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Abstract. Packet classification is a fundamental task for network de-
vices such as edge routers, firewalls, and intrusion detection systems.
Currently, most vendors use Ternary Content Addressable Memories
(TCAMs) to achieve high-performance packet classification. TCAMs use
parallel hardware to check all rules simultaneously. Despite their high
speed, TCAMs have a problem in dealing with ranges efficiently. Many
packet classification rules contain range specifications, each of which
needs to be translated into multiple prefixes to store in a TCAM. Such
translation may result in an exponential increase in the number of re-
quired TCAM entries. In this paper, we propose a bidirectional range
extension algorithm to solve this problem. The proposed algorithm uses
at most two TCAM entries to represent a range, and can be pipelined
to deal with multiple range fields in a packet header. Since this algo-
rithm assumes a non-redundant rule set, i.e., no range overlap between
different rules, which can be obtained by applying our previous work on
redundancy removal in TCAM using a tree representation of rules. Our
experiments show a more than 75% reduction in the number of TCAM
entries by applying the bidirectional range extension algorithm to real-
world rule sets.
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1 Introduction

There are a number of network services that require packet classification, such
as policy-based routing, firewalls, provision of differentiated qualities of service,
and traffic billing. In each case, it is necessary to determine which flow an arriv-
ing packet belongs to, for example, where to forward it, whether to forward or
filter it, what class of service it should receive, or how much should be charged
for transporting it. As packet classification has been widely deployed on the In-
ternet, demand for efficient packet classification grows. The function of a packet
classification system is to map each packet to a decision according to a sequence
of rules, which is called a packet classifier. The rules specified in a packet clas-
sifier may or may not be mutually exclusive; two rules may overlap. When it



happens with no explicit priorities specified, we follow the convention that a
rule closer to the top of the list takes priority. Table 1 shows a simple packet
classifier of four rules.

Table 1. A Simple Header Rule Set

Rule Type Source IP Destination IP Source Port Destination Port Decision

r1 TCP * 192.168.0.0/16 <1024 * accept

r2 TCP * 192.168.14.1 * 139 discard

r3 UDP 192.168.0.0/16 * * 700:900 accept

r4 TCP * * * * discard

Perhaps the most popular method for high-speed packet classification in prac-
tice is to use a Ternary Content Addressable Memory (TCAM) [1]. A TCAM is
a memory chip where each entry can store a packet classification rule in ternary
form. It stores data patterns in the form of (value, bit mask) pairs. A query
key is simultaneously compared against all the patterns stored in a TCAM. A
key q is said to match a stored pattern (v,m) if q&m = v&m, where “&” is
the bit-wise logical AND operator. Given a packet, the TCAM hardware can
compare the packet with all stored rules in parallel and then return the decision
of the first rule that the packet matches through a priority encoder. Thus, it
takes O(1) time to find the decision for any given packet. Because of their high
speed, TCAMs have become the industrial standard for high speed packet clas-
sification [2]. The architecture of a TCAM used in packet classification is shown
in Fig. 1.
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Fig. 1. TCAMs used in the packet classifications



A key (Protocol, Source IP address, Destination IP address, Source Port, and
Destination Port) is stored in the input register and the rules are stored in the
TCAM entries. The key compares with all the entries in parallel and the results
are stored in the match vector, where 1’s represent that the corresponding entries
match the key, and the priority encoder chooses the match with the highest
priority. At last, the output signal is used to find the corresponding action.

Despite their high speed, TCAMs have two major drawbacks when used in
packet classifiers. First, they consume a large amount of power and have high
hardware cost. Thus, their capacity in packet classifiers is often limited. Second,
they are inefficient when applied to packet classifiers with port number ranges,
because TCAMs can only store rules in ternary form, which means that port
numbers need to be converted to one or more prefixes before being stored in
TCAMs. This may lead to a significant increase in the number of TCAM entries
needed to encode a rule. For example, 30 prefixes are needed to represent a
single source port range [1, 65534], and 20 prefixes are needed to represent a
destination port range [1, 2046]. Thus, 30×20 = 600 TCAM entries are required
to represent a single rule with these two ranges. We observe that packet classifiers
typically have at most one port range in each rule, and rules specifying two port
ranges are rare. However, a small number of such rules can consume most of the
TCAM entries and the number of such rules is increasing. Therefore, minimizing
the number of required TCAM entries is crucial.

In this paper, we first introduce our previous work on redundancy removal
in TCAM using a tree representation of rules [3], which removes all redundancy
in the original rule set to make sure each packet matches and only matches a
single new rule. Then we propose a bidirectional range extension algorithm to
solve the range explosion problem based on the non-redundant rule set. The
proposed algorithm uses at most two TCAM entries to represent a range, and
can be pipelined to deal with multiple range fields in a packet header. In our
experiments, we achieve a total reduction of 84.27% in the number of TCAM
entries consumption.

The remainder of the paper is organized as follows. Section 2 presents pre-
vious work related to this paper. Section 3 discusses our previous work on re-
moving redundancies in packet classification rules, and Section 4 proposes our
bidirectional range extension algorithm to reduce the number of TCAM entries.
Then the experimental results are presented in Section 5. Finally, we conclude
in Section 6.

2 Related Work

Previous work exploring solutions to deal with the range expansion problem falls
into two major categories: hardware-based solutions, which require changing
TCAM hardware circuits, and software-based solutions, which do not require
such changes. Below, we review previous work in these two categories.

Hardware-based solutions: The basic idea of hardware-based solutions is to mod-
ify TCAM circuits and architecture [2, 4–7]. For example, van Lunteren et al.



proposed a method of adding comparators at each entry to better accommodate
range matching in packet classifiers [6]. While this allows to use TCAMs more
efficiently, any solution from this research line has some drawbacks such as the
cost of hardware modification.

Software-based solutions: Software-based solutions are more likely to be adopted
by networking vendors and ISPs because they do not require changing TCAM
hardware or existing packet classification systems. Many software-based solu-
tions have been proposed [8–15, 3] to reduce the TCAM entry consumption.
Their basic idea is to preprocess ranges that appear in a packet classifier or con-
vert a given packet classifier to another semantically-equivalent packet classifier
that requires fewer TCAM entries, and then store the new rule set in a TCAM.
Hence, the TCAM circuits need not be modified to implement range storage. Al-
though these methods can typically achieve a 40–60% reduction in the number
of TCAM entries by reducing redundancy in the rule set or combining multiple
TCAM entries into a single TCAM entry, more reduction is desirable because
of the low capacity and hist cost of TCAMs. Our work first reduces the redun-
dancy in the rule set, and then extends the range in both directions, upward
and downward, storing a single range into at most two TCAM entries. To the
best of our knowledge, this article is the first attempt at using a range extension
method to reduce the TCAM entries consumption.

3 Redundancy Removal Tree

Packet classifiers usually check the following five fields in each packet header:
protocol type, source port number, destination port number, source IP address,
and destination IP address. When a TCAM is used to implement a packet classi-
fier, all rules stored in TCAM entries must be represented as exact binary values
or binary values with wildcard bits. However, in a typical packet classification
rule, some fields such as source and destination port numbers are represented as
integer ranges rather than exact values or binary prefix values. Thus, we need
to convert a rule with fields represented as integer ranges into one or more bi-
nary prefixes, which may lead to range expansion. During the process of range
expansion, each field of a rule should be expanded separately. For example, if a
3-bit field of a rule is [1, 6], the corresponding minimum set of prefixes covering
the range includes 001, 01*, 10*, and 110. In the worst-case, range expansion
of a w-bit integer range yields 2w − 2 prefixes [16]. The next step to the range
expansion is to compute the cross-product of obtained prefix sets, resulting in
an exponential increase of the number of prefixes needed to replace a single rule.

The problem can be mitigated by removing redundancy in the original rule
set. Two rules in a packet classifier may overlap, which means that one packet
may match two or more rules. Besides, two rules in a packet classifier may conflict
with each other. In other words, two overlapping rules may have different deci-
sions. Many packet classifiers resolve conflicts by choosing the first match, which
has a higher priority. In firewalls, typical decisions include “accept,” “discard,”
“accept with logging,” and “discard with logging.”



Our goal is to reduce redundancy in a given packet classifier by removing
redundant rules and overlapping parts. To achieve this goal, we build a Minimum
Range Tree T for a packet classifier C: (r1, r2, . . . , rn) over fields F1, . . . , Fd. The
tree T must satisfy the followings:

– The height of the tree is equal to the number of fields in the packet classifier.

– Edges of each depth of the tree store the ranges of the corresponding field.
All edges in the same depth cover the whole range of the field, and there is
no overlap between any pair of them.

– A directed path from a leaf node to the root is called a decision path. For a
given packet, the tree has exactly one matched decision path.

– Each leaf node is labeled with the decision associated with the corresponding
decision path.

Fig. 3(a) shows a range tree for the simple packet classifier in Fig. 2. In this
example, we assume every packet has only two fields, F1 and F2, and the domain
of each field is [0, 9].

r1 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 9] → accept

r2 : F1 ∈ [0, 4] ∧ F2 ∈ [4, 9] → accept

r3 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept

r4 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 2] → discard

r5 : F1 ∈ [0, 9] ∧ F2 ∈ [0, 9] → discard

Fig. 2. A simple packet classifier
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Fig. 3. Constructing a Minimum-Range-Tree for the Packet Classifier in Fig. 1



In Fig. 3, each edge represents a range in the corresponding field, and we
use number 1 as a shorthand for “accept” and number 0 as a shorthand for
“discard” in labeling leaf nodes. We first build a tree as in Fig. 3(a) according
to the packet classifier in Fig. 2, then we combine two neighboring leaf nodes
if they have the same decision and share the same parent node. The Minimum-
Range-Tree is shown in Fig. 3(b). Now we get three new non-redundant rules
based on the Minimum-Range-Tree. Please see previous work [3] for details.

4 Proposed Algorithm

After removing redundancies with the minimum range tree, there remains no
overlap between different rules, and thus we can sort all the new rules by their
ranges in a field. However, this does not solve the range explosion problem;
it only mitigates it. Still, a single range may need multiple TCAM entries to
represent itself. In the worst case, 2m − 2 entries are needed to store a single
m-bit range. For a 16-bit port range, it may need 30 TCAM entries. In order to
further reduce the number of TCAM entries, we propose a bidirectional range
extension, which only needs at most two TCAM entries to represent a single
range regardless of the length of the range.

4.1 Bidirectional Range Extension

Given a list of ranges, we assume that every value belongs to exactly one range,
that a range appearing earlier in the list has a higher priority than a range
appearing later, and that the output of range matching for each range is binary,
either 1 or 0. Note that applying the minimum range tree algorithm described in
Sec. 3 and sorting resulting ranges by the boundary values yield a list of ranges
satisfying these assumptions. Assuming these, we take the following steps to
reduce the number of required TCAM entries.

We divide each range into two parts, each of which is represented as a sin-
gle prefix. One part is called an upward extension and the other a downward
extension. It is demonstrated in Fig. 4. Given a range, e.g., [100001, 110101],
find a number N that belongs to the range and has the most consecutive 0’s
starting at the least significant bit (LSB). In our example, N will be 110000.
Convert all the rightmost consecutive 0’s of N into “don’t care” bits. The result
will be the upward extension (master entry). If N is equal to the lower bound of
the original range, this range does not need a downward extension. Otherwise,
the numeric prefix (excluding “don’t care” bits) of the upward extension minus
1 (10 in our example), followed by the same number of “don’t care” bits will
be the downward extension (slave entry) as shown in Fig. 4(a). We use the set
of all upward extensions as the master set and the set of downward extensions
as the slave set. Note that the master set has the same number of entries as
the number of ranges in the original list. On the other hand, the slave set only
contains entries for those ranges where the original range is not a subset of the
upward extension.
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Fig. 4. An example of how to divide a range and generate master/slave entries

Below, We prove that the original range is a subset of the master and slave
entries combined.

Proof: Assume that the range is [NL, NH]. Suppose NL =
∑n−1

i=0 bLi 2
i and

NH =
∑n−1

i=0 bHi 2
i, where bLi , b

H
i ∈ {0, 1}. Let N be the number in [NL, NH]

that has the longest consecutive zeros (n0 bits) starting at LSB. Thus, we have

N = 2n0 +
∑n−1

i=n0+1 bi2
i, where bi ∈ {0, 1}. Then the master entry is a range

[N , Nmaster], where Nmaster = N +
∑n0−1

i=0 2i with at least consecutive n0 + 1

1’s starting at LSB. Therefore, Nmaster + 1 = 2n0+1 +
∑n−1

i=n0+1 bi2
i, which has

at least n0 + 1 consecutive 0’s starting at LSB, or more 0’s than N , and thus
should not be in [NL, NH]. Therefore,

NH ≤ Nmaster . (1)

Similarly, the slave entry, if we have one, is a range [Nslave, N − 1], where

Nslave = N−2n0 =
∑n−1

i=n0+1 bi2
i. Note that Nslave has at least n0+1 consecutive

0’s starting at LSB, or more 0’s than N , and thus should not be in [NL, NH].
Therefore,

NL > Nslave . (2)

By Eq. 1 and Eq. 2, [NL, NH] is a subset of [Nslave, Nmaster].
Note that each of the master and slave entries can be represented by a single

prefix, and thus by a single TCAM entry.

4.2 Matching using Extended Ranges

A field of an incoming packet is compared against both the master and slave
sets; each set is stored in a separate TCAM. After knowing the decision from the



master set, we need to find out whether the matched entry has a corresponding
entry in the slave set. If there is no such entry, the decision in the master set
becomes the final decision; otherwise, we need to consider the corresponding
slave entry. In the slave set, we obtain the decision and the low-boundary (NL)
of the corresponding entry. If both decisions, one from the master set and the
other from the slave set, are identical, that becomes the final decision; otherwise
we compare the low-boundary from the slave set with the input key. If the low-
boundary is smaller than the key, we choose the decision from the slave set;
otherwise we choose the decision from the master set.

For the worst case, the single interval [1, 65534] requires only 2 TCAM entries
in our algorithm instead of 30 entries, which reduces about 93.3%.

5 Simulation Results

5.1 Experimental Results on Minimum Range Tree

For experiments, we collected rules from actual packet classifiers. Because rule
sets vary across different applications, we gathered as many rules as we could
and then randomly selected one thousand rules from them. For the Minimum
Range Tree, we compared the number of TCAM entries used by the original rules
and the number of TCAM entries used after removing redundancies using the
Minimum Range Tree. The simulation result showed that our algorithm reduces
66.4% of TCAM entries in total [3].

5.2 Analysis of Bidirectional Range Extension

In this subsection we analyze the performance of the proposed bidirectional range
extension algorithm on a single range, such as the destination port range. Given
the number of bits for the field, we generate every possible range whose length
is greater than 1 with the same probability. Thus, the generated rule set may
include ranges [0, 1], [0, 2], . . . , [0, 2n−1], [1, 2], [1, 3],. . . ,[2n−2, 2n−1], where
n is the number of bits of this field. And the simulation results are shown in
Table 2.

The percentages of entries saved with different field widths are shown in
Fig. 5. We can see that the percentage of entries saved by our algorithm increases
as the field width increases, and we can save 86.00% of TCAM entries of the
16-bit port number field. For the real-world rule sets we collected1, our algorithm
can save 77.47% and 74.81% entries for the destination port field and source port
field, respectively, excluding non-range rules. For a single 16-bit port number,
our approach reduces the average number of entries from 14.25 to 2.

For a rule with both destination port and source port ranges, our algorithm
can further save TCAM entries because of the multiplication effect. For the
scenarios shown in Table 2, our algorithm saves 98.04% of TCAM entries for
randomly generated rules with both destination port and source port fields, and

1 http://www.routeviews.org/



Table 2. Analysis of a Single Range

Range length # of TCAM entries # of TCAM entries Saving
(bits) with range extension w/o range extension (%)

1 1 1 0.00

2 9 10 10.00

3 49 65 24.62

4 225 355 36.62

5 961 1831 47.52

6 3969 9103 56.40

7 16129 43935 63.29

8 65025 206911 68.57

9 261121 955007 72.66

10 1046529 4335871 75.86

11 4190209 19421695 78.43

12 16769025 86033407 80.51

13 67092481 377595903 82.23

14 268402689 1644400639 83.68

15 1073676289 7114039295 84.91

16 4294836225 30602706943 86.00
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saves 82.78% for the ranges included in the real-world rule sets. The difference
between them is mainly caused by the fact that some popular ranges, such as [0,
1023], can be represented by a single prefix in real-world rule sets. If we include
rules without ranges in the simulation, our algorithm can save 53.18% TCAM
entries for the real-world rule sets.

From both redundancy removal using the Minimum Range Tree and the
bidirectional range extension, we can reduce 84.27% of entries for the real-world
rule sets with additional circuits such as two adders and a little latency.

6 Conclusion

In this paper, we proposed a bidirectional range extension algorithm to solve
the range explosion problem in TCAM. The proposed algorithm assumes a non-
redundant rule set, which can be achieved by previous work. Our algorithm
first divides a range into two ranges, and then extends the ranges upward and
downward to make each extended range consumes at most one TCAM entry. The
result is that each range consumes at most two TCAM entries. Our algorithm
significantly reduces the number of TCAM entries needed by a packet classifier.
In our experiments, after removing redundancies, we observed a reduction of
86.00% on average in the number of TCAM entries, and an overall reduction of
84.27% for real-world rule.
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