of the migration process. We
describe each of these formally in the next two subsections.

B. Network Migration Time

Recall that each stage consists of a preparation part and
a migration part, as illustrated in Figure 4. The preparation
part consists of setting up the tunnels, migrating the control
planes and cloning the data planes by repopulating the FIB.
The migration part consists of duplicating forwarding links,
waiting for all old data flows to complete, and finally removing
old forwarding links. After stage i, the network has fully
completed all moves in sequence S up to and including Si.

Fig. 4. Illustration of the time of a virtual network migration

We denote the time taken in the preparation part and the
migration part at stage i by tp(i) and tm(i), respectively. The
total time for a particular migration sequence S is then

|S|−1∑
i=0

(tp(i) + tm(i)). (1)

The time spent in the preparation part tp(i) depends on
the following characteristics of the migrating nodes in Si: the
available bandwidth of the tunnels, the size of the control plane
images, and the time to repopulate each FIB. For simplicity
of exposition, we assume for a given virtual network that

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

the control plane image sizes are the same for all the nodes.
When the sizes of the control planes are the same and the data
plane technology of the physical routers are the same, the FIB
repopulation times for all the nodes are also the same. An
interesting effect takes place, however, when nodes migrate
together at the same stage. As more nodes move together,
there is a higher probability that the tunnels used to move
the control planes may share a bottleneck physical link. Thus
while it is generally advantageous to move multiple nodes at
a time, too much interference in the control plane tunnels can
reduce or eliminate the benefit.

We model the time in the preparation part tp(i) as a function
of the nodes in the set Si and the time to migrate a control
plane and repopulate a FIB, f(Si, α), where α is the time for
migrating the control plane and populating the FIB of a single
node. We explore different functions f(Si, α) in Section V.

The time in the migration part tm(i) mainly depends on the
current traffic flows on the migrating nodes’ old forwarding
links. Once these flows end, the migrating nodes can com-
pletely switch to the new forwarding links. We assume that
the time for these flows to end is constant over all stages and
independent of the number of nodes moved at a stage.

Given the time computation, it should be clear that the
primary method for reducing the migration time is to move
as many nodes as possible together, thus reducing the number
of stages, while taking care not to overload physical links that
are needed to move the control planes.

C. Network Migration Cost

We model the impact of the virtual network migration on
the physical network as a cost function that is divided into the
cost during the preparation part (cp(i)) and the cost during the
migration part (cm(i)) of each migration stage i. Our measure
of cost is the number of physical links that carry migration-
related traffic multiplied by the duration these links are used
(stage).

In the preparation part, there is a bandwidth impact on the
physical network resulting from the transfer of the control
plane across the tunnel established from the original location
to the final location. Regardless of the migration sequence,
each control plane must be transferred, and the cost is simply
the sum of all control plane sizes. Hence this cost component
is a constant. The bandwidth impact can be different under
different migration sequences when tunnels possibly share
some physical links with different sets of overhead virtual
links. We will address this issue in two of our proposed
algorithms.

We are interested in the cost implications that derive from
overhead virtual links. In both the preparation and the migra-
tion part, a set of virtual links are present only because of the
migration process. These links are dependent on the migration
sequence. To understand the impact of these overhead virtual
links, we divide the nodes into three sets at stage i:

1) Nodes that will move in this stage (i.e., Si ∈ V),
2) Nodes that have already moved in prior stages, denoted

Ai ∈ V , and

Fig. 5. Illustration of types of links at stage i when v is migrating after w
has moved at stage i− 1.

3) Nodes that have not yet moved, denoted Yi ∈ V .
where Si ∪Ai ∪ Yi = V and Si ∩Ai ∩ Yi = ∅.

We classify overhead virtual links at stage i into three sets:
1) L1(i): Virtual links between the original mappings of the

moving nodes (Si) and final mappings of their already
moved neighbor nodes (Ai), i.e. l = (v, w) which the
physical path is (m0(v),mf (w)) where v ∈ Si, w ∈ Ai,

2) L2(i): Virtual links between the final mappings of the
moving nodes (Si) and the original mappings of their
not moved neighbor nodes (Yi), i.e. l = (v, x) which the
physical path is (mf (v),m0(x)) where v ∈ Si, x ∈ Yi,
and

3) L3(i): Virtual links between the final mappings of the
already moved nodes (Ai) and the original mappings of
their not moved neighbor nodes (Yi), i.e. l = (w, x)
which the physical path is (mf (w),m0(x)) where w ∈
Ai, x ∈ Yi.

Figure 5 illustrates a simple three-node virtual network with
nodes x, v, and w. In the stage illustrated, node v is moving,
node w has already moved, and node x has yet to move.
The virtual link (v, w) which is mapped to the physical path
(m0(v),mf (w)) is of type L1, the virtual link (x, v) which
is mapped to the physical path (mf (v),m0(x)) is of type L2,
and the virtual link (w, x) which is mapped to the physical
path (mf (w),m0(x)) is of type L3.

The links in L1(i) and L3(i) are present throughout both the
preparation and migration parts of stage i. The links in L2(i),
on the other hand, are present only during the migration part
of stage i. Indeed they are created to maintain connectivity
when the nodes in Si are moving. We use p(l) to denote
the bandwidth impact of virtual link l. Later we simplify by
assuming p(l) is the number of physical links in path l.

The cost of the virtual network in the preparation part of
stage i is then

cp(i) = tp(i)
∑

l∈(L1(i)∪L3(i))

p(l). (2)

The cost of the virtual network in the migration part of stage
i is

cm(i) = tm(i)
∑

l∈(L1(i)∪L2(i)∪L3(i))

p(l). (3)

The total cost for a particular migration sequence S is the
sum of the cost in all preparation and migration stages:

|S|−1∑
i=0

cp(i) + cm(i). (4)

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

IV. ALGORITHMS FOR VIRTUAL NETWORK MIGRATION

We present three algorithms for migrating virtual networks.
These algorithms can be divided into two types: moving one
node at a time and moving multiple nodes at a time. We design
the algorithms with two goals. One of the goals is to minimize
the total migration time of the migration, which is described
in Equation 1. The other goal is to minimize the total cost,
which is described in Equation 4.

In the move-one-node-at-a-time scheme, a virtual node can
start moving to its final placement only when the previous
virtual node has finished its move. We find a move sequence
S∗ = (S0, S1, . . .) where ∀i |Si| = 1.

In the move-multiple-nodes-at-a-time scheme, multiple
nodes can be migrated at the same stage. However, we are
constrained not to move nodes that are neighbors in the virtual
network at the same stage.

In this section, we first introduce the algorithm Local Min-
imum Cost First (LMCF) which produces a move-one-node-
at-a-time schedule to minimize the migration cost. Then we
present two move-multiple-nodes-at-a-time algorithms: Maxi-
mal Independent Set-Size Sequence (MIS-SS) and Maximal
Independent Set-Local Minimum Cost First (MIS-LMCF)
which minimize the time and the cost of the migration. Note
that we do not have an algorithm in the category of move-
one-node-at-a-time with the goal of minimizing the time of
migration because the number of stages required for any one-
node-at-a-time scheme is the same.

A. Local Minimum Cost First (LMCF)

The goal of Local Minimum Cost First (LMCF) algorithm
is to minimize the migration cost under the move-one-node-
at-a-time scheme. LMCF is described in Algorithm 1. First we
compute the initial migration cost of the migration part cm(0)
of stage 0 for each virtual node and choose the cheapest one
to migrate first. Then from the rest of the unmoved virtual
nodes, we recompute the migration cost cm for each of them
based on the current link mapping at that stage. Again, we
choose the one that gives the cheapest cost and migrate it.
We repeat until the network is completely migrated. If there
are nodes that give the same cost, we pick the node with the
lowest cost of the preparation part cp. If both of their migration
and preparation parts’ costs are the same, we break the tie by
randomly picking one of the cheapest nodes to be moved next.

B. Maximal Independent Set-Size Sequence (MIS-SS)

The goal of MIS-SS is to minimize the migration time. In
MIS-SS, we simplify the time as the number of stages involved
in a virtual network migration. We consider minimizing the
number of migration stages by migrating multiple nodes at a
time. We first determine the nodes which can be migrated at
the same stage. We call the set of nodes to be migrated at a
stage as migration set. Because of the no-neighbor constraint,
the nodes to be migrated at the same stage cannot be neighbor
among each other. The set of these non-neighbor nodes is
called independent set. We find the maximum sets among these
independent sets such that each set is not a subset of another

Algorithm 1 Local Minimum Cost First
1: function LMCF(G = (V, P), P = (R,E), m0, mf)
2: set sequence S = [] . Result sequence
3: for i = 0→ |V | − 1 do
4: j = 0
5: for v ∈ V − (S0 . . . Si−1) do
6: Si = v
7: cost[v] = cm(i) . Find the cost for v to be migrated at

stage i
8: if j = 0 then
9: minv = v

10: mincost = cost[v]
11: else if cost[v] < mincost then
12: minv = v
13: mincost = cost[v]
14: end if
15: j = j + 1
16: end for
17: Si = minv . Put the minimum cost node to move at stage i.
18: end for
19: return S
20: end function

set. These sets are called maximal independent sets (MISs).
We use an algorithm from [2] to generate MISs. This MIS
algorithm generates a maximal independent set with inputs
of a graph and a node in the graph. We use this algorithm
and input each node to the algorithm to generate the maximal
independent sets of the graph.

With the migration sets produced by the MIS algorithm,
we design an algorithm to determine the migration sequence
of these sets to minimize the time. MISs are not maximum
independent sets. MISs can have intersections. Because of their
intersections, when we migrate a MIS, some of the nodes in
other MISs may be migrated as well. Thus, the remaining sets
shrink. The number of stages involved in a virtual network
migration can be highly reduced from LMCF, to the number
of MISs, then to the number of migration sets in a set sequence
which eliminates more nodes at the earlier stages.

In MIS-SS (Algorithm 2), first we use the MIS algorithm
(FindMIS(G=(V,P))) to determine migration sets of a virtual
network. Then, MIS-SS determines the migration sequence
by picking the largest MIS to be migrated first. At each
stage, MIS-SS picks the largest remaining set to be migrated.
After each stage, MIS-SS removes the nodes which have
been migrated from the remaining sets. The remaining sets
shrink when more nodes are migrated. If the sets are highly
intersected, the time for migration can be reduced significantly.

C. Maximal Independent Set-Local Minimum Cost First (MIS-
LMCF)

In MIS-LMCF, we attempt to minimize a combination of
cost and time. When we shorten the time of the migration,
we can minimize the time of the overhead links staying at the
migrating state and further minimize the cost of the migration.
In Algorithm 3, we move multiple nodes at a time to minimize
the migration time. We also consider the migration cost of each
migration set to schedule the migration sequence.

We start with the sets of nodes MSet[] from the MIS
algorithm. We use a modified version of LMCF to determine

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

Algorithm 2 MIS-Size Sequence (MIS-SS)
1: function MIS-SS(G = (V, P), P = (R,E), m0, mf)
2: MSets[] = FindMIS(G = (V, P)) . Call the MIS algorithm to

generate all maximal independent sets (MISs)
3: S0 =MaxSize(MSets[]) . First migrate the largest MIS
4: for i = 1→ |MSets[]| − 1 do
5: Remove ∀v ∈ S0 . . . Si−1 from all MSets[] . Remove the

migrated nodes from MSets[]
6: if MaxSize(MSets[]) = ∅ then
7: break
8: end if
9: Si =MaxSize(MSets[]) . Migrate the set

with the most number of nodes left. If there are equal number of nodes
in more than one sets, pick one set randomly.

10: end for
11: return S
12: end function

the set migration sequence. We migrate the set with the lowest
cost first. After each stage, we remove the migrated nodes from
the remaining sets and recompute the migration cost for each
remaining set. Again, we choose the set with the lowest cost
to be moved next.

Algorithm 3 MIS-Local Minimum Cost First (MIS-LMCF)
1: function MIS-LMCF(G = (V, P), P = (R,E), m0, mf)
2: MSets[] = FindMIS(G = (V, P)) . Call the MIS algorithm to

generate all MISs
3: for i = 0→ |MSets[]| − 1 do
4: j = 0
5: Remove ∀v ∈ S0 . . . Si−1 from all MSets[] . Remove the

migrated nodes from MSets[]
6: if MaxSize(MSets[]) = ∅ then
7: break
8: end if
9: for set ∈MSets[]− {S0, . . . Si−1} do

10: Si = set
11: cost[set] = cm(i) when Si = set . Find the cost for the

set of nodes to be migrated at stage i
12: if j = 0 then
13: minset = set
14: mincost = cost[set]
15: else if cost[set] < mincost then
16: minset = set
17: mincost = cost[set]
18: end if
19: end for
20: Si = minset . Return the set of nodes with minimum cost to

move at stage i
21: end for
22: return S
23: end function

V. EVALUATION

We evaluate the migration algorithms with simulations. We
are interested in a set of basic questions about algorithm
performance relative to optimal, to worst case, and to one
another. Specifically, (Q1) how important is it to have an in-
telligent migration algorithm? (Q2) how close do the proposed
algorithms come to optimal? (Q3) how do the algorithms
compare to one another? We next turn to two characteristics of
the virtual and physical networks that play a role in algorithm
performance. (Q4) What is the influence on cost of migration
distance, i.e., how far apart in the physical network are the

original and final virtual network (VN) locations? (Q5) What
is the influence of VN node degree on the time and cost of
migration? Based on the results, we make some preliminary
recommendations about the operation of networks that support
migration.

A. Simulation Setup

We evaluate the algorithms with 50 different 10-node VNs
and a 100-node physical network. The 10-node VNs are
randomly generated by the Python NetworkX package [3] with
average node degree distributions from 2.4-5.4 and diameter
from 2-7. The 100-node physical network is generated by GT-
ITM [12] with the transit-stub model with 3.7 average node
degree and diameter of 11.

In our simulations, each VN is mapped to different initial
and final mappings on the physical network. These mappings
are randomly chosen with the constraint that there are no
physical nodes in common in the initial and final mappings.
We simulate the migration sequences produced by the al-
gorithms. We also exhaustively try every one-node-at-a-time
move sequence. We calculate the cost and time for each
migration sequence generated by the exhaustive search and the
three algorithms. We use the control plane transfer time from
[19] for the preparation part (tp = f(Si, α)). We assume that
each of the virtual routers on the 10-node VNs has less than
1k routes. The memory copy time is around 1 second with 10k
routes. The FIB repopulating time of the software data plane
is 2.1 seconds for 1k routes. Thus, α = 1+2.1 = 3.1 seconds.
We experiment with two choices for the function f(Si, α). In
the first case, we assume we will migrate one control plane at
a time, hence f1(Si, α) = α|Si|. In the second, we assume that
we can migrate all control planes in parallel with no bandwidth
interference, hence f2(Si, α) = α.

For the time in the migration part, we model the longest
finishing time of any current flow traversing the migrating
router(s). This is not easy to estimate, since in general it
depends on the uses of the VN, the capacities of the physical
and virtual links, and the degree of sharing among flows
and VNs. Further, long running flows might lead to policy
decisions to avoid migrating them altogether or to disrupt these
flows so that migration can be accomplished more quickly. In
the absence of specific information, and consistent with our
desire to use values derived from [19], we use the longest
control plane transfer time as our longest flow finishing time.
Figure 8 in [19] shows a time of about 3 seconds to transfer a
124 MB control plane. We choose to use tm = 3.5 seconds,
providing a bit of cushion above the 3 second measurement. In
future work, we will examine models for flow finishing time
and adaptations to the migration process with long flows.

B. Baseline Results

We first consider basic algorithm performance (Q1). Table
I shows the optimal and worst case costs of all possible
one-node-at-a-time migration sequences for VN 1-5, as well
as the ratio of worst cost to optimal cost. It is clear that
the ratio of worst cost to optimal cost can be substantial,

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

exceeding 2.5 for all five networks and as high as 3.37 for
VN 1, which has lowest average node degree and highest
diameter. We conclude from this experiment that there is value
to investigating migration algorithms that can achieve cost that
drives towards optimal.

TABLE I
THE COSTS OF THE BEST CASES, THE WORST CASES AND LMCF OF VN 1,

2, 3, 4 AND 5 (MOVE ONE-NODE-AT-A-TIME SEQUENCES) WITH
tp = f1(Si, α = 3.1) SEC AND tm(i) = 3.5 SEC

VN Optimal S∗ Worst Ratio LMCF
1 890.42 3000.64 3.37 890.42
2 1116.06 3263.55 2.92 1179.68
3 1413.76 3585.74 2.53 1635.49
4 1739.87 4864.23 2.80 1897.57
5 2751.34 6984.34 2.54 2985.42

We compare the results from our greedy LMCF algorithm
with the best cost. The rightmost column of Table I shows
that LMCF does very well, finding migration sequences with
cost close to the optimal solution on all five VNs. Without
an exhaustive search on all 10! ≈ 3.6M combinations of
migration sequences, LMCF can give a migration sequence
with cost between 1 and 1.16 times the optimal migration
sequence.

We next turn to the performance of the two algorithms
that can move multiple nodes at a time. Recall that MIS-
SS attempts to minimize time by moving as many nodes
at a time in each stage and hence reduce the total number
of stages. MIS-LMCF attempts to minimize a combination
of cost and time by moving large sets but choosing which
set to move based on cost considerations. Both algorithms
rely on the MIS algorithm to generate candidate migration
sets. It is computationally prohibitive to exhaustively try all
possible multiple-node-at-a-time sequences, hence we focus
our attention on the comparison of these algorithms to one
another and then to the LMCF algorithm. Table II shows the
results assuming one control plane is migrated at a time, while
Table III shows the results assuming all control planes in a
stage can migrate together without interference.

The goal of the MIS-SS algorithm is to minimize the

TABLE II
RESULTS OF MIS-SS, MIS-LMCF AND LMCF WITH FIVE OF THE

10-NODE VNS WITH tp = f1(Si, α = 3.1) = |Si|α (THE BEST COSTS
ARE UNDERLINED)

MIS-SS MIS-LMCF LMCF
VN Cost Time Cost Time Cost Time
1 1087.42 44.88 1093.18 44.88 890.42 65.88
2 1415.38 41.38 1162.36 48.38 1179.68 65.88
3 1714.10 44.88 1402.41 51.88 1635.49 65.88
4 1603.54 44.88 1482.29 44.88 1897.57 65.88
5 1710.82 44.88 3335.73 44.88 2985.42 65.88

TABLE III
RESULTS OF MIS-SS, MIS-LMCF AND LMCF WITH FIVE OF THE

10-NODE VNS WITH tp = f2(Si, α = 3.1) = α (THE BEST COSTS ARE
UNDERLINED)

VN MIS-SS MIS-LMCF
Cost Time Cost Time

1 797.15 29.44 657.78 29.44
2 881.15 25.94 872.09 32.94
3 1102.67 32.53 1105.96 39.53
4 1090.94 32.53 1056.14 32.53
5 1710.82 26.35 1501.46 26.35

migration time. It successfully achieves the lowest migration
time of any of the three algorithms on each VN, and it
improves on the LMCF algorithm by about 1.5 times when
the control planes move one at a time and by more than 2
times when the control planes move in parallel. If migration
time is the key consideration, the MIS-SS algorithm provides
a good solution.

The goal for MIS-LMCF is also to reduce the number
of stages but to do so taking cost into consideration. The
MIS-LMCF algorithm successfully achieves relatively low
migration time as compared to the LMCF algorithm, and
frequently matches the time performance of MIS-SS. Turning
to cost, the MIS-LMCF algorithm achieves the lowest cost
more often than MIS-SS or LMCF, but it does not always
have lowest cost. For example, in Table II, for VN 1, the
lowest cost is achieved by the LMCF algorithm rather than
either of the MIS algorithms, while for VN 5 the lowest cost is
achieved by MIS-SS. If migration cost is the key consideration,
it is important to understand whether control planes can move
in parallel with limited interference. If they can, one of the
MIS-based algorithms will improve cost. If they cannot, the
MIS algorithms generally offer only modest improvement over
LMCF, though there is a notable exception for VN 5 where
LMCF cost is twice the cost of the MIS-based algorithms.

C. Effect of Migration Distance

We now dig deeper into the effect of virtual and physical
network characteristics on the performance of the algorithms.
In particular, we examine the effect of migration distance and
then the effect of VN node degree (Q4). Migration distance is
determined by the initial and final mappings of a VN to the
physical network. We use VN 2 and simulate 90 migrations
with 10 different mappings on the 100-node network. For
each pair of mappings m0 and mf , we calculate the average
migration distance by averaging the physical path lengths of
the virtual node locations between m0(v) and mf (v). For
our VN locations and physical network characteristics, we
see average migration distances in the range of roughly 3.5
to 6.5 physical node hops. Recall that the physical network
has diameter 11, so these distances are consistent with that
constraint on the maximum distance a node can move.

Our model for time is based on the time to move one control
plane, the interference between control plane moves, and the
time to complete the longest outstanding flow. None of these
depend on migration distance in our current model, though
a refinement of the model might take into consideration that
longer distance moves may take more time and that distance
might influence how much interference exists between control
plane moves.

We expect cost to be influenced by migration distance, since
overhead links must traverse the physical network between
original node locations to final node locations. In Figure 6, we
show the costs of the migration sequences from LMCF, MIS-
SS and MIS-LMCF as a function of the average migration
distance. The LMCF plot contains 90 points, one for each
initial-final pair, while the MIS-SS and MIS-LMCF plots

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6

C
o
st

Average Migration Distance

α|S
i
|=α

trend(α|S
i
|=α)

(a) LMCF

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6

C
o
st

Average Migration Distance

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(b) MIS-SS

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6

C
o
st

Average Migration Distance

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(c) MIS-LMCF
Fig. 6. Cost for migrating VN 2 among 10 different initial and final mappings (90 migrations) with algorithm LMCF, MIS-SS and MIS-LMCF

10

20

30

40

50

60

70

1 2 3 4 5 6

T
im

e

Average Node Degree

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(a) MIS-SS

10

20

30

40

50

60

70

1 2 3 4 5 6

T
im

e

Average Node Degree

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(b) MIS-LMCF
Fig. 7. Time of migrating 50 different 10-node VNs on the same initial and final mappings with algorithm MIS-SS and MIS-LMCF

contain two sets of 90 points, one for each model of control
plane interference (f1(Si, α) = α|Si| and f2(Si, α) = α).
In all three cases, the cost increases with average migration
distance, as expected. The MIS-SS and MIS-LMCF algorithms
tend to achieve comparable cost that improves noticeably
over LMCF when the control planes can move in parallel.
The impact of higher average migration distance is somewhat
modest—the highest migration distance settings have cost
approximately 1.4x the lowest migration distances. The cost
advantage of MIS-LMCF is more pronounced when control
plane moves can interfere than when they cannot, and this
persists across migration distances.

D. Effect of Node Degree

Finally we turn to Q5, the question of the impact of VN
node degree on the time and cost performance of migration. In
our initial experiments, we observed variability in cost across
the five VNs, with cost growing as VN node degree increased.
Higher node degree means more neighbors, with two cost
effects. First, more dense networks have more smaller size
MISs, hence more stages and more time is required. Second,
more dense networks require more overhead links to connect
nodes that have moved to neighbors that have not. Both effects
will increase cost. In time, we saw very little variability as
average node degree increased.

To explore more deeply, we use all 50 different 10-node
VNs. We migrate each from and to the same initial and final
mappings so as to eliminate the effect of migration distance.

We compare the time for the two MIS-based algorithms and
the cost for all three algorithms. Figure 7 shows the migration
time of MIS-SS and MIS-LMCF. With increasing average
node degree, fewer nodes can be grouped into the same
migration set. Thus, the time for migration increases with the
average node degree, albeit slowly. Overall, MIS-SS achieves
its goal to minimize the migration time for networks with
different average node degrees. Because the time is dominated
by the migration sets, both algorithms give similar migration
times, but the time grows more slowly when the control planes
interfere than when they do not.

Figure 8 shows the costs of sequences from LMCF, MIS-
SS, and MIS-LMCF. As expected, an increase in average
node degree has a substantial effect on the cost. The LMCF
algorithm is most significantly affected by the increase in
average node degree, since there are more overhead links and
they must remain in place until the affected nodes have been
moved. The MIS-based algorithms also see increases in cost
with average node degree, with slightly slower cost growth
when control planes do not interfere. In the limit, when the
VN is a full mesh, the MIS-based algorithms must move single
nodes at a time and hence cannot do any better than LMCF.

E. Summary

From our simulations, all algorithms perform reasonably
well. They all give migration sequences with reasonable costs
and time. We also observe that no one algorithm consistently

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

C
o
st

Average Node Degree

α|S
i
|=α

trend(α|S
i
|=α)

(a) LMCF

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

C
o
st

Average Node Degree

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(b) MIS-SS

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

C
o
st

Average Node Degree

α|S
i
|

trend(α|S
i
|)

α

trend(α)

(c) MIS-LMCF
Fig. 8. Cost of migrating 50 different 10-node VNs on the same initial and final mappings with algorithm LMCF, MIS-SS and MIS-LMCF

exhibits the lowest cost across all the average distance and
node degree cases considered in our experiments.

VI. CONCLUSIONS

We believe our work makes the application of re-mapping
policies in virtual networks possible, especially in architectures
where virtual networks require reconfiguration. Our work
considers the problem of the mechanism to migrate an entire
virtual network from its initial mapping to its final mapping.
We design scheduling algorithms for virtual network migra-
tions that minimize the disruption to the current data traffic
and the overhead traffic in the migration process. We propose
three algorithms, LMCF, MIS-SS, and MIS-LMCF to discover
the virtual router migration sequences for migrating an entire
virtual network with lower overhead (cost) and shorter time.
The LMCF algorithm produces a move-one-node-at-a-time
schedule that exhibits cost close to the optimal solution.
We then consider move-multiple-nodes-at-a-time schedules to
minimize the time and the cost of migration. Our simulations
of the MIS algorithms show that move-multiple-nodes-at-a-
time schedules effectively minimize the time and cost.

The interactions among multiple virtual network migrations
have not been studied in this paper. In future work, the
scheduling problem of migrating multiple virtual networks that
share the same substrate becomes important. The scheduling
problem of multiple virtual network migrations involves the
dynamic of migrating multiple virtual routers belonging to
different virtual networks. When multiple virtual networks
are migrating at the same time, some of the physical links
and physical routers are fully occupied and may exceed the
capacities of the links and physical routers. Thus, scheduling
multiple virtual network migrations is more complicated than
a single virtual network migration.

Our work further raises the questions of how we design the
applications and system architectures for virtual networks. A
possible application of virtual network migration is defending
against attack traffic on virtual networks. Future work on
extending our virtual network migration scheduling to other
technologies such as architecture with FlowVisor [1] and
OpenFlow enabled switch networks [17] will be very useful
as well.

ACKNOWLEDGMENTS

This work was supported by the NSF Grant 1017237.

REFERENCES

[1] FlowVisor. http://www.openflowswitch.org/wk/index.php/FlowVisor.
[2] Maximal independent set algorithm implementation. https://networkx.

lanl.gov/trac/ticket/282. URL retrieved Apr 2012.
[3] Networkx: A python package. http://networkx.lanl.gov/.
[4] E. Al-Shaer. Toward network configuration randomization for moving

target defense. In Moving Target Defense, volume 54 of Advances in
Information Security, pages 153–159. Springer New York, 2011.

[5] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proc. 18th ACM SOSP, pages 131–145,
Canada, Oct. 2001.

[6] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Proc. ACM SIGCOMM, Pittsburgh, PA, 2002.

[7] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.
Secure routing for structured peer-to-peer overlay networks. In Proc.
5th USENIX OSDI, Boston, MA, Dec. 2002.

[8] M. Demirci and M. Ammar. Fair allocation of substrate resources among
multiple overlay networks. In Proc. of MASCOTS, volume 0, pages 121–
130, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[9] J. Fan and M. H. Ammar. Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies. In Proc. IEEE
INFOCOM, 2006.

[10] N. Farooq Butt, M. Chowdhury, and R. Boutaba. Topology-awareness
and reoptimization mechanism for virtual network embedding. In Proc.
IFIP, NETWORKING’10, 2010.

[11] GENI: Global Environment for Network Innovations. http://www.geni.
net/.

[12] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[13] E. Keller, D. Arora, D. P. Botero, and J. Rexford. Live migration of an

entire network (and its hosts). Princeton University Computer Science
Technical Report, TR-926-12, June 2012.

[14] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live migration of
an entire network (and its hosts). In Proc. ACM HotNets-XI.

[15] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proc. ACM SIGCOMM, pages 61–72, Pittsburgh, PA, 2002.

[16] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared
substrate. Tech Report WUCSE2006, 35(2006-35):1–11, 2006.

[17] OpenFlow Switch Consortium. http://www.openflowswitch.org/.
[18] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz. Overqos:

offering internet qos using overlays. SIGCOMM Comput. Commun. Rev.,
33:11–16, January 2003.

[19] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford.
Virtual routers on the move: Live router migration as a network-
management primitive. In Proc. ACM SIGCOMM, Seattle, WA, 2008.

[20] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM
SIGCOMM Computer Communications Review, Apr. 2008.

[21] Y. Zhu and M. Ammar. Algorithms for Assigning Substrate Network
Resources to Virtual Network Components. In Proc. IEEE INFOCOM,
Barcelona, Spain, Mar. 2006.

9

