
Key Predistribution Schemes for Sensor Networks for
Continuous Deployment Scenario*

Abdülhakim Ünlü, Önsel Armagan, Albert Levi, Erkay Savas, and Özgür Erçetin

Sabanci University, Istanbul, Turkey
{aunlu, onsel}@su.sabanciuniv.edu

{levi, erkays, oercetin}@sabanciuniv.edu

Abstract. In sensor networks, secure communication among sensor nodes re-
quires secure links and consequently secure key establishment. Due to resource
constraints, achieving such key establishment is non-trivial. Recently some ran-
dom key predistribution techniques have been proposed to establish pairwise
keys. Some of these approaches assume certain deployment knowledge is avail-
able prior to deployment and nodes are deployed in groups/bundles. In this pa-
per, we propose another practical deployment model where nodes are deployed
over a line one by one in a continuous fashion. In this model, sensor nodes can
also be deployed over multiple parallel lines to cover two-dimensional area.
Based on this model, we develop two key predistribution schemes. Analysis
and simulation results show that our key predistribution schemes make use of
the deployment knowledge better than the existing schemes. Thus they perform
better than other location-aware protocols using the metrics of connectivity, re-
siliency, memory usage and communication cost for key establishment.

1 Introduction

In sensor networks [1], confidentiality, privacy and authenticity of communication
between sensor nodes are important when nodes are deployed in an environment
where there are adversaries. In order to fulfill these security requirements, crypto-
graphic techniques are employed. Generally symmetric cryptography is used to pro-
vide security in sensor networks. In order to use symmetric key cryptography, com-
municating sensor nodes must share the same key. Distribution of keys to large
amount of sensor nodes, so that they can establish secure links, is an active research
area. Generally key predistribution schemes [2-8], where the keys are stored in sensor
nodes before deployment, are used for this purpose.

A naïve way of key predistribution is to generate a master key and install this mas-
ter key to all nodes before the deployment. However in this scheme, when a node is
captured, the master key is also captured and all secure links in the sensor network are
compromised.

* Albert Levi and Abdülhakim Ünlü are supported by the Scientific and Technological Re-

search Council of Turkey under project number 104E071. Erkay Savas is supported by the
Scientific and Technological Research Council of Turkey under project number 104E007.

Another extreme key predistribution way is to assign unique link keys for each
node. In this method, compromise of one node leads to compromise of only that
node’s links. However, this method is not scalable since the total number keys to be
predistributed per node should be as much as the number of nodes in the network in
order to guarantee that after deployment each neighboring node pair shares a key.

In order to overcome this scalability problem and effectively use the node me m-
ory, Eschenauer and Gligor proposed a probabilistic key predistribution scheme [5].
In this scheme, before sensor deployment, a key server creates a key ring for each
node, by picking a limited amount of random keys from a large key pool. Then the
key server loads the key ring to memory of each node. After deployment, sensor
nodes in the field let their neighbors know which keys they have. If two neighboring
nodes share one or more identical keys, then they can establish a secure link. After
this shared key discovery with direct neighbors, neighboring node pairs that do not
share keys can establish secure links in multiple hops. If the local connectivity (in
terms of secure links) is above a certain threshold, then random graph theory [9] states
that overall sensor network will be cryptographically connected with high probability.
Du et al. utilized Blom’s key management scheme [12] in a key predistribution
scheme for sensor networks [4]. This scheme shows a threshold property; until ?
nodes are captured, the network is perfectly secure, but after ? nodes are compro-
mised all secure links are compromised.

Some recent papers on random key predistribution [3,7,10,11] utilized expected
location information of sensor nodes in their models. In all these location-aware ap-
proaches, it is assumed that nodes are prepared in small groups and deployed as bun-
dles, e.g. groups of nodes can be dropped from a plane, similar to parachuting troops
or dropping cargo. The nodes in the same group have a very large chance to be in the
range of each other. Moreover, the node groups that are dropped next to each other
also have a chance to be close to each other on the ground. Using this deployment
location knowledge, key pools and key rings are arranged and performance of key
predistribution schemes can be improved substantially. In location aware schemes, the
node deployment model is one of the most important design criteria that directly af-
fects the performance of the scheme. As discussed above, a batch deployment strategy
is assumed in the location aware random key predistribution schemes proposed in the
literature. Such a deployment strategy may not be appropriate for scenarios like bor-
derline or perimeter defense - if sensors are deployed in bundles, it is likely that there
will be places on the border with a few or no sensor nodes. Moreover, there is still
room to further improve the performance, in terms of connectivity, resiliency and
memory usage, of location-aware key predistribution schemes with more realistic
deployment models.

1.1 Our Contribution

We introduce a new deployment model, called the continuous deployment model, and
develop two key pre-distribution schemes on this model. The main idea behind the
continuous deployment model is to drop the nodes one by one (i.e. not in batches)
continuously from an aerial vehicle. The aerial vehicle may follow a continuous line
for perimeter defense applications. In applications that need area coverage, the vehicle
may follow a route with several parallel lines. We use the latter scenario, which is

more complicated than the former one, in the development and the analysis of key
pre-distribution schemes developed based on the continuous deployment model. In
our first key pre-distribution scheme, it is assumed we know the order in which the
nodes are dropped off for each line. For key predistribution in this scheme, we take a
deterministic approach and assign pairwise keys to sensor nodes. In our second key
predistribution scheme, we relaxed the order assumption such that the dropping order
of the sensor nodes is not known, but the nodes to be dropped for each line are
grouped. Here we use a probabilistic key predistribution mechanism; for each line,
each node is assigned some keys from the key pools.

We anticipate that the use of more deployment knowledge, as in the methods that
we proposed, would improve the performance of the system. We performed analytical
and simulation-based performance evaluation of the proposed schemes and show that
the proposed approach actually improves key predistribution performance over Du et
al.’s scheme [3], in which the nodes are deployed in groups, in terms of connectivity,
resiliency against node capture and me mory usage.

2 The Continuous Deployment Model
In this section, we introduce a practical deployment model, where nodes are deployed
sequentially but not in batches. In our deployment model the nodes are dropped one
by one following a trajectory. This model can be easily realized by dropping nodes
through a pipe in a plane as the plane flies over a known route. For example, if a rec-
tangular area is to be covered with sensor nodes, the plane takes a route where it scans
the rectangular area line by line. Figure 1 shows an example sensor network deployed
in this model.

Fig. 1. A sample sensor network

The point where a node is dropped out of plane or helicopter is called its deploy-
ment point. However, due to several reasons its actual position drifts from deployment
point. The actual position of a node on the field after deployment is named its resident
point . Both deployment and resident points are defined in two -dimensional space. In
the rest of the paper, the deployment area is assumed to be a rectangular one. In this
area, there are L parallel lines and N nodes per line. Our deployment model assumes
fixed intervals between the deployment points of two consecutive nodes of a line. The
deployment point of ith node on jth line is denoted as dji, where j=1 ... L and i=1 ... N.
Similarly the resident point of that node is denoted as rji.

The resident point of a node may float away from its deployment point. Due to
this fact, two nodes with deployment point dli and dlj, where dli < dlj, can be at resident

points rli and rlj where rli > rlj. In our model, two nodes can be neighbors according to
their deployment points, but they can be out of each others’ coverage after deploy-
ment. We call two nodes neighbors only if their resident points are close enough so
that they can directly communicate over radio. The density of the lines and node
dropping frequency are important system parameters to keep the resulting sensor
network connected. Our model utilizes two-dimensional Gaussian distribution func-
tion to determine probability of a node being at a resident point based on its deploy-
ment point.

3 Continuous Key Predistribution Scheme

Key distribution for our deployment model can be performed in two ways.
 In the first way, we assume that the deployment order of individual nodes is
known. In this way, the neighboring relationships, in terms of the deployment points,
are known. Such knowledge yields very efficient key distribution method that will be
discussed later. However, in order to realize this, we have to transfer cryptographic
materials to the nodes just before dropping them, so we need to have a complex setup
inside the plane. Alternatively, we may transfer cryptographic materials before load-
ing them to plane, but we have to preserve nodes’ order by, for exa mple, keeping all
the sensor nodes in pipes.
 In the second way, a line of nodes is treated as a single group. We do not assume
knowledge of order of nodes; we just form groups of nodes and then store crypto-
graphic material according to the key distribution scheme that will be explained later.
Then, we deploy each group as a line in a random order. This approach is simpler to
realize than the first method, but it has some performance deficiencies that will be
discussed in this paper.

We propose two different key predistribution schemes, Scheme I and Scheme II,
for the above two ways. Both of them follow well-known three phase approach as in
other key predistribution schemes proposed in the literature. First phase is the “pre-
distribution” phase, where keys are stored in nodes according to a method proposed
by the scheme. Second phase is the “direct key establis hment” phase, where nodes
discover their neighbors and find out if they share common keys with their neighbors
to form secure link. Third phase is the “path key establis hment phase”, where a node
tries to find secure paths to its neighbors, with which it does not share common keys,
in order to establish secure link. A secure link exists between two nodes if they both
own at least one key in common and they are neighbors. We assume that all keys have
unique IDs.

3.1 Key Predistribution Scheme I

Parameters and the symbols used in this scheme are:

N number of nodes on a line
L number of lines that makes up the sensor network
M number of keys shared with nodes on the same line
Q number of keys shared with nodes on adjacent line
d distance between deployment points on a line

A radio range of a node
Li ith line, where i=1 .. L
dij deployment point of jth node on line Li, j=1 .. N
sij the id of the sensor node with deployment point dij
rij resident point of jth node on line Li, where j=1 .. N

 Along with the deployment model examined in the previous section, sensor nodes,
which are placed adjacent in the pipe, have high probability of being neighbors after
deployment. Similarly, sensor nodes, which have similar locations in consecutive
pipes, maintain the likelihood of being neighbors. As a result of this observation, we
infer that a pairwise key predistribution method would work efficiently. Thus, we
adopted such a strategy in our method. There are three phases in this scheme as de-
scribed above: (i) Predistribution Phase, (ii) Direct Key Establishment Phase, and (iii)
Path Key Establishment Phase.

Predistribution phase. This phase is split into two: inline key predistribution and
cross-line key predistribution. Inline key predistribution is for the nodes within the
same line of deployment. Cross-line key predistribution is for the nodes in adjacent
lines. Figure 2 depicts this phase.

Fig. 2. Node sij shares keys with square-shaped nodes

Inline Key Predistribution. The setup server creates and stores pairwise keys in sen-
sor nodes such that each node shares keys with its M neighbors on the current line.
More formally, for all i=1 .. L, and j=1 .. N , the setup server creates M keys to be
stored in sij such that sij and its M neighboring sensor nodes, si(j-M/2),…,si(j-

1),si(j+1),….,si(j+M/2),share unique keys.

Cross-Line Key Predistribution. Sensor nodes also share keys with their neighbors in
neighboring lines. For all i=1 .. L, and j=1 .. N, the setup server creates 2*Q keys to be
stored in sij such that this node shares unique pairwise keys with Q nodes from the
lower line, s(i-1)(j-Q/2),…….,s(i-1)(j+Q/2), and also Q nodes from an upper line, s(i+1)(j-

Q/2),…….,s(i+1)(j+Q/2).

After these two processes, a sensor node will have M+2Q keys before deployment.

Direct Key Establishment Phase. After deployment, sensor nodes communicate
with their neighbor nodes to discover shared keys in order to establish secure links
Shared key discovery is trivial, since sensor nodes already have IDs of nodes with
which they share pairwise keys. So a node only needs to know the IDs of its

si1 siN sij

M nodes

Q nodes

Q nodes

Li

Li+1

Li-1

neighbors. When a node finds a matching node in its neighborhood, they can immedi-
ately start using their pairwise shared key. Unauthorized entities cannot know the IDs
of keys used to secure links or IDs of keys in any node, since only node IDs are to be
transmitted over unencrypted links,. This phase is indifferent for both nodes on the
same line and nodes on the adjacent lines.

Path Key Establishment Phase. After direct key establishment phase, a node may
end up with a case where it has neighbors that it cannot find a shared key to establish
a secure link. Thus, these two neighboring nodes without a secure link will have to
find a secure path, which is a path of secure links, through their other neighbors. The
process of establishing a secure link over a secure path is called path key establish-
ment. The process works as follows. Assume node sij does not have a secure link with
its neighbor node sik. Node sij asks its 1-hop neighbors, with which it has secure links,
to see if they also have secure links with node sik. If any of the neighbors, say sin, has
such a secure link, then sin generates a random key and sends the key to both node sij
and sik over secure links. Then the nodes sij and sik use this key to establish a secure
link. If none of the 1-hop neighbors have secure link with node sik, then node sij asks
its 2-hop neighbors. If not found again, sij asks to next hop neighbors until it finds a
node that shares key with sik. If the graph of secure links is a connected graph, a node
eventually finds a secure path to any node in the sensor network.

In our analysis, we will show that a node can reach all its neighbors with high
probability in three hops of secure links.

3.2 Key Predistribution Scheme II

Parameters and the symbols used in this scheme are:

N number of nodes on a line
L number of lines that makes up the sensor network
Li ith line, where i=1 .. L
Si key space of line i
sI number of nodes a key in Si is distributed on Li
sc number of nodes a key in Si is distributed on neighbors of Li
MI memory space of nodes of Li for keys from Si
Mc memory space of nodes of neighbors of Li for keys from Si
K number of unique keys in a key space
d distance between deployment points on a line
A radio range of a node
Aij circular area around node sij, where sij can send and receive radio signals
dli deployment point of node i on line l
rli resident point of node i on line l
sij the id of sensor node with deployment point dij
kij the id of jth key in key space Si

In this model, we do not assume a particular order in the deployment points of the
nodes of a line. Thus we use less deployment knowledge as compared to predistribu-
tion scheme I. Although the scheme is still based on pairwise key distribution some

redundancy should also be added in order to achieve a reasonable level of connec-
tivity.

Setup server generates groups of unique keys for each line. This keys form the key
space, Si, of line i. There are K keys in each key space, and a node from line i gets
keys from Si, Si-1 and Si+1 according to the key predistribution method. The duplication
of each key is limited and determined parametrically.

Similar to Scheme I, this scheme has three phases; predistribution, direct key es-
tablishment and path key establishment.

Predistribution Phase. In key predistribution step, we describe the method how keys
are distributed to nodes on various lines. Setup server generates key spaces for each
line, Si, where i = 1 .. L, then distributes sI and sc copies of each key as explained be-
low. Our aim here is to distribute the keys such that nodes that are expected to be near
share more keys. Key predistribution method for each k ij, where i = 1 .. L and j = 1..
N, is as follows:
1. Key k ij is randomly generated for key space of Si of line Li.
2. sI nodes with sufficient space in their MI are randomly selected on Li and kij is

installed in those sI nodes.
3. sc nodes with sufficient space in their Mc are selected randomly from each

neighboring lines of Li. So, 2sc nodes are selected from two neighboring lines.
Then kij is installed in those sc nodes in each neighboring line.

At the end of key predistribution phase, each key from key space Si has a total of (sI +
2sc) copies on three lines; sI copies in Li and 2sc copies in Li-1 and Li+1. And each node
has a total of MI + Mc keys installed.

We can calculate K, the size of each key space Si, i = 1 .. L, by using sc, sI, MI, and
Mc. Since there are N sensor nodes on line i, and since setup server loads exactly MI
unique keys from Si into each node on line i, setup server will need INM keys. Each
key from Si will have sI copies on line i. Also, sc copies of keys from Si+1 and Si-1 will
be loaded into nodes from line i, and each node has Mc memory for keys from
neighboring key spaces. Then, number of unique keys in any key space, K, can be
computed as follows:

 ccII sNMsNMK 2==

Direct Key Establishment Phase. After deployment, nodes have to find shared keys
with its neighbors. This phase is similar to the basic scheme [5]. Here, each node
needs to know which keys its neighbors have so that it can decide which keys they
share. Each node broadcasts a message containing the indices of the keys it carries.
Nodes can use these broadcast messages to find out if they share common keys with
their neighbors. If a node can find a shared key with one of its neighbors, it can use
that key to establish a secure link between itself and its neighbor.

Path Key Establishment Phase. If two neighboring nodes cannot find a shared key
directly, they have to reach a common key over a secure path. This method is identi-
cal to the path key establis hment method in Scheme I.

4 Performance Analysis
In our analysis and simulation, we use the following configuration. Deployment area
is 1000m x 1000m. There are 50 deployment lines, i.e. L=50, and the distance be-
tween lines is 20m. On each deployment line there are 200 nodes, i.e. N=200. Total
number of sensor nodes, NxL, is 10000. Distance between two adjacent deployment
points, d, is 5m. Communication range, R, for each node is 40m. Standard deviation
of normal distribution, s, is 10m. For scheme II, total number of unique keys is 50K =
100000.

4.1 Local and Global Connectivity

In this section, we show our simulation results of the probability of a node sharing
a key with its neighbors. This probability is called local connectivity, Plocal. The de-
tailed formulation for Plocal could not be given here due to space limitations. Figure 3
shows local connectivity versus memory usage m. We compare results for our scheme
I and scheme II with Du et al’s [3] scheme. Scheme II has higher connectivity than [3]
for all values of m.

For scheme II, different values of sI and sc results in different Plocal values even for
the same memory usage. In our experiments for various m values, we obtained best
results when sI and sc are equal.

Scheme I outperforms both scheme II and Du’s scheme for low m values. In our
simulations, scheme I reached a maximum local connectivity value of 0.8518 at M=28
and Q=26 that yields m=80. As the number of keys used increases after m=80, local
connectivity stays the same. Increasing M and Q, and consequently m, values means
that a node shares keys with distant nodes. This will not contribute to the local con-
nectivity, because distant nodes have very small probability of falling within that
node’s communication range. Simulation results in Figure 3 confirm our explanation.

0 20 40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

P
lo

ca
l

Our Scheme 2
Du's Scheme

Our Scheme 1

Fig. 3. Local connectivity versus memory usage m

There are two factors that makes scheme II’s connectivity performance better than

Du et al.’s scheme. Firstly, in our schemes we use more deployment knowledge such

that in Du’s scheme there is a single deployment point for each bundle of nodes,
whereas in scheme II there are deployment points for each node. Secondly, in scheme
II, we distribute copies of a key homogeneously. We distribute copies of a key to both
upper and lower neighboring lines, so a node can use keys in its Mc to establish secure
links with nodes on the same line, on its direct neighbor lines and nodes on two lines
away. In addition, by introducing sI and sc, we can have a fixed number of copies of
all keys. Du’s scheme can have the same average number of copies of keys with same
m values but a particular key can have a much higher or much lower number of cop-
ies. Fixing number of copies in scheme II contributes to homogeneity of key distribu-
tion.

A high local connectivity value means that a node can communicate with most of
its neighbors securely. However, a high local connectivity value does not guarantee
that there will not be is olated parts in the network. Thus, we need to examine that
whether our schemes can create too many isolated components or not. We measured,
global connectivity, which is the ratio of size of largest isolated part to the size of
whole network, through simulations. The results show that 100% global connectivity
is reached when m is as low as 10 for Scheme I and 30 for Scheme II.

Since we determine the deployment point of all nodes in Scheme I and fix the
number of copies of a key in Scheme II, we minimize the possibility that network has
more than one isolated part. Our simulation results support this idea.

4.2 Resiliency Against Node Capture

We investigate the effects of compromised nodes on direct key establishment. We
assume that total c randomly chosen nodes are compromised. The fraction of addi-
tional communications that can be compromised based on the information from the
compromised nodes defines the resiliency of our system. This section is focused on
the resiliency of Scheme II against node capture attacks. Scheme I uses pairwise keys,
therefore it is %100 resilient against compromising of sensor nodes.

Let kaj denote a key generated for line La. Assume kaj is used for a link between two
nodes that are not compromised. We know that there are Si copies of kaj on the nodes
of La, Sc copies of kaj on the nodes of La-1 and Sc copies of kaj on the nodes of La+1.
Thus, in order to compromise kaj, adversary should compromise nodes from La-1, La,
and La+1. If there are j compromised nodes on La, the probability that kaj is not com-
promised on line La is given as:

 (1)

If there are j compromised nodes on an adjacent line of La, the probability that kaj is

not compromised on that adjacent line is given as:

 (2)

Thus, if there are x compromised nodes on La-1, y compromised nodes on La and z

compromised nodes on La+1, the probability that kaj is not compromised becomes
Pcomp_c(x)*Pcomp_i(y)*Pcomp_c(z) .The probability that there are x compromised nodes on

 −
=

II
icomp s

N
s

jN
jp)(_

 −
=

cc
ccomp s

N
s

jN
jp)(_

line La-1, y compromised nodes on line La and z compromised nodes on line La+1 is
calculated as:

 (3)

By using equations 1, 2, and 3, we calculate the probability that an adversary ob-

tains a key, which is used for a link between two nodes that are not compromised, out
of randomly compromised c nodes as given below:

 (4)

Comparison of our scheme II and Du et al.’s [3] scheme is shown in Figures 4 and

5. In both schemes probability of a link being compromised, Pcomp_all, is plotted against
number of nodes captured. In Figure 4, number of keys in a node is taken as 60 and
number of nodes is 10000 for both schemes. In Figure 5, we fix local connectivity to
0.86 for both schemes. Our scheme is outperforms Du’s scheme, because we can
reach a local connectivity of 0.86 with only m=90 keys in a node, whereas Du’s
scheme requires m=140 to reach the same local connectivity.

Probability of a secure link being compromised when a number of nodes are cap-
tured is directly proportional to the numb er of copies of a key. In scheme II, number
of copies of a key is a parameter determined by sI and sc. In Figure 5, for scheme II
there are 3+2*3 = 9 copies of a key. In Du et al.’s scheme, a key has a random num-
ber of copies but we can find an average number of copies of a key by using |S|, num-
ber of unique keys in the sensor network, N, number of total nodes and m, number of
keys in each node: SmNkaverage ⋅= . Because we used the same m values for both

scheme II and Du’s scheme in Figure 4, there were six copies of a key for both
schemes and we got very similar results for both schemes as shown in the figure.

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of nodes captured

P
ro

ba
bi

lit
y

of
 a

 li
nk

 b
ei

ng
 c

om
pr

om
is

ed

Our Scheme 2

Du's Scheme

Fig. 4. Number of nodes captured vs. probability of a link compromised. m=60, si=2, sc=2

zyxczyx

xyzc L
L

LLLz
yxc

y
xc

x
c

p
−−−

 −

 −−

 −

= 3111
_

∑ ∑∑
=

−−−++

=

−

=

 −

 −−

 −

−=

N

x
ccompicompccomp

zyxczyxN

z

N

y
allcomp zPyPxP

L
L

Lz
yxc

y
xc

x
c

cp
0

0

2

0
_)()()(

31
1)(

4.3 Path Key Establishment Overhead

As the number of hops in path key establishment phase increases, a node can reach
more of its neighbors and communication cost increases. We analyzed path key estab-
lishment through simulations for scheme II and depicted the results in Figure 6. The
ratio of neighbors that a node can reach in i hops is defined as pl(i). Obviously, pl(1)
gives local connectivity. Our scheme performs better than Du et al.’s scheme [3] such
that our scheme needs less number of hops for small m values. It can be observed
from Figure 6 that for m=60 or larger values of m, a node can reach all its neighbors
in at most two hops. In [3], only 63% of the nodes reach their neighbors in at most
two hops when m=60. Moreover, in [3], m should be 200 in order for a node to reach
all of its neighbors in at most two hops.

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of nodes captured

P
ro

ba
bi

lit
y

of
 a

 li
nk

 b
ei

ng
 c

om
pr

om
is

ed

Our Scheme 2
Du's Scheme

Fig. 5. Number of nodes captured vs. probability of a link compromised for p local=0.86. For

our scheme: m=90, si=3 and sc=3. For Du’s scheme: m=140.

30 60 90 120 150 180 210
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

pl
 (

i)

3 hops

2 hops

1 hop

Fig. 6. Path Key Establishment Overhead

5 Conclusions
In this paper, we proposed a new deployment model and two novel key predistribu-
tion schemes based on the proposed model. In our deployment model, we proposed
the nodes to be deployed in lines in a continuous fashion. This model is practical and
can be realized easily. In the proposed scheme I, we assume to know the deployment
points of each node and with that knowledge we distribute pairwise keys to each node
to be used for communication between its neighbors. In scheme II, we loosen this
assumption and assume that a node can be at any deployment point in a known line.

We compared our schemes with Du et al.’s key predistribution scheme [3]. Per-
formance evaluation showed that scheme I can reach high local connectivity values
even with small memory usage. This is due to the assumption in scheme I that we can
know the neighbors of each node according to their deployment points. However,
there is an upper limit in local connectivity; other schemes can have better local con-
nectivity with high memory usage, whereas local connectivity in scheme I stays the
same at 0.85 after a certain point. On the other hand, scheme II achieves higher local
connectivity values than Du’s scheme in all cases. Both scheme I and II show good
performance in global connectivity and it is possible to reach 100% global connec-
tivity with small memory usage. Moreover, scheme II has better node capture resil-
iency than Du et al.’s scheme with the same local connectivity value. Furthermore,
communication cost of path key establishment overhead is smaller in our schemes.

References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor net-
works,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, August 2002.
[2] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks.
In IEEE Symposium on Research in Security and Privacy, pages 197–213, 2003.
[3] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A key management scheme for
wireless sensor networks using deployment knowledge. In Proceedings of IEEE
INFOCOM’04, March 2004.
[4] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key predistribution scheme for
wireless sensor networks. In Proceedings of ACM CCS’03, pages 42–51, October 2003.
[5] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor net-
works. In Proceedings of the ACM CCS’02, pages 41–47, November 2002.
[6] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In Proceed-
ings of ACM CCS’03, pages 52–61, October 2003.
[7] D. Liu and P. Ning. Location-based pairwise key establishments for static sensor networks.
In Proceedings of ACM SASN ’03, pages 72–82, October 2003.
[8] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale dis-
tributed sensor networks. In Proceedings of ACM CCS’03, pages 62–72, October 2003.
[9] J. Spencer, The Strange Logic of Random Graphs, Algorithms and Combinatorics 22,
Springer-Verlag 2000.
[10] D. Liu, P. Ning, and W. Du. Group -Based Key Pre-Distribution in Wireless Sensor Net-
works. In Proceedings of 2005 ACM Workshop on Wireless Security.
[11] D. Huang, M. Mehta, D. Medhi, and L. Harn. Location aware Key Management Scheme
for Wireless Sensor Networks. SASN’04, October 25, 2004, Washington, DC, USA.
[12] R. Blom. An optimal class of symmetric key generation systems. In Proceedings of
EUROCRYPT 84, 1985.

