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Abstract. In this paper, we apply the theory predicting neighbor dis-
tribution of arbitrary random graphs to analyze the network coverage
of the peers in unstructured peer-to-peer(p2p) networks that use TTL-
based flooding mechanism for search and query. However, we find that
for many cases, the theory cannot be directly applied to obtain correct
estimate of network coverage due to the presence of certain types of
edges that we refer as cross and back edges. It is also observed that the
presence of cross and back edges in the p2p networks reduce the cover-
age of the peers and also generates large number of redundant messages,
thus wasting precious bandwidth. We refine the theory and develop a
model to estimate the network coverage of the peers in the presence
of cross and back edges. We simulate our model for different networks
with various degree distribution properties. The results indicate that our
models provide good estimates of second neighbor and network coverage
distribution. We perform a case study of the Gnutella networks to ana-
lyze the effects cross and back edges on network coverage and message
complexity in these networks. Based on our study, we propose a new
bootstrapping algorithm for Gnutella networks named HPC5 that sub-
stantially improves the network coverage and message complexity. The
results have been validated using simulations.

Keywords: Peer-to-Peer Networks, Network Coverage Models, Overlay
Networks, Gnutella

1 Introduction

The unstructured peer-to-peer (p2p) networks like Gnutella [1][2], Kazaa[3] and
FreeHaven[4] use broadcasting as their query and search mechanism. Thus the
query and search performance of these p2p networks are directly proportional to
the network coverage of the peers achieved through broadcasting. A high network
coverage of the peers implies that queries reach a large subset of peers in the
network, and thus yields better search performance. However, as of now, in most
unstructured p2p networks like Gnutella and Kazaa, the fundamental strategy
to improve coverage is to introduce more overlay links, thereby, leading to huge
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Internet traffic. With the unbridled growth of the p2p networks in the past few
years, the ISP’s are facing a huge problem of network congestion and bandwidth
consumption [5][6]. These problems are expected to be a big research challenge
in the forthcoming days, and several recent works have started addressing these
problems [5][7][8]. The scale of the problem increases as broadcast leads to re-
dundant message generation and consequently wastage of precious bandwidth.
However, properly analyzing the topological behavior of the networks and the
impact of topology on coverage and redundancy can provide new insights in
alleviating traffic and redundancy problems.

In this paper, we initially build up a basic analytical model to assess the
network coverage of p2p networks that uses TTL(2) based search and query
mechanisms. We limit our study to TTL(2) based networks, as search and query
in popular unstructured networks like Gnutella uses TTL(2) for most search
cases. TTL(3) is used only for rare searches; however, our models and results
can easily be generalized for TTL(3) searches as well. The basic model has been
developed using the theory applied to derive the distribution of first and second
neighbors of randomly selected node in large networks [9][10]. To the best of
our knowledge, this work is a pioneering work that applies the theories used to
estimate neighbor distribution in analyzing network coverage of p2p networks.
Further we propose a refinement of our basic model to perfect the estimation of
the neighbor distributions for networks that contain certain type of edges, which
we refer as cross and back edges. The effect of these edges is to reduce the cover-
age of the peers and increase message redundancy. Thus for finite-sized networks
with high cross and back edges, the results of the basic models tend to deviate
from the simulation results. We study the impact of these edges on the network
coverage of the peers and derive suitable models for the same. We compare the
results of the refined model with the simulation results; the comparison reveals
that the refined model produces accurate results of network coverage. Finally,
we apply our derivations on Gnutella networks and estimate its coverage based
on certain key statistics. We found that the existing Gnutella protocol gener-
ates a lot of redundant traffic and has low network coverage. Hence, we propose
a bootstrapping mechanism named HPC5 to improve the network coverage of
the Gnutella protocol. The superior performance of the proposed mechanism is
validated using simulations.

The rest of the paper is organized as follows: The theoretical concepts of
complex networks1 related to our model are discussed next. In section 3 we
discuss our derived model for network coverage in finite sized networks. In section
4, we analyze the Gnutella protocol and propose a new bootstrapping mechanism
for Gnutella. The simulation results are stated and discussed in section 6. Finally
we present our conclusion in section 7.

1 The theories developed to explain behaviors of large dynamic networks are loosely
termed as Complex Network Theory [11]
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2 Basic Model for First and Second Neighbor

Distributions

Most unstructured p2p networks use flooding as a means for search and querying.
Since flooding causes huge number of query packets to flow through the network,
thus consuming huge bandwidth, most p2p networks use a TTL-based flooding
scheme. The commonly used TTL value for ordinary searches in most networks
is 2. Thus when a peer broadcasts a message with TTL(2), the message reaches
its immediate neighboring peers as well as their neighbors. Thus the coverage
of a peer for a TTL(2) broadcast is the sum of its first and second neighbors.
Newman [10] derived models for the distribution of the number of first and second
neighbors of a node in a large graph. Suppose, in a large network with N nodes
(N is large), if pk denotes the probability of any random node in a network
having k first neighbors, then the first neighbor distribution — also referred
as degree distribution — of the nodes can be represented using a generating
function as,

G0(x) = p0 + p1(x) + p2(x
2) + p3(x

3) . . . . (1)

Thus the coefficient of xi in G0(x) gives the probability that any random node
in the network will have degree i. The average number of neighbors of a node is
given by,

〈z〉 = 1 · p1 + 2 · p2 + 3 · p3 + . . . = G′
0(1). (2)

Another important quantity is the distribution of the outgoing edges of a node
reached by following a randomly chosen edge. If Nk denotes the number of nodes
with degree k, then pk = Nk

N
, and the number of edges that leads to a node with

degree k equals kNk. Thus, the probability, p
(o)
k , of reaching a node with degree

k by following a randomly chosen edge is,

p
(o)
k =

kNk/N

(1 · N1 + 2 · N2 + 3 · N3 + . . . + (N − 1)NN−1) /N
=

kpk

〈z〉
. (3)

The generating function for the distribution of the outgoing edges of a node
reached by following a random edge can be represented as,

G1(x) =
1

〈z〉
· (

∑

kpkxk) =
G′

0(x)

G′
0(1)

. (4)

The coefficient of xi in G1(x) gives the probability that any randomly chosen
edge leads to a node with degree i. Suppose, we want to find the number of
second neighbors of a node, P . Let p̂ denote the connection probability between
any two random nodes in the network. When N is large and p̂ → 0, then the
probability that an outgoing edge from a neighbor of P connects to another
immediate neighbor of P , or to P itself is negligible. Moreover, under these
conditions, the probability that two neighbors of P will have another common
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node as neighbor is also negligible. According to power property of generating
functions, [G1(x)]

k
gives the distribution of the number of outgoing edges of k

independent nodes. Thus, the distribution of the number of second neighbors of
a node P , is given by,

S(x) =
∑

k

pk [G1(x)]
k

= G0(G1(x)). (5)

The total network coverage of a peer in p2p networks that use TTL(2) flood-
ing scheme is the sum of its number of first and second neighbors. Using the
above stated results, we can derive the generating function for the probability
distribution of the total network coverage of any peer in the network. Thus,
the distribution of the total node coverage of a peer P that deploys a TTL(2)
flooding mechanism is represented by the generating function C(x) as,

C(x) = G0(x) · S(x) (6)

Using these expressions, we can obtain the expected TTL(2) coverage, 〈c〉 of a
peer which is given as,

〈c〉 = C′(1). (7)

Limitations: The above stated derivations can be used to model the expected

1 2

Fig. 1. A portion of a p2p topology. The solid lines indicate the regular edges that
connect two peers. A fine broken line indicates a cross edge between two peers. A cross
edge is an edge that connects directly two immediate neighbors of a peer. A heavy
broken line indicates a back edge between two peers. Back edges are formed when
a neighbor P2 of peer P , connects to another peer, X, that is already connected to
another neighbor P1 of P .

first neighbor, second neighbor and total network coverage of any random node in
a network. In unstructured p2p networks that use TTL-based flooding for search
and query, the query messages reach the adjacent neighbors upto a number of
hops, specified by the TTL value. Thus these derivations can be used to model
the reachability of the queries in these networks. However, these expressions
provide correct reachability distributions only when the peers reached from a
source node through a TTL-based message does not form any cycles among
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themselves. But, for many real cases, this condition fails to hold. Since p2p
systems behave like social networks, the peers inherently form many short length
cycles. The cycles that affect the coverage of the peers are referred to as cross
and back edges as shown in fig. 1. A cross edge is formed when two adjacent
nodes of a peer, say P gets connected by an edge, whereas a back edge is formed
when a neighbor (say P2) of P connects to another peer, say X , that is already
connected to some other neighbor (say P1) of P . The presence of back and cross
edges reduces the coverage of a given source peer that use TTL(2) flood. This can
be directly interpreted from the figures 3(a) and 3(b), where the mean number
of second neighbors of a peer is actually much less than predicted by our basic
model. Thus in these cases, the basic model does not produce correct results
for coverage of peer in a network that uses broadcast mechanism. In order to
understand the actual coverage of the peers with a given degree distribution
and given probability of back and cross edges, we need to develop a model that
captures the effect of back and cross edges in the networks.

3 Network Coverage in Finite-sized Networks: Refined

Model

We derive models for coverage of a peer that uses TTL(2) flooding mechanism,
when the degree distribution of the network is known. We also assume that the
probability of a random edge being a back edge with respect to any source peer is
fixed and given as b. We derive the second neighbor and the coverage distribution
of any random peer in the network, while analytically deriving the cross-edge
probability and eliminating its effects. We assume the probability that a random
peer is of degree k be given as pk for all possible values of k. We derive the peer
coverage for these graphs, that deploys a TTL(2) broadcast mechanism for query
and search.

Let us assume that a network has N peers and a random peer P has k first
neighbors. Initially, we intend to find the distribution of the number of outgoing
edges, which are not cross edges, of a first neighbor of P . If a peer has j outgoing
edges, then i unique neighbors has to be chosen from N − (k + 1) peers — since
there are k first neighbors of P and P itself, so the total unique peers present in
the network from which P will have to choose is N − (k + 1). This can be done
in

(

N−k−1
i

)

ways. The rest of the j − i peers has to be chosen from k peers, and

this can be done in
(

k
j−i

)

ways. Thus, for any first neighbor of P having a total
of j outgoing edges, the probability of having i edges that are not cross edges,
is given as

Rk,i,j =

(

N−k−1
i

)(

k

j−i

)

(

N−1
j

) .
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Hence, for any random neighbor of P (having k first neighbors), the distribution
for having i non-cross edges, is given by

Rk,i =

k+i
∑

j=i

qj

[(

N−k−1
i

)(

k

j−i

)

(

N−1
j

)

]

, (8)

where qj is the probability of having j outgoing edges of a peer, reached by
selecting a random edge — as obtained from the coefficent of xj of G1(x) (Eq.
4). One must note that the values of j range from i to k + i. For any value of
j < i, the probability Rk,i,j becomes equal to zero. Similarly, when j > k + i,
the number of non-cross outgoing edges from j must be greater than i and hence
Rk,i,j is again equal to zero.

Thus, the distribution of the total number of non-cross outgoing edges from
any random neighbor (out of k first neighbors) of P , can be represented using
generating function as,

R̂k(x) =
∑

i′

Rk,i′x
i′ . (9)

Thus, the distribution of the total number of non-cross outgoing edges from all
the k first neighbors of P can be found from the power property of generating
functions and is given as,

Γk(x) =
[

R̂k(x)
]k

= Γk,0 + Γk,1x
1 + Γk,2x

2 + . . . (say), (10)

=
∑

m

Γk,mxm. (11)

Now, suppose the probability that any random edge is a back edge with respect
to the source node P is known and is denoted as b, then for a neighbor X with t
non-cross edges, the distribution of the number of non-back edges with respect
to source node P can be represented by the generating function as,

Qt(x) =
∑

γ≤t

(

t

γ

)

(1 − b)γ(b)t−γxγ , (12)

= 0 for γ > t. (13)

Thus, Qt(x) gives the distribution of the number of edges, out of a total of t
edges, from neighbor X of P that connects to distinct nodes. The distribution
of the actual number of unique peers to which k first neighbors of P connect is
given by,

Ak(x) =
∑

t′

Γk,t′Qt′(x), (14)

and the distribution of the number of unique second neighbors for any random
peer in a network is,

Ŝ(x) =
∑

k′

pk′Ak′ (x). (15)
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The total coverage of the network will be given by

Ĉ(x) = G0(x) · Ŝ(x) (16)

The model is experimentally validated for networks with Poisson and power-law
degree distributions. The validation results are presented cohesively in section 6
after we explain the Gnutella model and the improvement algorithm in 4. We
also verified the model for Gnutella networks based on its certain key statistics.

4 Analysis of the Gnutella protocol

One of the aims of the paper is to verify the correctness of the refined model
in Gnutella networks. Moreover, we propose techniques to modify the exist-
ing Gnutella protocol to eliminate back and cross edges thus significantly en-
hancing its coverage. We have build up a Gnutella prototype in order to carry
out the experiments. The prototype is built by studying the basic model of
Gnutella, its bootstrapping protocol, and its basic search technique. Certain key
statistics of the Gnutella network, based on studies conducted by several re-
searchers[1][12][13][14] is also used to develop a prototype that we discuss next.
Our prototype reveals that Gnutella forms large number of back and cross edges.
Since Gnutella uses TTL(2) flooding for most ordinary searches, these back and
cross edges generate large redundant queries at the peers. Based on these obser-
vations, we propose certain changes in the bootstrapping protocol of Gnutella
that reduces query redundancy and improves network coverage (results presented
in section 6).

Basic Model : Gnutella 0.6 is a two-tier overlay network, consisting of two types
of nodes : ultra-peer and leaf-peer (the term peer represents both ultra and leaf
peer). An ultra-peer is connected with a limited number of other ultra-peers and
leaf-peers. A leaf-peer is connected with some ultra-peers. However, there is no
direct connection between any two leaf-peers in the overlay network.

Bootstrapping and Handshaking Protocol : Many software clients are used to
access the Gnutella network (like Limewire, Bearshare, Gtk-gnutella). The most
popular client software, Limewire’s handshake protocol is used in our prototype.
Through handshaking, a peer establishes connection with any other ultra-peer.
To start handshake protocol a peer first collects the address of an online ultra-
peer from a pool of online ultra-peers. A peer can collect the list of online peers
from hardcoded address/es and/or from GwebCache systems [15] and/or through
pong-caching and/or from its own hard-disk which has obtained a list of online
ultra-peers in the previous run [12]. A handshake protocol is used to make new
connections [1, 2].

Basic Search Technique : The network follows limited flood based query search.
A query of an ultra-peer is forwarded to its leaf-peers with TTL(0) and to
all its ultra-neighbors with one less TTL only when (TTL > 0). A leaf-peer
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does not forward query received from an ultra-peer. On the other hand ultra-
peers perform query searching on behalf of their leaf peers. The query of a leaf-
peer is initially sent to its connected ultra-peers. All the connected ultra-peers
simultaneously forward the query to their neighbor ultra-peers up to a limited
number of hops. While TTL(2) is used for most searches, TTL(3) is used for
rare searches.

Key Statistics : Certain key statistics of the current Gnutella network are as
follows [1][14]: Currently the number of peers in Gnutella Network is around
2000k, out of which 100k are live at any point of time[12]; the number of ultra-
peers is around 15–16% of the total number of live peers. An ultra-peer connects
to a maximum of 32 other ultra-peers, and to a maximum of 30 leaf peers, where
as a leaf-peer connects to a maximum of 3 ultrapeers. The average number of
neighboring ultra-peer of an ultra-peer is 25, whereas the average number of
neighboring leaves is 22.

The key statistics points to some interesting analysis. If 15% of the live peers
are ultra, then with 100k live peers, there are around N=15k ultra-peers. Since
each ultra-peer connects to an average of 25 ultra-peers, so the average connec-
tion probability of an ultra-peer with another ultra is approximately puu = .0017,
thus puu ≈ N−.67. As discussed in [11], when the connection probability between

two random peers in a network with N peers increases beyond N− 2

3 , a large num-
ber of short cycles of length 3 and 4 are created. Hence, in a Gnutella network,
a high number of cross and back edges will exist, leading to huge traffic redun-
dancy. To handle the problem of redundancy, we propose a mechanism named
HPC5 for topology generation in Gnutella networks that eliminates cycles of
length shorter than five in the network. We define a topology containing cycles
not less than length r as a Cycle-r topology. The underlying rationale behind
this proposal is that with a TTL(2) flooding, a cycle-5 topology will not generate
any redundant messages at any node. We state our proposed HPC5 mechanism
next. We simulated HPC5 and compared the network coverage and message
complexity of peers with the Gnutella 0.6; the results are presented in section 6.

5 HPC5: Handshake protocol for Cycle-5 networks

As stated earlier, the major objective of HPC5 protocol is to eliminate the
possibility of forming short length cycles (cycles of length 3 or 4). Figure 2
illustrates the proposed HPC5 graphically. It shows the various possibilities when
peer-1 requests other online ultra-peers to be its neighbor, given that, peer-2 is
already a neighbor of peer-1. In figures 2(a) and 2(b), the possibility of the
formation of triangle and quadrilateral arises if a 1st or 2nd neighbor of peer-2 is
selected. However, this possibility is discarded in fig. 2(c) and a cycle of length
5 is formed. HPC5 exactly ensures that.

Each peer maintains a list of its 1st and 2nd neighbors, which contains only
ultra-peers (because a peer only sends request to an ultra-peer to make neigh-
bor). The 2nd ultra-neighbors of a leaf-peer represent the collection of 1st ultra-
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(c)(a) (b)

Fig. 2. Selection of neighbor by peer-1 after making peer-2 as a neighbor.

neighbors of the connected ultra-peers. To keep updated knowledge, each ultra-
peer exchanges its list of 1st neighbors periodically with its neighbor ultra-peers
and sends the list of 1st neighbors to its leaf-peers. To do this with minimal
overhead, piggyback technique can be used in which an ultra-peer can append
its neighbor list to the messages passing through it.

The three steps of modified handshake protocol (HPC5) is described below.

1. The initiator peer first sends a request to a remote ultra-peer which is not
in its 1st or 2nd neighbor set. The request header contains the type of the
initiator peer. The presence of remote peer in 2nd neighbor set implies the
possibility of 3-length cycle. In fig. 2, peer-1 cannot send request to peer 2
or 3, on the other hand peer 4 & 5 are eligible remote ultra-peers.

2. The recipient replies back with its list of 1st neighbors and the neighbor-hood
acceptance/rejection message. If the remote peer discards the connection in
this step, the initiator closes the connection and keeps the record of neighbors
of the remote peer for future handshaking process; on acceptance of the
invitation by the remote-peer, the initiator peer checks the presence of at
least one common peer between its 2nd neighbor set (say A) and the 1st

neighbor set of the remote peer (say, B). A common ultra-peer between sets
A and B indicates the possibility of 4-length cycle. In fig. 2, peer 3 is in the
second neighbor set of 1, and in the first neighbor set of 4. Thus 1 and 4
cannot form neighbors.
If no common peer is present between sets A and B then the initiator sends
accept connection to remote peer.
Otherwise the initiator sends reject connection to remote peer.

Thus HPC5 prevents the possibility of forming a cycle of length 3 or 4 and
generates a cycle-5 network. We simulated the network coverage of the peers
as shown in fig. 5; the results indicate that our proposed protocol has much
improved network coverage as compared to Gnutella 0.6 that allows formation
of a Cycle-3 topology.

6 Simulation Results

In this section, we present simulation results generated to validate theoretical
correctnes for second neighbor distribution of various networks with different de-
gree distributions, including an arbitrary distribution generated by the Gnutella
prototype, and compared the results with our derived models. Moreover, we
present results of the impact of HPC5 on the network coverage and message
complexity of the Gnutella network.
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6.1 Second Neighbor Distribution

We considered networks like Erdos-Renyi networks[16][17], power law networks[18],
and also arbitrary networks generated by the Gnutella prototype, for our simu-
lations. For each of these cases, we simulated the second neighbor distribution
of the peers for a given first degree k, and estimated back edge probability, b.
We discuss the simulation details and results for each of these networks.
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Fig. 3. Second neighbor distribution of a random peer with k = 51 and 48 first neigh-
bors for Erdos-Renyi networks (poisson degree distribution) with total peers N = 30K
and 40K respectively. The value of p̂ is .0017 for N = 30K and .0012 for N = 40K,
and the back edge probability b is .04 and .03 respectively. The points show the sim-
ulation results, the heavy broken lines show the results of refined model, compared to
the results of basic model (fine broken lines)

.

Case : Erdos-Renyi Graphs: Erdos-Renyi graphs[16][17] are random graphs, in
which any two peers in the network are connected with a fixed probability p̂.
We simulated the second neighbor distribution in Erdos-Renyi networks with
N =30K and 40K, for a back edge probability of .04 and .03 respectively, and
for the first neighbor value k =51 and 48 respectively. The connection probability
p̂ was taken as .0017 and .0012 respectively. As seen in fig. 3, the results of the
simulation for N = 30K and 40K matches well with our refined model, where
as the basic model considerably deviates from the simulation results. However,
it can be seen that for the basic model, the closeness of fit is more for N = 40K
as compared to N = 30K. When the size of the network, N , is increased con-
siderably from 30K (fig. 3(a)) to 40K (fig. 3(b)), or if the connection probability
between two random nodes, p̂ is further reduced, then the simulation results
matches well with the basic model as well as our refined model. This is because,
when N increases or the connection probability p̂ is considerably reduced, then
the chances of forming cross or back edges by the peers become almost negli-
gible, and thus in these limiting conditions, the basic model matches well with
the simulation results. However, as p̂ increases, the number of neighbors of the
peers increases; thus the number of unique peers that has not been selected by
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other peer reduces. Hence cross and back edges are formed and the basic model
fails to model the second neighbor of the peers precisely.

Case : Power-Law Graphs : We simulated the power-law graphs using the degree
distribution given as pk ∼ k−α, where α is a constant that varies between 2 and
3 for all real networks that follows power law distribution[11][18]. The power-law
network topology was generated using the well known configuration model[10].
We simulated the second neighbor distribution for varying number of peers from
N = 10K to 30K, and for α varying from 2.31(high) to 3.0(low). Figure 4(a)
shows the second neighbor distribution for peers with k = 4 first neighbors
in a network with N = 30K and for α = 2.78. Here, interestingly the results
match well for both refined model, as well as the basic model. This is because,
the power-law networks hold an important property; a majority of the peers in
these networks have very low degree and only a very few peers have very high
degree. As, most of the peers have very low connectivity, the chances of forming
cross and back edges are inherently very less in power law networks, hence the
simulation results match well with the basic as well as the refined model.
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Fig. 4. Second neighbor distribution of a peer with k = 4 first neighbors for power law
network with N = 30K peers, α = 2.78 and back probability b = 0, and a Gnutella
network with N ≈ 27K ultra peers and b = .05. The points show the simulation
results, the heavy broken lines indicate the results of our refined model. For the case
of power-law, the results of basic model matches exactly with the refined model

.

Case : Gnutella Network : Here we used the degree distribution of ultra-peers
(considering only ultra-peer to ultra-peer connectivity) generated by the Gnutella
prototype that we have implemented. In our Gnutella implementation we consid-
ered N = 200K total peers that have around 26842 ultra-peers; the ultra-peers
connects to a maximum of 32 other ultra-peers, the average connectivity being
25. Figure 4(b) plots the second neighbor distribution of the peers that have
k = 9 first degree neighbors with a back edge probability b = .045. The estimate
of the back edge probability was obtained from the simulation of the Gnutella
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prototype. We observe that the simulated results fit well with that of our model.
The minor difference is due to the method in which the back edge estimation
is made. Unlike our consideration in the refined model, the back edge probabil-
ity in this case is not same for all the peers and hence minor differences in the
simulated results can be observed.

6.2 Impact of HPC5 on Gnutella Networks

We simulated the effect of existing Gnutella topology and our proposed HPC5
mechanism on the network coverage and message complexity of the network.
We define message complexity as the average number of messages required to
discover a peer in the overlay network whereas network coverage implies the
number of unique peers explored during query propagation in limited flooding.
The simulation results are shown in fig. 5. The network coverage of the peers
improves by a maximum amount of 10%, whereas, the message complexity of
the overall networks almost reaches 1, when HPC5 is used. Thus using HPC5
leads to significant improvement in network coverage and message complexity
as compared to the cycle-3 networks in traditional Gnutella.

7 Conclusion

In this paper, we developed suitable models that quantify the coverage of the
peers in networks that perform TTL(2) searches. The models based on gen-
erating function formalism provides a strong theoretical foundation needed to
understand the relation between the topology of a network and the achievable
performance through TTL-based searches. Using the derived model, we provided
an insight of the topological impact on network coverage and message complex-
ity of the peers in Gnutella. The model revealed low network coverage and high
message complexity in existing Gnutella, and helped us to propose a modified
bootstrap mechanism named HPC5 that showed improvement of almost 10% in
network coverage and 30% in message complexity. The models can be extended
further for higher values of TTL, and also for obtaining coverages in networks
with high clustering coefficients. However, a more elegant methodology to cal-
culate back edges needs to be developed in future.
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