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Abstract. Most routing algorithms for sensor networks focus on finding energy 
efficient paths to prolong the lifetime of sensor networks. As a result, the 
sensors on the efficient paths are depleted quickly, and consequently the sensor 
networks become incapable of monitoring events from some parts of their 
target areas. In many sensor network applications, the events have uncertainties 
in positions and generation patterns. Therefore, routing algorithms should be 
designed to consider not only energy efficiency, but also the amount of energy 
left in each sensor to avoid sensors running out of power early. This paper 
introduces a new metric, called Energy-Welfare, devised to consider average 
and balance of sensors’ remaining energies simultaneously. Using this metric, 
we design the Maximum Energy Welfare Routing algorithm, which achieves 
energy efficiency and energy balance of sensor networks simultaneously. 
Moreover, we demonstrate the effectiveness of the proposed routing algorithm 
by comparing with three existing routing algorithms. 
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1   Introduction 

Sensor networks report predetermined events or transmit sensed data to the base 
station for further analysis [1, 2].  The sensors contain a fixed amount of stored 
power and the process of sending data consumes some of that stored power.  It is 
desirable that the sensors run as long as possible.  In this work, we propose a routing 
algorithm that attempts to route messages efficiently so as to maximize the life of a 
sensor network. Consequently, the design of the routing algorithm for sensor 
networks should also incorporate the following factors [2]. 
 



 Due to sensors’ limited power, the routing algorithm should have a design to 
allow finding efficient paths to prolong the lifetime of the sensor network.  

 However, it is inevitable for most energy efficient routing algorithms to drive 
some sensors, which are close to the base station or on energy efficient paths, 
drained power quickly. As a result, the sensor networks become unable to detect 
events from regions where all sensors are nonfunctioning. Thus, in the sensor 
networks, data traffic should be dispersed and distributed over the whole 
network to extend its lifetime. 

 Although most existing routing algorithms assume that events are generated 
uniformly at each sensor, events could occur randomly [3], uniformly [4] over 
the target area, or repeatedly [5] at a specific part of the target area. Event 
patterns can change from one type to another over time. Therefore, the routing 
algorithm should be sufficiently robust for diverse event generation functions. 
This problem can be addressed by routing so as to utilize the energy uniformly 
over the entire sensor network. 

 In addition, a sensor network can consist of a large number of nodes for which a 
central control architecture does not apply. Therefore, the routing algorithm 
should adopt a local decision making scheme. 

 
Although the literature includes several routing algorithms, such as direct 

communication approach, hierarchical routing methods [6, 7], self-organized routing 
algorithm [4], and the other routing algorithms [8], little evidence exists for 
effectiveness and efficiency of these algorithms with respect to the considerations 
mentioned earlier.  

 

Fig. 1. An explanatory example for Energy Welfare Routing algorithm: Node 1 routes data to a 
path to maximize an Energy Welfare (Average×Equality) of sensor 1 and 2. 

We assume that the neighbors only get the information about the energy left in each 
neighbor and the energy required to transmit to the base station from that neighbor 
periodically. Individual sensors forward messages to neighbors that they think are on 
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the “best” route to the base station. The determination of the optimal route is difficult 
because the individual sensors do not have the information about the dynamic 
topology of the entire network and the dynamic energy balances of each node on the 
network. This study proposes a new heuristic metric, called Energy Welfare, to 
achieve the efficiency and balance of energies of sensors simultaneously. Based on 
this metric, we propose a localized routing algorithm, the Maximum Energy Welfare 
(MaxEW) routing, to accomplish the two objectives. Figure 1 gives a simple example 
of the MaxEW routing. Ei and eij represent the residual energy of sensor i and energy 
required to transmit from node i to node j respectively. Sensor 1 has two paths to 
reach to the base station. Path 2 is more energy efficient than Path 1. However, if 
sensor 1 keeps using path 2, sensor 2 will run out its power while sensor 1 has 
sufficient energy. In MaxEW, sensors can avoid the traffic concentration to a sensor 
by using a metric, Energy Welfare (Average× Equality), as a decision criterion. The 
Equality is in inverse proportion to the difference between energy levels of sensor 1 
and 2. Based on the metric, sensor 1 chooses path 1 which causes higher energy 
welfare.  

The rest of this paper has the following organization: Section 2 presents the details 
of the considered sensor network. Section 3 defines energy equality and the welfare of 
sensor network as new metrics. After describing the details of the maximum energy-
welfare routing algorithms in Section 4, Section 5 presents extensive simulation 
results, and Section 6 details conclusions. 

2   Sensor Network Model 

With n homogenous sensors randomly and uniformly distributed over a target area, 
every sensed data must be sent to the base station. Each sensor has limited battery 
power. Sensors can control their respective transmission power for minimal 
consumption to transmit to a destination [6, 7] and they have discrete adjustable 
transmission power levels [9-12]. This ability is necessary to allow the routing 
algorithm to maximize sensor networks’ operational times. Therefore, sensors can 
send data to either a neighbor or the base station directly, according to their routing 
policies [4, 6, 7]. The details of the problem are: 

2.1 Energy Consumption Model 

Each sensor uses a fixed transmission power for communicating with its neighboring 
sensors while each sensor transmits data to the base station. The neighboring distance 
is defined as the maximal reachable distance with the fixed transmission power for 
neighboring sensors. For a given sensor the sensors within its neighboring distance 
are its “neighboring sensors” or “neighbors”. In this scheme, each node can be aware 
of the current energy level of its neighbors or energy required to transmit from its 
neighboring nodes to the base station by anticipating and/or eavesdropping data from 



the neighbors. 
Generally, sensors use their energy when they sense, receive and transmit data. 

However, the amount of energy consumption for sensing is unaffected by the routing 
algorithm and only a small difference exists between the power consumption of idle 
and receiving modes [13]. Therefore, consideration is only energy consumption by 
transmission in the design of the routing algorithms to maximize the lifetime of the 
sensor network. By normalization of the radio characteristic constant and the size of 
sensed data [4], the energy consumption model is simplified to E=d2, where E and d 
are the required energy and the transmission distance respectively. 

2.2  The Lifetime of Sensor Network 

Validating the effectiveness of the proposed MaxEW routing algorithm uses the 
lifetime of sensor network as the performance measure [4, 6, 8, 11]. The definition of  
lifetime of a sensor network is the time or number of rounds that occur until the first 
node or a portion of nodes become incapable, due to energy depletion, of sending data 
to the base station directly or indirectly via its neighbors [4, 6, 8, 11, 14]. The portion 
(number of depleted nodes) can vary depending on the context of the sensor networks. 
In this paper, the lifetime of a sensor network is the number of rounds until the first 
(L1), 10% (L10), or 20% (L20) node(s) expend all their power [8, 11]. 

2.3 Event Generation Functions 

For evaluation purposes, many previous studies of routing algorithms assumed that all 
sensors have uniform data or event generation rates [4, 6, 7]. In infrastructure 
monitoring applications, each sensor performs a sensing task every time, T, and has a 
homogeneous event generation function. However, in many sensor network 
applications, this assumption becomes unrealistic. In a monitoring application for the 
migration of a herd of animals, the animals might move along a path in the target area 
repeatedly [5]. While, in the case of forest fire detection, events can occur rarely and 
randomly over the target area [3]. Furthermore, some event generation functions can 
be a combination of uniform, random, and repeated types. Therefore, more reasonable 
is the consideration of several event types for evaluation of routing algorithms. The 
results section demonstrates that our algorithm is robust for the different types of 
event generation functions. 

3   Energy Equality and Welfare 

To keep detecting events at an unknown position in a target area for as long as 
possible, routing algorithms should have a design to enable finding efficient paths, 
and, at the same time, prevent a particular set of sensors from being depleted early by 
a concentration of data traffic. In other words, the routing algorithms must achieve an 
energy balance for sensor networks while guaranteeing that sensors use their energies 



efficiently. Designing the routing algorithm first required a new measure for 
considering energy balance of sensor networks, as well as energy efficiency of routing 
algorithms. For this purpose, two definitions of Energy-Equality (EE) and Energy-
Welfare (EW) apply. 

3.1 Energy-Equality (EE) 

To measure how well energy-balanced a sensor network is, we define the Energy-
Equality (EE) of a given sensor network is Equation (1) and (2):  
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),( εtI N  is the inequality(explained below) of the sensor’s residual batteries at 

time, t. N and ε are the set of nodes in the sensor network and the inequality aversion 
parameter. n and Ei(t) are the number of sensors and the remaining energy of sensor, i, 
at time, t, respectively. Basically, the derivation of the energy inequality index, 

),( εtI N , is from the Atkinson inequality index [15].  Social scientists use the index 
to measure the inequality among entities with respect to their income. The aversion 
parameter ε  reflects the strength of society’s penalty for inequality, and can take 
values ranging from zero to infinity. When ε equals zero, no penalty for inequality 
accrues. As ε rises, society penalizes inequality more. The values of ε that are 
typically used include, 1.5 and 2.5 [16, 17]. This aversion parameter provides a 
flexibility to apply this metric to diverse sensor network applications. 

3.2 Energy-welfare (EW) 

A drawback exists for only considering energy balance of a sensor network. If a 
routing algorithm only pursues the energy balance without considering energy 
efficiency, sensors’ residual energies might converge to a lower value. That is, 
sensors possibly use their energy in an inefficient way to achieve the energy-balance 
of the sensor network. Therefore, Energy-Welfare (EW) is the consideration of energy 
efficiency and energy balance of sensor networks simultaneously. EW is a simple 
form of weighting the average of sensors’ residual energies by EE. We can calculate 
EW using equation (3).  
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The equation for EW has the same form as Atkinson welfare function [18]. The EW 
is high where the average and equality of sensors’ remaining battery power are both 
high. A low average, or EE, leads to a low EW. Therefore, the EW is an appropriate 
metric to design a routing algorithm that improves sensor networks with energy 
efficiency and energy balance perspectives. Additionally, since a sensor network 
having a high EW, can monitor unknown position events for a long time, the EW has 
consideration as the preparedness of sensor networks for upcoming events. 

4   Maximum Energy Welfare (MaxEW) routing 

In this paper, we assume that each sensor uses a fixed transmission power for 
communicating with its neighboring nodes. To send a message from a sensor to the 
base station the total transmission power required is minimized if the sensor 
communicates directly with the base station. The sensors are aware of the minimum 
transmission power required to send a message to the base station and the current 
battery level of its neighbors.  

The basic idea of the proposed routing algorithm is simply to use a path which 
maximizes the EW of the sensors. When a node i needs to send data to the base station, 
it can transmit data to the base station directly or route the data to one of its neighbors 
(Ni). For evaluating these alternatives, node i calculates the EW of a local society 
which consists of its neighbor and itself for each alterative. That is, the node can 
anticipate the residual energies of its neighboring nodes and itself when the data is 
routed according to its decision as in (4).  
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Also, this node can calculate the EWij of these expected residual energies, Ej(t+1), 

for each decision, Di(t), by (5). By comparing these expected EWs, the node routes 
data to the path allowing the maximum EW of the local society, Ni+{i}.  
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Through this decision making scheme, MaxEW tries to maximize the energy welfare 
of the entire sensor network. In MaxEW, each sensor keeps a small size routing table 
only for its neighboring nodes. The routing table contains node identification number, 
minimum transmission power to the base station, and available energy, for each 
neighbor node. The details of the algorithm are: 
 
Initialize routing table. During the setup period, each sensor finds its minimum 
transmission power to the base station. Then, each sensor broadcasts a setup message 
to neighboring nodes with a pre-set transmission power. This setup message includes 



node ID., minimum transmission power to the base station, and available energy. 
Every node receiving this broadcast message registers the transmitting node as one of 
its neighbors. Since all nodes have an identical neighbor distance, two nodes within 
the neighbor distance are neighbors to each other. After the setup period, all sensors 
initialize their routing tables. 
 

Algorithm 1. MaxEW routing algorithm (at node i and time t) 

For all j ∈ Ni+{i} do 
If j = i then 

       For all k ∈ Ni+{i} do 
               If k = i then  

Ek(t+1) = Ek(t) - TEBk 

                   Else  
Ek(t+1) = Ek(t) 

           End If 
           End For 
      Else  

For all k ∈ Ni+{i} do 
                If k = i then   

Ek(t+1) = Ek(t) - TENk 

                    Else If k = j then   
Ek(t+1) = Ek(t) – TEBk 

            Else   
Ek(t+1) = Ek(t) 

End If 
           End For 
      End If 
      Compute EWij by (4) 
End For 
Choose ( )ij

BSNj
EWArgMaxJ

i }{+∈
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Update routing table. A change of a neighbor’s energy level should be reflected in 
the routing table. When a sensor transmits data, all of its neighbors receive this data 
and get the current battery level of the transmitting sensor. As a result, whenever a 
sensor’s battery level changes, all routing tables including the corresponding sensor 
information are updated. 
 
Localized routing decision. Based on their routing tables, every node makes a local 
routing decision. Algorithm 1 gives a high-level description of the MaxEW algorithm 
of node i, at time, t. TEBk and TENk are the required transmission energies from node, 
k, to the base station and neighboring nodes, respectively. Also, EWij is the expected 
energy welfare of Ni +{i} when node i routes data to node, j. Based on this algorithm, 
node i selects J as the best candidate for transmitting data to the base station without 
considering whether J sends data directly to the base station or not. If the selection is 
that node i itself is the best node, it sends the data to the base station, finishing the 



routing process. Otherwise, the data is routed to node J and J performs the same 
process. This process continues until the base station receives the data. This localized 
decision making process results in a monotonic increase of EW because the best 
candidate can have a better indirect path than direct transmission. 

 

Fig. 2. An example routing path: ni sends data to nj, nj to nk, then nk sends to the base station 
directly. 

Fig. 2 shows how the MaxEW algorithm operates over a sensor network. For a given 
data, ni chooses nj among several possible routes. After the data passes to nj, energy 
level of ni changes and the routing table of nj also changes. nj performs the same 
process sequentially. In the figure, nk sends data to the base station directly because 
the transmission of nk, itself results in the maximum EW of nk’s local society 
compared to other neighbors. MaxEW guarantees elimination of loops in any routing 
path. In MaxEW, a sensor routes data to a neighbor only if the neighbor incurs more 
energy welfare than the sensor itself. As this routing mechanism continues, the 
expected energy welfare of the original node is apparently greater than that of the next 
down-stream node. Therefore, MaxEW always assures finding a routing path to the 
base station without loops. 

5   Experimental Results 

In this section, several experimental results validate the effectiveness of the MaxEW 
algorithm. The comparison of the algorithm is with three other algorithms discussed 
in [4, 7]: Direct Communication (DC), Minimum Transmission Energy (MTE), and 
Self-Organized  routing (SOR). In DC, every sensor simply transmits data directly to 
the base station without considering any energy-efficient indirect path. MTE and SOR 
consider indirect routing to save sensor power but make routing decisions based on 
energy efficiency only. The MaxEW algorithm tries to achieve an energy balance of 
the network by maximizing the EW of a local society in a decentralized manner. 
Experimental results show that this approach is valid for extending the lifetime of 
sensor networks and robust for different event.  

Base station
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Fig. 3. The configurations of the experimental sensor networks: 100 nodes, randomly and uni-
formly deployed in 100m×100m square area, have the base station located at (50, 150) [6, 7]. 

The experiments use a sensor network in which 100 nodes have random and 
uniform deployment in a 100m×100m square area with the base station located at (50, 
150)(see Fig. 3). In the sensor network, sensors have an initial battery level of 250,000. 
The initial energy levels are established by determining the amount of energy needed 
for the farthest node to transmit data to the base station 100 times with DC and also 
used in [4]. To discuss the effect of different event generation types on the lifetime of 
a sensor network, performed simulations uses uniform, random, and repeat event 
generation functions. In the case of the random distribution, 25% of sensors have 
events randomly occurring in each round. While, for the repeat events, the assumption 
is that sensors from (0, 0) to (50, 50) incur repeated events. Because a sensor network 
is generated randomly, 100 repeated experiments for each condition provides an 
average of the results. Lastly, neighbor distance of sensors (for MTE and MaxEW) 
and the aversion parameterε (for MaxEW) have settings of 15m and 2.5 respectively. 

Table 1. Lifetime (L1, L10, L20) for Direct, MTE, SOR, and MaxEW with Uniform, Random, 
and Repeat Events. 

 Uniform Random Repeat 
 L1 L10 L20 L1 L10 L20 L1 L10 L20 
Direct 105.3 123.4 142.3 492.7 618.1 717.2 107.8 145.8 193.3 
MTE 14.4 67.1 115.5 74.6 337.4 581.1 30.0 223.7 415.6 
SOR 28.7 145.9 109.9 111.3 562.9 771.4 154.1 316.9 418.2 
MaxEW 202.5 258.3 268.9 1012.7 1239.9 1346.7 685.6 970.6 1020.6 
 
 
Table 1 gives the result for the lifetime of sensor network (L1, L10, L20) for Direct 

Communication, MTE, SOR, and MaxEW algorithms with three different event 
generation types. As shown in Table1, MaxEW shows a dominant performance 
compared with Direct, MTE and SOR over the time. Especially, in the case of L1, 
MaxEW gives approximately two to eight times better performance than the others. 
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Fig. 4. The remaining energy distributions of sensors with uniform events at the 150 Round for 
DC, DTE, SOR, and MaxEW. 
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Fig. 5. Routing paths by Direct, MTE, SOR, and MaxEW with repeat events on the region from 
(0, 0) to (50, 50).  



Fig. 4 shows how well MaxEW achieves the energy balance of sensors over the 
network. As discussed in [7], in the Direct (Fig. 4(a)), SOR (Fig. 4(c)) and MTE (Fig. 
4(b)) routing scheme sensors far away and close to the base station ran out their 
energies around 150 round. While, in MaxEW, all sensors remain live and even have 
sufficient energy for responding upcoming events (Fig. 4(d)). Also notable is that 
Direct, MTE, and SOR missed some events during the first 150 rounds. However, 
MaxEW guaranteed that all data is transmitted to the base station for the same period. 

Fig. 5 shows the routing paths for four algorithms with repeated events in the 
regions from (0, 0) to (50, 50).  In the case of Direct, MTE, and SOR, data traffic 
concentrates in specific sensors which have location in the region or on the efficient 
path. On the other hand, MaxEW tries to dissipate energy usage over the whole 
network to achieve energy balance. As a result, MaxEW can keep all sensors 
operating for as long as possible. 

6. Conclusion and Future Works 

Sensor networks should be able to achieve energy balance as well as energy 
efficiency. Most energy-aware routing algorithms are only concerned about energy 
efficiency. This paper has presented a performance measure, called Energy Welfare, 
to consider energy balance and efficiency of sensor networks simultaneously. Based 
on this metric, the proposal is for a Maximum Energy Welfare (MaxEW) routing 
algorithm. We demonstrate the superiority of this routing algorithm to Direct 
Communication, MTE, and SOR with a lifetime metric, generally accepted for 
evaluation of routing algorithms. Additionally, from the experimental results, the 
conclusion is that MaxEW is robust for several event generation functions.  

To build the metric EW and MaxEW algorithm, we here use the Atkinson welfare 
function and set the inequality aversion parameter to 2.5. Many alternative welfare 
functions are available in social science, and this inequality aversion parameter is 
tunable. In the future, we will apply alternate social welfare functions and different 
aversion parameters to enhance our results. Currently, we used three types of event 
generation function for evaluation of our routing algorithm. Future work will involve 
development of more diverse and detailed event generation functions. 

In addition, we can consider a general multi-hop communication scenario where 
only a few sensors can communicate with the base station. In this scenario, the 
required transmission energy from a sensor to the base station can be calculated by 
the number of hop to the base station. As a future work, we will investigate how 
MaxEW works well in the general multi-hop scenario. 
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