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Abstract. Peer-to-Peer (P2P) techniques are broadly adopted in mod-
ern applications such as Xunlei and Private Tracker [1, 2]. To address the
problem of service availability, techniques such as bundling and implicit
uploading are suggested to increase the swarm lifespan, i.e., the duration
between the birth and the death of a swarm, by motivating or even forc-
ing peers to make more contributions. In these systems, it is common for
a peer to join a swarm repeatedly, which can introduce substantial bias
for lifespan modeling and prediction. In this paper, we present a math-
ematical model to study the lifespan of a P2P swarming system in the
presence of multi-participation. We perform evaluations on three traces
and a well-known simulator. The result demonstrates that our model is
more accurate than previous ones.

Keywords: peer-to-peer; modeling; evolution; lifespan

1 Introduction

Peer-to-peer (P2P) systems have seen a tremendous growth in the past decade
for its scalability and high downloading speed [3]. They are widely used for
content sharing and online video streaming. The lifespan of the P2P swarm for
a resource is defined as the time duration from the time that the resource is
shared in the system to the time that the number of peers in the swarm becomes
below a predefined threshold, such as one.

To improve the availability, extending the lifespan of P2P swarms is critical
for modern P2P systems. For example, peer-assisted systems, such as FS2You
[4] with both dedicated servers and peers, if a swarm died servers must afford all
the uploading bandwidth. It’s reported that cold files that involved little peers
consume 54% of the bandwidth of servers in FS2You system [4]. As another
example, for private tracker systems, peers have to maintain a certain uploading-
downloading ratio for better availability (i.e., they must upload more in order to
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download more). But a selfish peer with high uploading bandwidth tend to leave
quickly once it achieves the ratio, which can hurt the swarm lifespan aggressively.
In this work, to better understand the lifespan of P2P swarms, we model P2P
swarm evolution from a nontrivial view and figure out the important factors
that impact lifespan, which is important for P2P system design and performance
tuning.

Prior studies on P2P swarm model are based on single-participation, i.e.,
assuming that a peer joins a swarm only once, [5, 6]. However, measurement
studies observe that this assumption does not hold in reality [7, 8]. In modern
systems, such as Xunlei [1] and private tracker systems [2, 9], reward generous
peers who provide more uploading by giving them higher downloading speed and
punish selfish peers. Generous peers are motivated and selfish peers are forced
to share resources with other peers. Therefore, we observe that a peer often par-
ticipate a swarm repeatedly, which can be the main source of bias for the prior
models. Though a peer may join one swarm multiple times, only the first partic-
ipation can be modeled and others are ignored. Consequently, only the interval
between the first arrival and leave can be counted in the model as the peer online
time. These limitations will make the prior models underestimate the peer online
time and the swarm lifespan. To our best knowledge, the only prior work on P2P
swarm modeling that assumes multi-participation is by Menasche et al. [8]. They
modeled the content availability by a new metric called “busy period”, which is
the uninterrupted intervals during which the content is available. However, their
model only depict the relationship between peer arrival rate and swarm lifespan,
leaving other factors like peer online time out of their discussion.

In this work, to address multi-participation when modeling swarm lifespan,
we combine the series of participation of the same peer into a single process
called task to incorporate the interrelationship of consecutive behavior of the
same peer. By regarding each task as an alternating renewal process that switch
between online and offline, the number of active peers of a swarm can be obtained
during the evolution. As the lifespan of a swarm is the duration between the
swarm birth and death, and as the birth point can be observed easily, we derive
the death point through solving the evolution equation by setting active peers
as a threshold. We show that by employing a subexponential decaying process
approximation in the model, a closed-form solution can be obtained. As lifespan
is very difficult to measure and predict in reality, we present a new lifespan
metric according to our model, half-life, which is defined as the time in which
the number of active peers decreases from a start to its half. The evaluation
based on real traces and extensive simulations verifies that our model is more
accurate than the state-of-the-art fluid model.

In summary, we make four major contributions. (1)Task-based churn model :
We present a task-based churn model by combing the series of participation
of the same peer into a task and characterize the task-based churn.(2)Task-
based evolution model : We present a novel model to depict swarm evolution
based on task-based assumption. The model can be used to analyze the lifespan
of swarming systems. (3)Lifespan model : We present a closed-form solution of
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lifespan through approximation and an efficient metric, half-life. (4)Experimental
validation: We perform extensive experiments on both three real traces and
simulations to compare the accuracy of the task-based model with the fluid
model. The results show that our model is more accurate then prior ones.

The remainder of the paper is organized as follows. Section 2 presents re-
lated works on swarming systems. Then we propose our task-based churn model
in Section 3. In Section 4, we demonstrate our evolution model and the lifespan
model. In addition, we also propose a half-life based method to measure lifes-
pan more efficiently. Section 5 and 6 present our experiment setup and results.
Finally, we conclude the paper.

2 Related Works
Although many studies aimed to model or improve the availability of P2P sys-
tems, most of them made unrealistic assumptions to bypass the complexity.
Before introducing related models, we present some measurement studies of real
systems. Daniel et al. have performed comprehensive measurements on Gnutella,
KAD and Bittorrent systems [7]. In their paper, three of important conclusions
are highly related with our work. First, they have found that the inter peer ar-
rival time follows exponential distribution. Second, the online session length is
better described by Weibull distribution. The third is that past session length of
a peer is a good predictor of the rest, which means consecutive behaviors of the
same peer are related. In modern P2P systems, peers have new patterns accord-
ing to the measurements of Private Tracker systems [2, 9], or more specifically
peers are more patient, active and eager to upload than before.

For P2P evolution modeling, Qiu et al. have proposed a simple fluid model
to describe BitTorrent-like system and studied the steady-state network perfor-
mance [5]. Based on extensive measurements on real BitTorrent systems, Guo
et al. have found the peer arrival rate follows the exponential process and mod-
eled the swarm lifespan with an improved fluid model.[6]. Kaune et al. also
focused on the availability in modern systems. They performed widespread mea-
surements and found that seeders have a significant impact on swarm availability
[10]. Then they tried different incentives to improve the availability and gave a
comparison study on them [11].

3 Task-Based Churn
In this section, we firstly present the task definition and task-based churn, then
we model task-based churn with the help of three characteristics: task arrival
rate, task duration and task availability.

3.1 Task

In modern P2P systems, incentives are exploited to encourage peer’s more and
longer contribution to enhance the availability of the whole system, which lead
the multi-participation to prevail. Take Xunlei for example, which is the most
widely used private P2P system in China, peers are forced to upload their down-
loaded files by implicit uploading every time they join it. This phenomenon of
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Fig. 1: A peer lifecycle in a task

multi-participation is also mentioned in other literature [7, 8, 12]. However, to
the best of our knowledge, no evolution or lifespan model was provided in the
presence of multi-participation.

To address multi-participation, we define the process starts from a peer’s first
arrival to the last departure of a swarm as one basic unit called task. When a
peer ends a task in a swarm, the peer will no longer be back to the swarm again.
Figure 1 shows the lifecycle model of a peer in a swarm during a task. More
specifically, a peer will experience four states in its lifecycle in a task: Arriving,
Downloading, Seeding and Leaving. Compared with the session defined in fluid
model, assuming that a peer has single participation in a swarm and should
not be back after the first departure, task can be more general, insightful and
practical.

In order to better understand multi-participation, we collected tracker log
trace from a nationwide private tracker system in China (cgbt trace). Users in
this system should hold an upload-to-download ratio to maintain its access right.
The system currently has 116,679 registered users and 132,777 torrents. The
average upload-to-download ratio is 2.8. The trace contains all peer requests that
were posted to the tracker from June 1, 2010 to July 4, 2010. In the trace, there
are 447,141 swarms and 843,242 peers all together. The result in Figure 2 shows
that more than 75% of peers join the same swarm repeatedly. Furthermore, 30%
of peers participate in the same swarm for more than 10 times, which suggests
that they are very ”patient”. This finding shows the limitations of the fluid
model of characterizing the swarm with impatient peers.

3.2 Modeling and Characterization of Task-Based Churn

The dynamics of peer activities when we view it in a task perspective is called
task-based churn. In order to build task-based evolution model, we are interested
in three characteristics of tasks in the churn: task arrival rate, task duration and
task availability.

Task arrival rate profiles the pattern of task arrivals. As the downloading
request of a torrent file, which can be regarded as the creation of tasks, decreases
exponentially [6], we assume that the task arrival rate of a swarm follows an
exponential decreasing rule with time t.

λ(t) = λ0 exp(−
t

τ
), (1)

where λ0 is the initial arrival rate and τ is the attenuation parameter. In other
words, τ indicates the decreasing speed of task arrival rate. To consolidate our
assumption, we fit the arrival rate of each swarm in cgbt trace and plot all
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Fig. 2: The CDF of peer’s participation counts

Fig. 3: The parameters of exponen-
tial fitting for each swarm

Fig. 4: The CDF of all peers’ task
durations

the parameters (λ0, τ) in Figure 3. In this figure, x-axis denotes λ0 and y-axis
denotes τ . We can find that τ has an upper bound (1000) except for the cold
swarms with too small task arrival rate to make a good fit, which implies the
task arrival rate fits a exponential decreasing function well.

Task duration depicts how long a peer remains in the swarm from a task
view. We assume that the task duration follows Weibull distribution, since it
is widely used in survival analysis, including duration analysis and modeling,
and can approximate a wide range of classes of functions including exponential,
normal and lognormal only with two parameters.

F (x) = 1− exp[−(
x

µ
)k], (2)

where k > 0 is the shape parameter and µ > 0 is the scale parameter of the
distribution. Different value of k can lead to different types of distribution. For
cgbt trace, we collect the lengths of all tasks, each of which includes several
online and offline states, and plot the cumulative distribution of task durations
with their Weibull fitting in Figure 4 in log-linear scale. For most part of the
distribution, the Weibull distribution is able to provide tight fitting except for
the durations above 600 hours. The reason is that we cut off the tasks, which
are still alive after our trace stop.

Task availability is the proportion of online states in the task duration, which
indicate the peer online probability. Since the task duration includes online and
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Table 1: Notations for our model
λ0 the initial value of task arrival rate

τ the attenuation parameter of task arrival rate

µ the scale parameter for the distribution of task duration

k the shape parameter for the distribution of task duration

a
the task availability

(the proportion of online states in the task duration)

N(·) The evolution of a swarm (The average number of online tasks)

HL(·) The half-life of a swarm

L The lifespan of a swarm

offline states, we use an alternative renewal process to model the behavior of
each task. With the help of task availability, we can better understand how
offline states contribute to the dynamics of the system, which is not considered
by the fluid model. We define the task availability as

a =
Ton

Ton + Toff
. (3)

where Ton is the mean of online state length and Toff is the mean of offline state
length.

4 Task-Based Lifespan Model

In this section, we first present the swarm evolution model for the view of entire
and then obtain a closed-form solution of lifespan through approximation. For
the convenience of reference, we list the meanings of the parameters of our model
in Table 1.

4.1 Swarm Evolution

As the lifespan is determined by the number of online tasks in the swarm, or the
swarm evolution, we firstly model the swarm evolution in the view of task.

We define X as a random variables that represents the task duration of a
peer. Suppose a task starts at t0, with the help of task duration distribution, we
can obtain the probability at time t that the task is still in the swarm by:

Palive(t0, t) = Pr(X > t− t0) = 1− F (t− t0) = exp[−(
t− t0
µ

)k]. (4)

According to our task-based churn model, the number of new task arrival or
task arrival rate at time t is λ(t)dt. And with the help of Palive(t0, t), we collect
all the tasks that join the swarm before t and can obtain the number of online
tasks at time t by:

N(t) = a

∫ t

0

λ(x)Palive(x, t)dx = aλ0

∫ t

0

exp[−(
t− x

µ
)k − x

τ
]dx. (5)
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4.2 The Closed-Form Expression of Lifespan

Although the real swarm lifespan is very hard to be determined in practice,
swarm creator or system operator usually kills a swarm when it has very few
peers. Keep this intuition in mind, we set a threshold on the number of online
tasks as the criterion of swarm death. Without loss of generality, we select 1 as
the threshold in our model. Consequently, the lifespan can be obtained by solving
the equation N(t) = 1, called the evolution equation, to obtain the death point t.
Unfortunately, N(t) is a transcendental function, which prevents us from solving
the equation analytically. Hence, we have to make necessary approximation to
the evolution to obtain the closed-form solution of lifespan.

Approximation The first step of our approximation is to expand the exponen-
tial term exp[−( t−x

µ )k − x
τ ] which is a transcendental function. According to the

Taylor series, we can know that

exp[−(
t− x

µ
)k − x

τ
] = exp(−x

τ
)

∞∑
j=0

(−1)j

j!
(
t− x

µ
)kj . (6)

Then we can calculate the integration of the Taylor expansion. If we let y = t−x,
there is only one variable in the summation.∫ t

0

exp[−(
t− x

µ
)k − x

τ
]dx = exp(−x

τ
)

∞∑
j=0

(−1)j

j!µkj

∫ t

0

ykj exp(
y

τ
)dy. (7)

Note that the integration in Equation 7 can be decomposed with a Kummer
function, which has a known approximation [13]:∫ t

0

ykj exp(
y

τ
)dy =

t1+kj

1 + kj
M(1 + kj, 2 + kj,

t

τ
). (8)

Here M(·) is a Kummer function. And when one of the three parameters (1 +
kj, 2 + kj, t

τ ) is large, and the other two remaining modest in magnitude, this
function has a special approximation as follows [13]:

M(1 + kj, 2 + kj,
t

τ
) ≈ Γ (2 + kj)

Γ (1 + kj)
(
t

τ
)−1 exp(

t

τ
). (9)

As τ is a constant during the swarm evolution, the above approximation condi-
tion can be met if t is large enough. Hence, we apply the approximation in the
situation that t/τ is large enough and positive with 1 + kj ̸= 0,−1,−2, . . . [13].
In this way, the transcendental function can be simplified to a simple exponential
function.

N(t) ≈ aλ0τ exp[−(
t

µ
)k](t/τ is large and positive). (10)

Finally, we can solve the transcendental equation and obtain the swarm lifespan
with the start at 0 as:

L = µ[log(aλ0τ)]
1/k. (11)

The result shows that µ, with a linear influence on lifespan, is the most significant
parameter. And this equation suggests that the designers should try to encourage
users to hold the task as long as possible.
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4.3 Lifespan Prediction and Measurement

To predict and measure lifespan can be very difficult in reality, because the
swarm death point is hard to be determined. In the fluid model, an explicit
point that indicates the death of swarm is obtained to predict lifespan. However,
this result relies on the single participation assumption, which is unrealistic.
And it can be biased by the temporary or accidental leave of peers for a dying
swarm with very few active peers. To address prediction, recalling the condition
of our approximation, if t is large enough compared with τ , we can regard the
evolution after t as a subexponential decay process. This implies us that if we
choose a time point large enough in the swarm evolution as a start, we can
use subexponential decay process to approximate the rest evolution process.
Experientially, if t/τ > π can be met we can safely apply the approximation for
predicting the swarm death point and lifespan.

To apply the above prediction, we have to estimate five parameters (λ, τ, µ, k, a).
To make it more efficient, we suggest to use half-life, which is the time that the
number of online tasks decrease from the value at starting point to its nth half,
to indirectly measure swarm lifespan based on our model. Half-life depicts the
swarm decreasing speed and can be expressed as follows:

HL(n) = t 1
2n

− t0 = µ[(
t0
µ
)k + n log(2)]1/k − t0, (12)

where t0 means the time of starting point and t 1
2n

means the time when the
evolution decreases by n folds. Therefore, the lifespan can be viewed as the
function of N(t0) and HL(n):

L = t0 +HL(n). (13)

By solving 2n = N(t0) with respect to n, we can derive the lifespan according to
Equation 12 and Equation 13 with the start at 0. When predicting lifespan in real
measurement, we firstly need to record the evolution of a swarm whose duration
is long enough to include the decreasing part of evolution. Then we select a point
in the decreasing part and label it as t0. Since we have two unknown parameters
(µ and k) in the Equation 12, we need to select at least two other point in the
decreasing part to determine the unknown parameters (e.g. t0.5 and t0.25). In
this way, we can obtain the prediction of lifespan according to Equation 13.

5 Trace Evaluation
In this section, we compare the accuracy of our evolution model with the fluid
model on three tracker traces. Besides using the cgbt trace, we also introduce
two other traces available on the Internet. One trace (alluvion trace) is statistics
pages from two large trackers (www.alluvion.org and www.crapness.com), late
2003 to early 2004. After parsing these web pages, we found 96,339 swarms
and 417,166 peers all together. The other one (filelist trace) was collected from
Filelist.org by scraping its website during the period from Dec 14, 2005 until
Apr 4, 2006, and it was collected by Roozenburg and et al.. This trace contains
data collected from 3,000 swarms and 2,172,738 sessions.
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5.1 Experimental Setup

In order to compare our model with real traces, we analyze the traces and obtain
all parameters by fittings. Our experiment has four steps as follows.

1. We split the traces according to swarms and remove the cold swarms with
peers less than 100.

2. For each swarm, we collect the task arrival rate, task duration and the task
online/offline state length of each peer. To compare with the fluid model, we
also collect peer arrival rate and peer online time following the definition in
prior study [6].

3. For each trace, we select one swarm randomly. By counting active peers in
each selected swarm, we plot the real evolution and the two predicted ones
that are calculated according to the two models in a figure (Figure 5, 6 and
7).

4. To show the accuracy for all swarms, we calculate the MSE (Mean Square
Error) between the modeled evolution and the real one in each swarm. As
the real evolution can periodically fluctuate in one day (time-of-day effects
[14]) that can bias the MSE aggressively, we use 24 hours moving average as
the real evolution and plot the cumulative distribution of all swarms’ MSE
in a figure (Figure 8, 9 and 10).

5.2 Accuracy of Task-Based Evolution Model
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Fig. 6: The comparison between real
evolution in alluvion trace and mod-
els

As shown in Figure5, we can see that the task-based model fits the real
evolution very well, while the fluid model only captures the increasing part,
which is only a short period after the swarm birth. The reason is the fluid model
ignores the “extra” participations, causing significantly underestimation for the
number of peers. Hence, the fluid model provides a shorter lifespan than the real
one, which will be confirmed by our simulation later. In the other two traces,
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although the fluid model is more close to the real evolution than the it does in
cgbt, task-based model is still better.

To evaluate task-based mode for all swarms, we show the cumulative distri-
bution of the MSE for each swarm in Figure 8,9 and 10. The x-axis denotes the
MSE between the model and real evolution of the corresponding swarm, while
the y-axis denotes the fraction of swarms whose MSE less than or equal to the
corresponding x value. Specifically, in the cgbt trace (Figure 8), the curve for the
task-based model is on top of that for the fluid model, which means the MSEs of
the task-base model in most swarms are smaller than those of the fluid model. In
the alluvion trace and the filelist trace (Figure 9 and 10), our task-based model
also yield s slightly better accuracy.
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evolution in filelist trace and models
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6 Simulation

In this section, we compare the accuracy of our task-based model with the fluid
model by extensive simulations on a very famous simulator.
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6.1 Simulator

As it is very difficult to collect a set of swarms with their whole lifespan recorded
in a trace for time limitation, we will evaluate our task-based lifespan model
through simulation. We choose OMNeT++ as the simulation platform, for it is
an extensible, modular, component-based C++ simulation library and frame-
work. As K. Katsaros et al. has developed a BitTorrent component for OM-
NeT++, which provided a set of modules that implemented a fully featured and
extensible realization of the BitTorrent protocol [15]. The simulator creates a
realistic simulation platform, which provides the simulation of underlying net-
work structures. The architecture of the simulator includes full simulation of
a BitTorrent system, such as the tracker, peer and the protocol [15]. But its
churn model is borrowed from the fluid model [6]. We improve the BitTorrent
component by making two important changes as follows:

1. In the original simulator, a peer participates in a swarm and then downloads
files. When it ends the downloading, it behaves as a seed for a fixed time
specified by a parameter. We add parameters such as µ, k, a, to simulate task
behavior.

2. We extend the state machine of peer behavior so that peers could participate
in a swarm repeatedly. When a participating peer finishes an online session,
we make it sleep for the duration of an offline session and then wake it up for
another online one. When the task duration is exhausted by online/offline
sessions, we kill the peer.

6.2 Accuracy of Task-Based Lifespan Model

To compare the accuracy of task-based lifespan model with the fluid model,
we perform an extensive simulation on real parameters, in which we analyze the
swarms in real traces to obtain the parameters and their variation ranges related
to task-based model and then we randomly generate parameters in the ranges.
The results of 615 simulated swarms are plot in the Figure 11, showing the
comparison of the swarm lifespan obtained from simulation with that from our
model and the fluid model. In this figure, each point in x-axis denotes the real
lifespan of a swarm, while each point in y-axis denotes the lifespan that obtained
by models. The lifespan in the x-axis are sorted in non-descending order of the
real lifespan. So the points lay on the line of y = x mean the modeled lifespan
equals to the real lifespan. As shown in the figure, our model fits the real lifespan
very well, while the lifespan predicted by the fluid model is small than the real
one.

7 Conclusion

Availability, or more specifically lifespan, is one of the most important issues
in P2P systems. For lifespan model, existing studies are based on unrealis-
tic assumptions of peer single participation. In this paper, to address multi-
participation, which is more and more widespread in modern P2P systems, we
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Fig. 11: The comparison of swarm lifespan: modeling and simulation

propose a novel task-based model, combining multiple peer participations into
one task and regarding each task as an alternating renewal process that switch
between online and offline, which is more general, insightful and practical. Based
on the model, we derive a closed-form expression of swarm lifespan with the help
of approximations and propose a new metric for lifespan measurement and pre-
diction, half-life. The experimental evaluation based on real traces and extensive
simulations verifies that o ur model is more accurate than the state-of-the-art
fluid model.
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