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Abstract.  Content delivery providers can improve their service scalability and 

offload their servers by making use of content transfers among their clients.  To 

provide peers with incentive to transfer data to other peers, protocols such as 

BitTorrent typically employ a tit-for-tat policy in which peers give upload 

preference to peers that provide the highest upload rate to them.  However, the 

tit-for-tat policy does not provide any incentive for a peer to stay in the system 

beyond completion of its download. 

This paper presents a simple fixed-point analytic model of a priority-based 

incentive mechanism which provides peers with strong incentive to contribute 

upload bandwidth beyond their own download completion.  Priority is obtained 

based on a peer’s prior contribution to the system.  Using a two-class model, we 

show that priority-based policies can significantly improve average download 

times, and that there exists a significant region of the parameter space in which 

both high-priority and low-priority peers experience improved performance 

compared to with the pure tit-for-tat approach.  Our results are supported using 

event-based simulations. 

Keywords:  Modeling, peer-assisted content delivery, priority-based incentive 

1 Introduction 

A highly scalable approach to content delivery is to utilize the upload bandwidth of 

the clients to offload the original content source [1, 2, 3, 4, 5, 6].  Existing peer-to-

peer download protocols, such as BitTorrent [1], allow each peer to download content 

from any peer that has content that it does not have, and do not require any organized 

delivery structure.  With these protocols each file is split into many small pieces, each 

of which may be downloaded from different peers. 

To provide peers with an incentive to upload pieces to other peers, these protocols 

typically employ a tit-for-tat policy in which peers give upload preference to peers 

that provide the highest upload rate to them.  Whereas such policies provide peers 

with strong incentives to upload at their full upload capacity while downloading a file, 
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they do not provide peers with any incentive to serve additional data after having 

completed their download.  Therefore, unless altruistic peers graciously continue to 

serve data beyond their download completion, peer-assisted systems with limited 

server resources are not able to provide download rates much higher than the peer 

upload rate.  When the peer download capacity significantly exceeds the upload 

capacity, as is commonly the case with home Internet connections (e.g., [7]), much of 

the download capacity in such systems is therefore underutilized. 

To increase the available upload resources some BitTorrent sharing communities 

enforce a minimum required sharing ratio (defined as the ratio between the total 

amount of data uploaded and downloaded); other communities rely on social etiquette 

(e.g., a sharing ratio may be advertised without any enforcement mechanism).  While 

improved performance has been observed in such communities [8, 9], no policies 

appear to be in place to reward peers contributing more than the advertised minimum. 

This paper presents a simple fixed-point model of a two-class, priority-based 

incentive mechanism which uses differentiated service to provide peers with a strong 

incentive to upload data past their download completion.  In addition to using a tit-

for-tat policy to encourage peers to upload as much as possible, while downloading, a 

fraction of the upload bandwidth of each peer/server is used to serve high-priority 

class peers.  Priority is obtained based on a peer’s prior contribution to the system. 

We show that this policy is able to significantly improve average download times 

and provides peers with strong incentive to contribute past their download 

completion.  Furthermore, there exists a significant region of the parameter space in 

which the performance of both high-priority and low-priority peers is improved over 

that with the pure tit-for-tat approach.  We also discuss the impact of individual client 

choices on system performance.  Results are supported using event-based simulations. 

Previous multi-class models of BitTorrent-like systems assume that the arrival rate 

of each class of peers is known and each peer allocates a static portion of upload 

bandwidth to each class of peers [10].  In contrast, we consider scenarios in which the 

fraction of upload bandwidth used for uploads to peers of each class depends on the 

proportion of peers of each class, which in turn depends on the extent to which clients 

decide to gain high-priority status through their contribution of upload resources.  

Naturally, these decisions depend on client perception of the advantage of being a 

high-priority peer versus the additional cost.  In this work a fixed-point is determined 

such that the performance differential enjoyed by high-priority peers for a particular 

proportion of peers, provides incentive that yields exactly that proportion of peers 

choosing to earn high-priority status by contributing as a seed.  To achieve good 

accuracy over the considered portion of the system parameter space, we also require a 

somewhat more detailed mean value analysis than previous fluid models [10, 11, 12, 

13].  These differences are further discussed in Section 4. 

Other related work has included the use of analytic models [14, 15] or 

instrumentation [16, 17, 18] to capture the peer interaction, the study of reputation-

based (e.g., [19]) and currency/token-based (e.g., [20]) reputation systems, and the 

use of taxation techniques when rewarding peers [21]. 

The remainder of the paper is organized as follows.  Section 2 provides a brief 

overview of BitTorrent.  A simple priority-based policy is presented in Section 3.  

Section 4 presents our analytic model.  Results and validation are presented in Section 

5.  Finally, conclusions are presented in Section 6. 



2 BitTorrent Overview 

We consider here the use of BitTorrent-like protocols to aid in the on-demand 

delivery of files stored on one or more content provider servers.  BitTorrent [1] splits 

files into pieces, which themselves are split into smaller sub-pieces.  Multiple sub-

pieces can be downloaded in parallel from different peers.  A peer is said to have a 

piece whenever the entire piece is downloaded, and is interested in all peers that have 

at least one piece that it currently does not have itself.  Peers that have the entire file 

are called seeds, while peers that only have parts of the file and are still downloading 

are called leechers.  Each peer establishes persistent connections with a large set of 

peers; however, at each time instance each peer only uploads to a limited number of 

peers (these peers are considered unchoked, while all other peers are choked).  A rate-

based tit-for-tat policy is used to encourage peers to upload pieces and discourage 

free-riding.  With this policy leechers give upload preference to the leechers that 

provide the highest download rates.  To probe for better pairings (or in the case of the 

seeds, allow new peers to download pieces), periodically each peer uses an optimistic 

unchoke policy, in which a random peer is unchoked.  To ensure high piece diversity 

a rarest-first piece selection policy is used to determine which pieces to request next. 

3 A Priority-based Incentive Policy 

This section presents a priority-based incentive policy with two priority classes.  We 

consider a system from which clients may download many files.  New clients that 

have yet to contribute upload bandwidth as a seed are (by default) given low priority.  

Each time a peer uploads a (combined) total of LH data as a seed (over some number 

of downloaded files) it earns high-priority status for one future file download.  In 

return for their extra upload contributions, high-priority peers receive better service.  

Service differentiation is achieved by requiring that every peer/server use a fraction fH 

of their upload bandwidth to serve high-priority peers.  The remaining upload 

bandwidth is allocated based on tit-for-tat with optimistic unchoking.  This policy 

provides peers with incentives to both upload at a high rate when downloading (from 

use of tit-for-tat), and to upload additional data as a seed (from use of priority).1   

When selecting new peers to upload to, a peer randomly selects a high-priority peer 

if at least one such peer is requesting service and less than a fraction fH of the data it 

has uploaded has been uploaded using priority uploading; otherwise, tit-for-tat with 

optimistic unchoking is used.  To encourage bidirectional tit-for-tat relationships, in 

which connections are responsive to the tit-for-tat policy (with optimistic unchoking), 

the unchoke policy considers the download rates of priority connections to be zero. 

To ensure that peers allocate roughly a fraction fH of their upload bandwidth to 

priority uploading, when possible, each peer keeps track of the amount of data 

uploaded using (i) tit-for-tat with optimistic unchoking, and (ii) priority uploading.  
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When the upload of a new piece begins, the amount credited to the corresponding 

upload category is increased by the size of a piece.  This credit may later be reduced, 

however, if due to parallel downloading, the actual amount uploaded by the peer is 

less than the size of the piece.  Upload amounts are credited only during periods when 

there is at least one high-priority peer to which an upload could occur. 

We assume that the system provides all clients with information about the average 

download times of high-priority and low-priority clients, as well as the amount of data 

that must be uploaded as a seed to become high priority.  This information (provided 

by a tracker, for example) allows clients to make an informed decision as to whether 

to make the upload contribution required for high-priority status. 

4 Model Description 

This section presents our analytic model.  We assume that all servers and peers have 

implemented the priority-based incentive policy described in Section 3 and are 

equipped with software (provided by the content provider, for example) which 

monitors the peers’ upload contributions.  While such software cannot control the 

upload bandwidth made available by peers, we assume that the software allows the 

fraction fH used for priority uploading to be maintained and peers to be fairly and 

correctly labeled as either high or low priority.2 

It is further assumed that the system operates in steady state and clients make many 

requests to the system.  Furthermore, we assume that the probability a peer decides to 

upload a particular amount of data as a seed (so as to gain credit towards high priority 

status), after a file download, is independent of file identity, and that no peer 

accumulates high-priority download credit that it does not use in later downloads.  

Thus, in steady state, the total average rate that seeds upload data for any particular 

file will equal LH times the request rate of high-priority peers for that file.  We assume 

that peers do not depart the system before having fully downloaded the file. 

Each client is assumed to determine the extent to which it is willing to serve as a 

seed according to the performance difference (as measured by the server) between the 

average download times of high-priority and low-priority peers.  We analyze here a 

simple case where each peer has a threshold such that the peer will serve exactly LH 

data as a seed following each download, should this performance difference exceed 

the threshold.  Assuming that these thresholds follow some (arbitrary) distribution, 

our analysis obtains a fixed-point solution such that the performance differential 

enjoyed by high-priority peers for a particular proportion of peers, yields exactly that 

proportion of peers choosing to earn high-priority status by contributing as a seed. 

We model download performance for a single representative file of size L.  It is 

assumed that clients have an average upload bandwidth capacity U, average download 

bandwidth capacity D, generate requests for the file that arrive according to a Poisson 

                                                           
2 A reporting and tracking system could be used to identify misbehaving peers that do not 

allocate the required fraction of upload bandwidth to priority uploading.  Such peers could be 

punished by black-listing them from receiving uploads by servers and well-behaved peers. 



process with rate λ, and that the server(s) have a total available upload bandwidth for 

the file equal to s times the average peer upload bandwidth U.  Subscripts H and L are 

used to distinguish quantities for the high-priority and low-priority class, respectively. 

4.1 General Model 

Given the above assumptions, a differential equation expressing the relationship 

between the average achieved download rate dc and the average number xc of clients 

actively downloading the file at any given time t, for each class c, can be derived as  

Ldxdtdx cccc /λ/ −= ,  c = L, H (1) 

where dc/L is the rate at which peers of class c complete their downloads and λc is the 

rate at which peers of class c begin new downloads.  Focusing on the steady state case 

(i.e., when dxc/dt = 0), this yields 

)/(λ ccc dLx = .          c = L, H (2) 

We note that these expressions can easily be obtained directly using Little’s law.  

Similarly, the relationship between the average achieved upload rate uy of peers that 

are currently acting as seeds, and the average number of such peers, is given by 

)/(λ yHH uLy = . (3) 

To continue the analysis so as to achieve acceptable accuracy over the considered 

portion of the parameter space, we require a more detailed mean value analysis than 

previous fluid models [10, 11, 12].  Our model uses conditional expected values 

(rather than only the long term averages) and reallocates upload bandwidth intended 

to be used for high-priority peers, but not allocated owing to insufficient total 

download capacity of these peers, to low-priority peers.  Let xc(Q) and y(Q) denote the 

expected number of class c leechers, and the expected number of seeds, respectively, 

conditioned on the set of constraints Q.  For example, if Q implies that xc = ac, then 

xc(Q) = ac; similarly, if Q implies that xc ≥ 1, then )1/()(
cx

cQc exx
−−= .  Further, let 

dc(Q) and N(Q) denote the corresponding conditional expected values for the download 

rate and the number of peers and servers uploading data, respectively, where the 

servers are considered as s peers (since their total upload bandwidth is sU). The 

download and upload rates of each class of clients can then be expressed as follows: 

)1( ≥=
HxHH dd ; )1( ≥=

LxLL dd ; )1()1,1()1,1( /)( ≥≥≥≥≥ += yyxLLyxHHy Ndxdxu
LH

. (4) 

These expressions make use of the fact that the download and upload rate of a peer 

type is only applicable if there is at least one peer of that particular type in the system. 

In determining the conditional download rates, we separate upload bandwidth used 

for priority uploading (shared only among high-priority leechers) and tit-for-tat and 

optimistic unchoking (shared among all leechers).  This separation allows the 

download rates to be adjusted based on the relative mix of peers of each class.  Given 



a total upload capacity of N(Q)U, the download rate of high-priority peers is given by   +
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With all the remaining bandwidth available to them (after high-priority peers are 

satisfied) the download rate of the low-priority peers can be expressed as follows:  −
=

)(

)()(

)( ,min
QL

QHHQ

QL
x

dxUN
Dd . (6) 

This expression reduces to N(Q)U(1– fH)/(xH(Q)+xL(Q)) whenever dH(Q) ≤ D.  Finally, the 

expected number of peers or servers effectively uploading data is given by 

( )QxxxysN LHHLc QcQQ 1Pr
, )()()( =+−++= ∑ =

, (7) 

where Pr(xH + xL = 1 | Q) is the probability that there only is a single leecher in the 

system.  This expression assumes that every peer can upload data whenever there is 

more than one client in the system.  Assuming the number of high-priority and low-

priority peers is independent given Q, the above probability can be calculated as 

( ) ( ) ( ) ( ) ( )QxQxQxQxQxx LHLHLH 1Pr0Pr0Pr1Pr1Pr ==+====+ , (8) 

where the conditional probabilities can be calculated using standard theory. 

Given the portion λH/λ of peers selecting to become high-priority peers, as would 

depend on the relative performance difference (TL/TH – 1), the average download rates 

dc and download times Tc = L/dc can be easily obtained by numerically solving the 

above equation system.  As with other fluid models, the complexity of these 

calculations is independent of the number of peers in the system. 

4.2 All High-priority Case 

This section describes how our model can be reduced to a closed form solution for the 

special case in which (i) all clients select to become high-priority peers, (i) on average 

serve LH data as a seed, (iii) the system is demanding λL >> d, and (iv) the seed 

contributions are significant λLH >> uy. 

For this special case the conditional values are roughly equal to the long term 

averages and equations (4) and (5) reduce to dH = min[D, 
H

yHH

dL

uLdLs

/λ /λ/λ ++
U], 

where uy= λL/(s + λL/dH + λLH/uy).  Here Little’s law has been used to substitute the 

average number of leechers xH = λL/dH and seeds y = λLH/uy, respectively.  Solving 

for dH allows an expression for the average download time TH = L/dH to be obtained: 

[ ]λ//)(,/min sULLDLT HH −−= . (9) 



Note that as long as ))λ/(1/( LsUUD −≥ , the download time decreases linearly with 

the amount of data LH uploaded by seeds, and the clients fully utilize their maximum 

download bandwidth capacity D when seeds upload λ/)/1(*
sUDULLH −−=  data.  

While equation (9) also is applicable to a regular tit-for-tat system in which altruistic 

peers serve LH data as seeds, we note that such seed contributions are much more 

likely in the priority system, in which the peers are given a performance incentive. 

5 Results 

This section validates the model and analyzes the characteristics of the priority-based 

policy.  For validation we modified an existing event-based simulator of BitTorrent-

like systems [22].  It is assumed that no connections are choked in the middle of an 

upload, and peers only request new downloads when they are not fully utilizing their 

download capacity D.  For simulating the rate at which pieces are exchanged, it is 

assumed that connection bottlenecks are located at the end points (i.e., either by the 

upload capacity U at the sender or by the download capacity D at the receiver) and the 

network operates using max-min fair bandwidth sharing (using TCP, for example). 

5.1 Validation using Known User Choices 

In this section we validate the analytic model for the case where the proportion of 

clients of each priority class is known.  We consider a system with a single server 

operating in steady state.  The system is simulated for 6400 requests, with the initial 

1000 and the last 400 requests removed from the measurements.  Each data point 

represents the average of 5 simulations.  The file is split into 512 pieces.  The peers 

and the server can simultaneously upload to at most 4 and 4s peers, respectively. 

Without loss of generality, the file size L and upload bandwidth capacity U are 

fixed at one.  With these normalized units, the volume of data transferred is measured 

in units of the file size and the download time is measured in units of the minimum 

time it takes for a client to fully upload a copy of the file. 

Fig. 1 presents the average download times for each priority class individually and 

the overall averages, as predicated by both the analytic model and simulations.  For 

each sub-figure in Fig. 1, one variable is considered at a time.  The default case 

assumes that λ = 100, D/U = 3, LH/L = 20%, s = 1, fH = 25%, and λH/λ = 50%.  Fig. 

1(a) also presents the results for a probabilistic model extension.3  For the other sub-

figures the difference between the general model and the probabilistic extension is not 

noticeable and the results for the extension are therefore omitted. 
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each condition Q used in expression (4) into three sub-cases: (i) there is no additional leecher 

in the system, (ii) there is at least one high-priority leecher in the system, and (iii) there is no 

high-priority leecher in the system, but at least one low-priority leecher. 



The agreement between simulation and analytical results is excellent for the overall 

averages.  The agreement for the averages for each individual class is good, although   

the discrimination between the classes is typically slightly smaller for the simulations.  

This difference is likely due to the fixed-point model not capturing variability in the 

number of active peers of each class.  Note that larger errors are observed in regions 

with larger variability; for example, in systems with relatively low arrival rate.  For 

these regions, the probabilistic extension, which takes more state information into 

account, provides a slightly better approximation.  In general, however, we have 

found that the added complexity of such models is not typically justified. 

As suggested by the closed form equations in Section 4.2, the average download 

times decrease linearly with the amount of content uploaded by seeds (with the slope 

determined by the portion of high-priority peers in the system).  The discrimination 

between the priority classes increases linearly with the fraction devoted to priority 

uploading.  We note that the decreased performance of low-priority peers (relative to 

the high-priority peers) is offset by the overall improved performance due to high 

priority peers making additional upload contributions as seeds.  As further discussed 

in Section 5.2, such contributions can in some cases allow the low-priority peers to 

achieve better download times than peers in non-priority systems. 
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Fig. 1.  Model validation. Default settings: L = 1, U = 1, λ = 100, D/U = 3, LH = 0.2, s = 1, 

fH = 0.25, λH /λ = 0.5.  (a) Client arrival rate λ.   (b) Download/upload capacity ratio D/U.  

(c) Amount LH to be uploaded as a seed.  (d) Server/peer upload capacity ratio s.  (e) 

Fraction fH devoted to priority uploading.  (f) Portion λH /λ high priority peers.  



5.2 Social Welfare Regions 

In this section we consider under what circumstances low-priority peers experience 

download times no worse (or only slightly worse) than they would in a regular tit-for-

tat system.  We call regions in the modeling space for which both classes of peers see 

improved performance social welfare regions. 

We consider a system without altruistic peers and model the performance of a 

regular tit-for-tat system using the special case in which LH = 0 and fH = 0.  Assuming 

that any additional (unconditional) upload contributions made by altruistic peers are 

equal for both systems, the results for systems with altruistic peers correspond to 

scenarios with additional server bandwidth. 

Fig. 2 shows the contour lines for different levels of improvements observed by the 

low-priority peers.  These experiments assume that the clients’ individual thresholds 

follow an exponential distribution.  On the y-axis of each sub-figure the median of 

this distribution is plotted.  For example, with a median of 1, 50% of the clients 

require the performance difference to be at least 100% before selecting to become a 

high-priority peer.  With our analytic model providing slight overestimates of the 

download times of the low-priority peers, we expect that in real systems the social 

regions would likely be somewhat larger than indicated here. 

Note that the size of the social welfare regions typically increases as clients are 

more willing to serve as high-priority peers (i.e., for lower thresholds).  In fact, for 

large portions of the parameter space the low-priority peers actually observe 

significant performance improvements.  Only when clients have large thresholds or 

the fraction of bandwidth devoted to priority uploading exceeds 50%, do the low-

Fig. 2.  Percentage decrease in download times for low-priority peers when the clients 

individual thresholds follow an exponential distribution.  Default settings are: L = 1, U = 

1, LH = 0.5, λ = 100, D/U = 3, s = 1, fH = 0.25. 



priority peers observe decreased performance.  It should further be noted that with fH 

= 0.25 and LH = 0.5 the low-priority peers do not have more than a 10% increase in 

download times (independent of the peer threshold distribution).  The corresponding 

values when LH = 0.25 and LH = 0.75 are 25% and 0%, respectively. 

5.3 User Behavior and System Dynamics 

To illustrate the impact that individual client choices have on the performance of the 

system dynamics, Fig. 3 shows the performance using different threshold 

distributions.  To cover a wide range of cases we assume that the thresholds follow a 

Weibull distribution.  The shape parameter β determines if the distribution is light-

tailed (β ≥ 1), or heavy-tailed (β < 1); with β = 1 corresponding to an exponential 

distribution and β = 3.4 approximating a normal distribution.  Note that the curves 

become more and more step-like as the shape parameter grows and the distribution 

becomes more compressed (with, in the limiting case, all peers sharing the same 

threshold).  All curves cross at the point where the portion of high-priority peers is 

50%; this is since the distributions are normalized to have the same median and the 

fact that the system performance is mainly determined by the fraction of peers that 

have a threshold below some “critical” value (not the shape of the threshold 

distribution itself).  Another observation from these figures is that low-priority peers 

only perform worse (and only slightly worse) than peers in a regular BitTorrent 

system when the median threshold difference is relatively large (e.g., 100%). 

Fig. 3.  Performance impact of the shape parameter β and the overall aggressiveness of 

clients.  Default settings are: L = 1, U = 1, LH = 0.5, λ = 100, D/U = 3, s = 1, fH = 0.25.  
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5.4 Alternative Scenarios and Workload Assumptions 

This section considers alternative scenarios and workload assumptions than those 

assumed by our analytic model.  First, motivated by measurement studies [12], we 

consider a flash-crowd scenario in which peers arrive at an exponentially decaying 

rate λ(t) = λ0e
-γt

, with λ0 = 791.0 and γ = 1.  For this case 63.2% of all 500 peer 

arrivals occur within the first time unit.  Second, a steady state scenario is considered 

with heterogeneous peers: low-bandwidth (UA = 0.2, DA = 0.6) and high-bandwidth 

(UB = 1, DB = 3) peers.  For reference we also include our original default scenario. 

Fig. 4 shows the relative download times for each scenario.  Although the 

performance improvements are smaller in the flash crowd scenario and for the low-

bandwidth clients in the heterogeneous scenario, the increased performance 

differences between high-priority and low-priority peers when the portion of high-

priority peers are small gives a strong incentive to contribute additional resources, 

thereby allowing the overall performance to be improved.  Again, we note that the 

low-priority peers do not perform much worse than peers in a regular tit-for-tat 

system and in many cases significantly better. 

6 Conclusions 

This paper presents a simple analytic model of a two-class priority-based incentive 

mechanism in which priority is obtained based on peers’ prior contributions to the 

system.  It is shown that priority-based policies can provide peers with strong 

incentive to contribute upload bandwidth beyond their own download completion, can 

significantly improve the average download times in the system, and that there exists 

a significant region in the parameter space in which both high-priority and low-

priority peers experience improved performance compared to the pure tit-for-tat 

approach.  While this paper has focused on download, we note that these types of 

priority policies also can be used for peer-assisted streaming [22]. 

Fig. 4.  Example scenarios: (i) steady state (λ = 100), (ii) flash crowd (λ0e-γt, with λ0 = 791.0 

and γ = 1), and (iii) heterogeneous scenario (λ = 50, λA/λ = 0.5, UA = 0.2, DA = 0.6, UB = 1, 

DB = 3).  Default settings are: L = 1, U = 1, LH = 0.5, D/U = 3, s = 1, fH = 0.25. 
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