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Abstract. Entropy has been widely used for anomaly detection in var-
ious disciplines. One such is in network attack detection, where its role
is to detect significant changes in underlying distribution shape due to
anomalous behaviour such as attacks. In this paper, we point out that
entropy has significant blind spots, which can be made use by adver-
saries to evade detection. To illustrate the potential pitfalls, we give an
in-principle analysis of network attack detection, in which we design a
camouflage technique and show analytically that it can perfectly mask
attacks from entropy based detector with low costs in terms of the vol-
ume of traffic brought in for camouflage. Finally, we illustrate and apply
our technique to both synthetic distributions and ones taken from real
traffic traces, and show how attacks undermine the detector.
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1 Introduction

Entropy is widely used as a summary statistic in diverse application areas, in-
cluding anomaly detection. In recent years anomaly detection has received con-
siderable attention in computer networking both within industry and academia,
in particular in relation to security issues such as network based attacks, and
entropy based detection is a popular approach.

Generally speaking, in entropy based anomaly detection, the (empirical) en-
tropy, summarising a histogram of some quantity of interest from the underlying
network traffic within a time bin, is used as a detector of anomalous events seen
across bins. For example, the quantity could be the counts of packets (becoming
probabilities after normalisation) with different source port numbers passing a
measurement point. Implicitly, it is assumed/believed that entropy will change
noticeably when ‘significant’ changes in the traffic pattern occur due to anoma-
lous behaviours, but change little or not at all when small fluctuations about
typical behaviour are encountered. In this vein, [3, 5] used entropy of source IP
address distributions to capture DDoS attacks, and [10] focused on worm detec-
tion using distributions from packet headers. The paper [7] considered entropy
of distributions based on the number IP addresses that each host communicates
with in addition to those from packet headers. Other work exploiting entropy
for anomaly detection can be found in [1, 4].
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These prior works have demonstrated a measure of success of entropy-based
anomaly detection, especially in network attack detection. However, this success
is founded on two basic assumptions that we challenge here: i) Entropy detects
‘significant’ changes in distribution well, ii) Attackers are unable and/or unwill-
ing to adopt strategies to evade detection. In fact, since entropy, like all summary
statistics, is a compact summary of a complex reality, it must necessarily be blind
to many changes in the underlying distribution. For anomaly detection purposes,
it is clearly essential to understand the nature of this blindness, however this task
has until now not attracted much attention.

In this paper, we shall see that the relationship between changes in distribu-
tion details, or ‘shape’, and entropy can be complex and counter-intuitive. An
important consequence for entropy based detectors is that they can be surpris-
ingly easily defeated when the attacker starts to learn and manipulate data. So-
phisticated adversaries have been discussed before in the context of detectors (or
classifiers) in other domains [2, 6, 8]. Since entropy based detection is becoming
popular, we believe that exploring its limitations and potential countermeasures
is both important and timely.
Our main contributions: i) The first quantitative understanding of the be-
haviour of entropy as a function of the underlying distribution shape. ii) To
demonstrate the potential fruits of (i), we apply it to the attack detection prob-
lem. We provide the definition and first results on optimal camouflage from
entropy based detectors.

The above results bring insights and capabilities at a number of (closely
related) levels, including the nature of entropy blindness, how attackers can
evade detection at minimal cost, and a meaningful calibration capability for
detectors and understanding of their limitations. Although it has been noted
before that entropy is not all things to all applications, for example see [3, 9,
11], this is the first study we are aware of which provides a rigorous quantitative
analysis and a systematic investigation. We believe that the insights are very
valuable for more general settings and also that the techniques can be extended
to analyse more realistic attack scenarios.

In Section 2 examples are used to illustrate some of the key traps one can
fall into from assuming that entropy captures changes in distribution shape.
Section 3 develops the technical results that enable ‘optimal camouflage’, which
are then used in Section 4 to explore attack detection using an entropy based
detector. We conclude and discuss future work in Section 5.

2 Entropy

After introducing the definition of entropy, we explore, using a number of con-
crete examples, the dangers of simplistic impressions as to the relationship be-
tween distribution shape and entropy. In particular, these examples give insight
into what detectors might hope to detect and what they might miss, and hence
help us better understand why attackers can evade the entropy detector with
surprising ease.
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2.1 Preliminaries

We view Internet traffic as an infinite stream of packets passing by a passive
monitoring point, processed in batches according to contiguous constant width
measurement intervals. Within a single such interval consisting of V packets, and
given a metric of interest (a function of packet header information), each packet
is mapped to one of N classes, resulting in a sequence {a1, a2, . . . , aV } over the
bin where aj ∈ {1, 2, . . . , N}. The associated empirical distribution D is given

by D = {p1, p2, . . . , pN}, where pi = fi/V , fi = |{j : aj = i}| and
∑N

i=1
pi = 1.

The Shannon (empirical) entropy for D is defined as

H(D) = −

N∑

i=1

pi log pi,

where 0 log 0 = 0, and logarithms are base 2. Provided the alphabet size N is
finite, entropy is maximal when the distribution is uniform {1/N, 1/N, . . . , 1/N}.
In contrast, the minimum possible entropy of zero occurs when probability is
maximally concentrated: pj = 1 for some j and pi = 0 otherwise.

2.2 Connecting Entropy and Distribution Shape

As a statistic summarising a distribution, entropy might be expected to be alike
for distributions of similar shape, that is, those with only small differences in
their probabilities. On the other hand it would be substantially different for ones
with radically different shapes. In fact, implicitly or explicitly, this is one of the
principles that entropy based detection relies on. Unfortunately, neither of these
hold true as we now show.
Order: Although there is no commonly agreed non-parametric definition of
distribution ‘shape’, few would claim that the distributions, DG1 and DG2, shown
in Fig 1(a),(b) have similar shapes. However, they share exactly the same entropy
due to the fact that DG1 (a truncated, renormalised, geometric distribution with
p = 0.607), is an ordered version of DG2 and entropy is blind to order. Although
this is well understood, nonetheless order invariance gives a wealth of examples
where very large probability differences are not reflected at all in entropy.
Shape: A natural question is whether all ‘dramatic’ examples involve ordering.
The answer is no. Unless N = 2, the set of distributions with a given H > 0 is
uncountably infinite, even if they are first ordered. More concretely, consider the
examples in Fig 1(c),(d). One can ask “Which distribution is closer to DG1, DG3

or Dv?”, to which “Dv” is probably the answer of 99.9% of readers, including
statisticians. Not only do the shapes of DG1 and Dv seem qualitatively very
similar, but the probability ranges [0.0044, 0.3961] and [0.0092, 0.3358] are also
quite close, compared to [0.0493, 0.5560] from DG3. However, entropy concludes
differently. In fact DG3 has the same entropy as DG1, whereas Dv has an entropy
over 10% greater.
Heavy hitters: We would reasonably expect that entropy would be relatively
sensitive to large changes in the most significant probabilities, or ‘heavy hitters’,
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Fig. 1. Four distributions DG1,DG2,DG3 and Dv with N = 10 where: H(DG1) =
H(DG2) = H(DG3) = 2.40 < H(Dv) = 2.64.

as low probabilities contribute little individually to H since pi log pi → 0 when
pi → 0. In fact this can be far from the case.

Suppose that outcome i = 1 of DG1 disappears for some reason (such as all
traffic from a very popular server being rerouted around the monitoring point).
Thus its probability p1, the largest carrying almost 40% of the total, falls to
zero, yet despite this the new renormalised distribution has an entropy of 2.37
compared to 2.40 originally, a mere 1.3% decline. The reason lies in the shape of
the remainder of the (reordered) distribution combined with the compensating
effect of renormalisation.

More generally, the following expression describes the impact of the removal
of a single outcome:

H0 = −pl log pl − (1 − pl) log(1 − pl) + (1 − pl)H(DR), (1)

where pl is the missing probability, and H(DR) the entropy of the renormalised
distribution DR consisting of all the other probabilities except pl. Clearly there
are cases when H0 = H(DR), that is when the missing probability has no impact
on the entropy at all! In fact, simple algebra shows that the removal of the r
largest probabilities of a truncated geometric distribution is the same as that
resulting from the removal of the r smallest ones. Thus, failure to track the
largest probabilities does not affect entropy much since their absence has the
same effect as omitting the same number of small probabilities, which is small
(provided r is not too large).

Although the details of the above analysis were based on the special prop-
erties of the geometric distribution, it nonetheless highlights a far more general
point, that assumptions on how entropy is influenced by distribution features
cannot be taken for granted.
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It is of course well known that, like other statistics, entropy provides only
a coarse summary of data, and so must necessarily be blind to many features.
The key message of this section is that the details of the connection between
distribution ‘shape’ and entropy may be counterintuitive, which in the context
of anomaly detection strongly motivates a precise quantitative understanding of
the connection between the two.

3 Entropy in Attack Detection

In this section we examine the use of entropy in the context of Internet attacks
and their measurement based detection. Here an attacker sends attack traffic
into the network, which he may attempt to disguise, and the detector seeks to
detect his activities using an entropy based anomaly detector. In this paper our
explicit focus is on optimal camouflage strategies for the attacker, but these two
sides of the same battle are very closely related as we make clearer below.

Here we flesh out entropy-specific issues using an idealised proof of concept
model, rather than attempting to provide a realistic description of network at-
tacks or detection. Our aim is to provide rigorous results and insights, and an
approach, which can be used as tools in the study of entropy-based anomaly
detection. In Section 4 we give an example showing how more complex scenarios
can be built up using the building blocks we provide.

3.1 Model

Detector We assume that the detector knows a benchmark distribution D0

with an entropy of H0 corresponding to normal (and attack free) traffic, and
also knows the histogram D from the current time interval, summarised by its
empirical entropy H. The detection mechanism is simple: an attack is declared
if H differs from H0 by more than a threshold θH ≥ 0, or the detector is silent
if H falls in the interval [(1 − θH)H0, (1 + θH)H0].

In practice there are many issues making the determination of D0 and H0 dif-
ficult, and furthermore, H cannot in general be precisely measured. We subsume
each of these effects into the need to describe the sensitivity of the detector,
which we do through θH.
Attacker For our purpose an attack is the presence of packets sent by the
attacker with malicious intent which pass by the monitoring point during the
measurement interval. We model it by the number VA of attack packets, the set T
of class indices in which they appear for the chosen metric, and their distribution
across T . During an attack the measurement interval contains V0 + VA packets
with an attack intensity of VA, resulting in the modified distribution D.

Attacks require resources to mount. We measure the cost of an attack (per
measurement interval) to the attacker by the number of packets he sends. For
a given VA, depending on the nature of the attack may have some flexibility
through the choice of T to reduce his impact on H and hence the chance of
detection. We call this passive camouflage. Here we assume that the attacker
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knows D0. Although this is a quite conservative assumption in practice, it is
plausible that the attacker could learn it over time. When passive camouflage
is impossible or insufficient, then the attacker may opt to augment it by using
active camouflage through sending a number VC of additional camouflage packets

in a tailored spread over indices design to further reduce the impact on H. So
the traffic volume becomes V0 + VA + VC with a camouflage cost of VC . The
resulting camouflaged distribution is given by DC . How to camouflage actively
and efficiently is one of the main points we focus on.

3.2 Optimal Camouflage

The problem of designing camouflage strategies is formulated as follows. The
attacked traffic histogram D = {p1, . . . , pN} (without loss of generality, indexed
in non-increasing order) has entropy H which by definition is outside of the
perceived normal range [(1−θH)H0, (1+θH)H0], and so will trigger an alarm. To
hide from the detector, the attacker must disguise itself by ‘dragging’ the entropy
back to some target entropy HT lying within the normal range. According to the
difference between H and HT the strategies are different. In general, if HT >
H then the attacker needs to equalise the probabilities; otherwise, he should
concentrate them.

Changes in the probabilities can be achieved primarily in two ways: through
sending extra packets (targeted increments), or by somehow removing normal
traffic (decrements). We consider the ‘increment only’ scenario in this paper, as
this is clearly directly feasible for the attacker.

We consider optimal camouflage, that is how to achieve a given HT at min-
imal cost, that is, with the smallest possible number VC of camouflage packets
sent. This also reduces the chances that the attack would be captured by other
techniques, such as by volume detection.
Formulating the original problem: Let δi denote the increment of prob-
ability pi due to camouflage for constant V0 and VA. Then the camouflage cost
is calculated as VC = (V0 + VA)∆ with ∆ =

∑N
i=1

δi. Hence the optimisation
problem can be formulated as:

Min∆ : min
{δi}

∆, s.t. δi ≥ 0 ∀i and H(DC) = HT ,

where DC = {(pi + δi)/(1 + ∆), i = 1, 2, . . . , N} and 1 + ∆ renormalises the
distribution since all increments are positive.

In other words, we find the smallest increment ‘budget’ which can achieve
the target entropy. Since the objective function ∆ is a component of the renoma-
lisation factor, it turns out that this problem is best solved through first solving
the inverse problem, where we find the extremal H using (all of) a fixed budget.
Formulating the inverse problem: If HT > H then the inverse problem is

MaxH : max
{δi}

H(DC), s.t. δi ≥ 0 and

N∑

i=1

δi = c,
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for a constant c. Otherwise, if HT < H it becomes

MinH : min
{δi}

H(DC), s.t. δi ≥ 0 and
N∑

i=1

δi = c.

As the renormalisation factor, 1+c, is determined, the above problems are equiv-
alent to the ones below under the same constraints (resp. MaxH and MinH):

MinH− : min
{δi}

N∑

i=1

(pi+δi) log(pi+δi) and MaxH− : max
{δi}

N∑

i=1

(pi+δi) log(pi+δi).

Solving the inverse problems: Consider MaxH, that is to solve MinH−,
whose objective function is convex and constraints belong to a convex set. The
global minimum can be solved using Lagrange multipliers and the Karush-Kuhn-
Tucker (KKT) conditions. We define the Lagrange function as:

Λ =

N∑

i=1

(pi + δi) log(pi + δi) + µ(

N∑

i=1

δi − c) −

N∑

i=1

λiδi.

For simplicity, we consider the natural logarithm here. The KKT conditions are
given by

∑N
i=1

δi − c = 0, log(pi + δi) + 1 + µ − λi = 0, λiδi = 0, δi ≥ 0 and
λi ≥ 0, for all i.

Consider the following two cases: i) If λi > 0, then δi = 0. Because δi =
eλi−µ−1 − pi > e−µ−1 − pi, we can write δi = (e−µ−1 − pi)

+. ii) If λi = 0, then
δi = e−µ−1 − pi ≥ 0. Overall, δi can be written as δi = (e−µ−1 − pi)

+. Then µ

is determined by
∑N

i=1
(e−µ−1 − pi)

+ − c = 0, followed by the solution for δi.
We see that in the optimal solution {δi} decomposes naturally into two sub-

sets. One contains zero δi’s, which are applied to large probabilities that stay
invariant. The other consists of positive δi’s, which are given to small probabili-
ties in order to raise them to a common level, namely pi + δi = e−µ−1.

To solve MinH (i.e. MaxH−), we make use of the following inequality.

(px + δx) log(px + δx) + (py + δy) log(py + δy) ≥

(px + δx + δy) log(px + δx + δy) + py log py (2)

if px ≥ py ≥ 0 and δx, δy ≥ 0, which follows the fact that the function Fǫ(z) =
(z + ǫ) log(z + ǫ) − z log z is strictly monotonically increasing for any ǫ > 0 and
z > 0. In fact, Equation (2) states that the difference between two probabilities
grows (with all others constant), then the entropy drops, whereas the entropy
rises when the contrast between them reduces. Following (2), clearly, the optimal
solution for MinH is δ1 = c and δi = 0 ∀i 6= 1 because moving all increments to
the largest probability p1 reduces the overall entropy.
Solving the original problem: From the solutions to the inverse problems
we observe that the maximal entropy increases monotonically as the ‘quota’ c
rises (proof omitted due to space constraints), and it reaches the maximum,
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log N , when c = cm =
∑N

i=1
(p1 − pi). Afterwards, the optimal entropy stays at

the maximum, since once the distribution has been made uniform further ‘top-
ups’ can be made evenly to maintain uniformity. Similarly, the minimal entropy
decreases as c rises monotonically and it approaches 0 when c goes to infinity.
Typically HT will be set to either [(1−θH)H0, (1+θH)H0], the minimum needed
to fall under the detector’s radar. Note that this inverse problem solution can
be used to calibrate the detector, since it provides the largest possible entropy
‘response’ corresponding to a distribution changing ‘signal’ of a given size.

Considering now the original problem, for HT > H, the minimal value of the
total increment required is unique because the inverse solution taking [0, cm] 7→
[H, log N ] is 1-1 onto. The increment should be spread over smallest probabilities
to raise them to an uniform value. As for HT < H0, the minimal total increment
is also unique because the inverse solution taking [0,∞) 7→ (0,H] is likewise 1-1
onto. The increment is entirely allocated to the largest probabilities. To actually
solve for the minimal ∆, the entropy curve can be plotted as a function of ∆
based on the solutions of MaxH and MinH. Then the optimal ∆ can be quickly
obtained by a numerical search.

Through solving the optimisation problems above, we obtain the technical
results for camouflaging attacks from entropy based detection at minimal cost.
These results also provide the insight into entropy’s behaviour as a function of
distribution shape.

4 Empirical Results

In this section we show how the results of the previous section can be used to an-
swer core questions of interest to both the attacker and detector, such as whether
an attack can be detected, and whether it can be disguised and at what cost. We
begin with distributions from traffic traces, where we explore attacks on a single
distribution and their camouflage, and then show how the camouflage technique
can be extended to multiple distributions based on multiple traffic metrics. We
then use idealised models to cleanly investigate a number of phenomena as a
function of parameters. We focus on the case when the attack is concentrated on
a single class index i = t, that is, T = {t}. Nevertheless, the results below are
generally valid for the concentrated attacks targeting a small number of indices.

4.1 Traffic Traces

We use 24 hours, from 00:00 to 23:59 March 30, 2009, of a 96-hour long trace
captured from an OC-3 link, from the “Measurement and Analysis on the WIDE
Internet” group (MAWI). The time series of interest were extracted using Wire-
Shark and our own C programs, with entropy calculations in MatLab. We focus
mainly on a representative 5 minute time interval from 15:30 March 30, 2009.
(5 minute intervals are commonly used, e.g. [7, 10]).
Concentrated attack detection

We take the packet count per destination IP address histogram (reordered),
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Fig. 2. Distributions of normal traffic, under the attack and after camouflage.
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Fig. 3. Camouflage costs while attacking various targets with the intensity VA = 0.25V0

over 8 time bins with detection sensitivity θH = 0.05.

shown in Fig 2, as the benchmark distribution with H0 = 8.92 and N = 40889,
and apply a concentrated attack with intensity VA = 0.25V0 at the target index
t = 12 (with p12 = 0.0105). This could arise for example as the result of a DoS
attack when the packet metric is the destination IP, since then all VA packets
appear at a single index corresponding to the server under attack.

The attacker is aware that his attack has lowered the original entropy appre-
ciably (by 12.48%). Seeking complete anonymity, he wishes to know the minimal
number VC of active camouflage packets needed to be invisible even to a per-
fect detector θH = 0. Since the attack has lowered entropy from H0 to H, the
camouflage packets must be placed so as to increase it back up to HT = H0. Ac-
cording to the camouflage scheme built in Section 3, the strategy reduces to the
following: given the reordered version of D, say D′ = {p′i}, the opponent should
increase the smallest v̄ probabilities to the same value. In the case of Fig 2,
which also shows the camouflaged solution DC with H(DC) = 8.92, v̄ = 34527
and VC = 0.135V .

We also examined 8 intervals over the 24 hours with the same attack intensity,
VA = 0.25V , but various attacking targets, t = [1, 12, 2000] with the sensitivity
θH = 0.05. The results are similar to those for the representative interval above,
and the costs over the 8 bins are shown in Fig 3. We observe that attacking
any of these indexes results in an entropy drop. The larger the probability the
greater the decrease, and so the higher the camouflage cost.

The above discussion is only an example. The same analysis is applicable to
other concentrated attacks and detection based on other metrics. For example, a
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worm attack may use fixed source port numbers, resulting in significant changes
in a few indices of the source port distribution.
Complex detection scenarios

Some studies [7, 10] have considered the use of entropy of multiple distribu-
tions (e.g. destination IP addresses plus destination ports) in order to improve
detection sensitivity. Specifically, an attack is declared if the entropy of any dis-
tribution under monitoring is out of its normal range. We now show that this
does not increase the difficulty of camouflage compared to the single-metric case.
We continue to use the 5 minute interval from 15:30 as our example.

Suppose that there is a DDoS attack with intensity VA = 0.25V0 targeting
index t = 12 of the (reordered) destination IP distribution and t = 3 of the
(reordered) destination port distribution. Individually, the camouflage costs are
0.073V0 and 0.052V0 at sensitivity θH = 0.05. To evade detection based on the
distribution pair, the camouflage cost is simply 0.073V0 = max{0.073V0, 0.052V0}
because each packet can be used to camouflage either metric independently. The
camouflage strategy for the address distribution is the same as that for the indi-
vidual detection, whereas for the port distribution the attacker could use 0.052V0

camouflage packets to change the entropy to the desired value as before, and then
use the remaining 0.021V0 packets to improve the port-camouflage further. In
a similar way, the camouflage technique can be applied to other scenarios with
more complex detection mechanisms such as in [5].

4.2 Synthetic Distributions

We now provide a more systematic investigation of the attacker-detector battle
using a simplified model distribution, specifically a truncated Zipf with s = 1.5,
N = 104 and H0 = 4.47.
Imperfect detector Clearly, with less sensitive detectors the camouflage pos-
sibilities grow, as seen in Fig 4(a), which gives an example of how, for a fixed
target t = 12 and for each of several different sensitivity levels, the camouflage
cost VC varies as a function of the attack intensity. Not surprisingly, the range of
intensities where the cost is zero increases monotonically with θH. When θH = 0
this is only possible at a single value of intensity (VA = 0.09V0), but the range
expands to (0, 0.17], (0, 0.25] as θH rises through 0.02, 0.05 respectively. For a
fixed attack intensity, whenever camouflage is needed, the volume of camouflage
required is monotonically decreasing in θH.

Intuitively, we expect that concentrated attacks lower entropy since they
concentrate probabilities, but this is not always true. The attack may cause an
entropy rise when it is moderate. The active camouflage cost for VA ∈ (0, 0.09V0)
and θH = 0 in Fig 4(a) is an example. In addition, camouflage volume is mono-
tonic in attack intensity when the resulting entropy reduces. But this monotonic-
ity does not hold when the entropy increases.
Relative costs Sometimes the attacker may be more interested in the marginal
cost of camouflage rather than the absolute. Fig 4(b) gives the relative cost cor-
responding to Fig 4(a). We see that for highly intensive attacks like VA = V0

the relative and absolute costs tell a similar story. However, when the attack
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Fig. 4. Camouflage costs when attacking t = 12 for different detector sensitivities.
(a): absolute cost. (b): relative cost.
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Fig. 5. Camouflage costs while targeting different indices with VA = 0.1V0.

size is small, trying to protect oneself against a perfect detector becomes very
expensive relative to the attack volume.
Various targets Finally, we study the camouflage cost as a function of the
target t at a constant attack intensity. Fig 5 shows the costs for VA = 0.1V0

targeting different indices. Entropy decreases as the result of an attack for small
t’s, and then the behaviour of VC is simple and monotonic in both t and θH. Once
t is large enough, the entropy rises rather than drops, and then the camouflage
strategy is no longer to raise probabilities in the tail, but to increase the largest:
p1. However, a given absolute change in p1 influences entropy less than the same
change at smaller probabilities, resulting in a larger value of VC being required to
rebalance the entropy. Consequently, the camouflage cost goes up significantly,
in particular for a sensitive detector.

In our examples we assumed the attacker was capable of mounting an attack
with relatively large VA, which could constitute a very large amount of traffic
on high capacity links. Even then we saw that an H based detector often failed
to detect these attacks. If VA is much smaller, which is more realistic in many
contexts, the attack will be much harder to detect. In any event, we provide the
framework and technical results needed to explore these and other related issues.

5 Conclusions and Future Work

We have examined the behaviour of Shannon entropy as a summary statistic, and
pointed out that it suffers from a number of significant weaknesses in the context
of network attack detection. We formulated and solved optimisation problems
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yielding the first rigorous results on ‘optimal camouflage’. These are of relevance
both to detectors and attackers to understand how entropy signatures can be
either passively or actively reduced, and to evaluate the cost required to make
them invisible to detectors.

Attack and detection strategies are subject to an arms race. We have pro-
vided the underlying tools essential to analyse both sides of the battle in simple
scenarios, and have shown how more complex cases can be built up using them.
We hope our generic approach will be useful as a foundation for the development
of new detectors against ever more sophisticated attackers.

There are many directions for future work. These include allowing both decre-
ment and increment based camouflage and discussing distributed attacks. Other
questions of interest include investigating optimal camouflage strategies when
the attacker has only limited information about the benchmark distribution un-
derlying the detection, and how to overcome the limitations of entropy.
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