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Abstract. The wide deployment of 802.11 WLANs has led to the co-
existence of wired and wireless clients in a network environment. This
paper presents a robust technique to detect 802.11 wireless hosts through
passive observation of client traffic streams at the edge of the network.
It is based on the estimation of entropy of packet interarrival times and
on the analysis of variation in the measured entropy values across in-
dividual end host connections. With the aim of generating a physical
layer “signature” that can be easily extracted from packet traces, we
first perform controlled experiments and analyse them through Spectral
Analysis and Entropy evaluation. Based on the gained insight we design
a methodology for the identification of 802.11 wireless clients and test
it on two data sets of packet-level traces collected in different networks.
Our results demonstrate that wireless identification is highly precise in
the presence of a sufficient traffic sample.

1 Introduction

The proliferation of 802.11 WLANs has led to the emergence of hybrid local
area networks where wireless and wired clients can seamlessly access the net-
work’s resources. However, network access through 802.11 imposes a different
kind of constraints on the network design. Wireless clients are likely to feature
increased mobility, whereby the client point of attachment to the network may
differ from one point in time to the next, affecting different parts of the infras-
tructure. Wireless client requirements with respect to throughput and latency
may be harder to meet given the unpredictable nature of the wireless medium.
Security solutions implemented in the core of the network may need to incor-
porate knowledge on the type of client to enforce appropriate solutions. Lastly,
even the provisioning of services addressed to network clients may significantly
benefit from knowledge regarding the capabilities of such clients.

Recent research work has focused on generally characterizing and studying
wireless traffic with the aim of highlighting essential differences and analogies
with wireline traffic [1, 2]. While particular network environments make the iden-
tification of wireless and wired clients trivial, say if clients obtain IP addresses
from different address blocks, there exist network environments where such a
task is much harder to perform [3–5]. For such environments previous approaches
have advocated the use of active measurements [3] or passive inspection of TCP



traffic [4, 5]. The fundamental issue with the first approach is that it requires
client cooperation for the collection of the appropriate information. The last
two approaches, furthermore, precludes the identification of clients that may use
protocols other than TCP. In this work we look into the problem of passive
identification of wireless clients as observed at a location inside a network where
a diverse set of client traffic is aggregated.

We put forth the idea that a primary difference between wired and wireless
systems is uncertainty which manifests itself at the physical and MAC layers.
Uncertainty is naturally quantified using information theoretic measures such as
that of entropy [6]. Techniques based on uncertainty estimation have lately been
largely applied to traffic analysis. In [7–9], entropy of packet arrivals is used to
detect traffic anomalies in wired networks.

In this work, we exploit the concept of entropy to measure the “uncertainty”
of wireless traffic. Variation of link quality and channel conditions together with
the channel access mechanism employed by the 802.11 protocol, “brands” client
traffic with a unique signature that can distinguish wireless from wired traf-
fic. We look into the fundamental operations of the 802.11 protocol and the
way it can perturb client traffic due to the random access mechanism employed.
More practically, we first use active measurements in controlled experiments and
deterministic traffic patterns. Our preliminary study draws on spectral analysis
applied to packet interarrival times in such controlled environments. The inspec-
tion of the spectral density, in the signal built from the packet arrival process,
lets us observe how intrinsic periodicity of sourced traffic can be either preserved
or distorted depending on the physical medium traversed. Furthermore, spectral
analysis allows us to define the signal bandwidth that needs to be filtered to
extract information from a traffic flow, i.e. to define the time scales of interest
for our purposes.

Correctly filtering the traces, we then perform entropy evaluation of packet
interarrival times, observing the differences in the content information of wired
and wireless traffic flows. Based on these observations, we design an algorithm
that can identify wireless clients through passive observations at an aggregation
point. Using two different data sets collected from an enteprise and a campus
environment we demonstrate that our algorithm achieves high accuracy in host
detection when provided with a sufficient traffic sample.

2 Extracting a wireless signature

Our goal is to capture the physical layer “signature” in a traffic flow through
the inspection of the packet interarrival times. We exploit two main features
that a-priori differentiate wired from wireless access: (i) the unpredictability of
the wireless medium, and (ii) the impact of the 802.11 medium access control
(MAC) mechanism.

Our conjecture is that both these mechanisms are bound to introduce ran-
dom delays in the transmission of packets from a wireless host. Due to the
unpredictability of propagation conditions on the shared radio medium, pack-



ets sent inside a wireless network may not be correctly decoded at the receiver.
Packet loss causes wireless stations to retransmit, delaying the packet deliv-
ery at the receiver. Furthermore, every time a wireless station has a packet to
send, it needs to contend for channel access. When many wireless clients co-exist
in a WLAN, collisions are highly likely to happen, causing retransmission and
increased backoff delays. Consequently, delay and increased jitter in packet re-
ception is one fundamental feature of wireless traffic. If a host were to transmit
the same constant bit rate (CBR) flow using the wired and wireless medium,
we would expect to see increased variation in interarrival times in the wireless
transmission compared to a purely periodic stream if access were wired.

However, even in the case of a purely periodic data source inference of the
access technology may still become complicated due to the behavior of the host
and the location of the observation point. The transmission of a purely periodic
traffic stream from a highly loaded host is unlikely to maintain its periodicity
when observed at a remote location. Moreover, network congestion and multi-
plexing with other traffic may distort the original signature in the traffic.

Such a task becomes even more challenging when the original traffic stream
is not periodic. If the application used by the client does not generate periodic
traffic (like VoIP for instance) we need to focus our attention to those parts in
the traffic stream that relate to back to back packets. If packets are transmitted
back to back, we would expect that the wireless medium will be able to distort
their time of arrival at the receiver. Particular transport layers are bound to
generate such back to back packets, for instance when TCP is transmitting a
window of packets. However, if the transport layer protocol itself does not allow
the observation of interarrival times of packets that have been generated closely
spaced to each other, then the wireless signature will be very hard to recover.

In what follows we use controlled experiments to study the behavior of peri-
odic traffic when transmitted through the wireless medium. This section allows
us to identify ways in which we can capture “clean” physical layer signatures that
do not suffer from the above limitations. Different wireless scenarios are tested
to investigate whether this signature is kept and how it varies across different
conditions. The results of these experiments can clarify and better motivate the
design of the methodology presented in Section 3.

Experimental scenario. We generate traffic flows from wired and wireless
clients inside a private LAN to destinations outside the LAN (several Planet Lab
nodes. We use the tg traffic generator to send UDP and TCP traffic streams.
The UDP streams are at constant bit rate of 1.6 Mbps, with 1000 byte packets
sent every 5 ms. The TCP connections consist of the bulk transfer of large files
(23Mbytes). All experiments are repeated both when clients attach to the net-
work using a ethernet interface and when they use an 802.11b wireless NIC. All
experiments are accompanied by sniffers at all clients, the AP (running HostAP),
as well as a collection point at the edge of the private LAN that could represent
a typical aggregation point where our algorithms would be deployed.



More specifically, when it comes to wireless experiments we test the following
different scenarios that may have a significant impact on the wireless signature
captured:

1. Good: a topology where one client is placed in a good location and there is
no contention (1 wireless client close to the AP, signal level: -43 dBm);

2. G-Cong: 3 clients are placed in good locations relative to the AP and con-
tend for channel access (client-AP signal level: -43 dBm);

3. Bad: a topology where 1 client is placed in a bad location and there is no
channel contention (1 wireless client far from the AP, signal level: -65 dBm);

4. Bad-Cong: a topology where 3 clients are placed in a bad location and
contend for channel access (client-AP signal level: -65 dBm).

Spectral Analysis
The main purpose of this preliminary analysis is to investigate how the phys-

ical layer characteristics influence the explicit (e.g. CBR traffic) or implicit (e.g.
TCP window of packets) periodicity of a traffic flow. Spectral analysis is carried
out through the Discrete Fourier Transform DFT and specifically applied to the
process of packet interarrival times. It aims at estimating the harmonic content
of a traffic stream, such as to point out the frequency bandwidth whose power
spectral density can be related to the MAC and physical layer behavior. The
power spectrum of packet interarrivals not only keeps statistical information of
a traffic flow, as a Probability Mass Function (PMF) would do, but it also de-
scribes how the “energy content” is spread over the frequency domain and how
the “information content” is distributed over the signal bandwidth.

More in detail, the signal to be processed is a discrete sequence defined on
the time domain and describes the process of packet arrivals:

x[n] =
{

1 nT0 ≤ tarr < (n + 1)T0

0 elsewhere
(1)

x[n] is built as a sequence of pulses of amplitude 0 or 1 spaced by T0. Pulses
of amplitude 1 at nT0 correspond to packet arrivals occurring at times tarr, with
nT0 ≤ tarr < (n+1)T0. The time granularity T0 has to be precise enough to keep
trace of all packet arrivals, with no overlapping of two or more packet arrivals in
the discrete time interval [nT0, (n + 1)T0]. To this end, since packet arrivals are
never spaced by less than 20µs1, we have chosen T0 = 20µs, thus the resolution
on the frequency domain will be f0 = 1/T0, equal to 50KHz. The observation
window is NT0 wide, i.e. the total number of observed samples is equal to N .

The Fourier transformed signal, defined on the discrete frequency domain is
then:

X[kf0] =
1
N

N−1∑
n=0

x[nT0]e−j2π nk
N (2)

1 time slot duration in IEEE802.11
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Fig. 1. DFT Cumulative Power Spectrum Analysis

Further, before treating x[n] with spectral analysis, the discrete sequence is
subtracted of its mean value. The mean value results in a large DC component in
the spectrum that does not provide any useful information for our classification
study. The DFT power spectrum P [n] is expressed by

P [kf0] =| X[kf0] |2 (3)

To compare different power spectra, the Cumulative Power Spectrum CPS is
used. It is normalized to the total power of the signal as

C(n) =
∑n

k=0 P [kf0]∑N−1
k=0 | X[kf0] |2

, 0 ≤ n < N (4)

Power Spectrum results presented here are plotted as a function of time,
instead of frequency, so as to relate the periodicity content information to the
time domain and achieve an intuitive meaning. This is simply obtained rescaling
the x-axis.

In Figure 1(a), CPS of UDP wired and wireless CBR flows is computed.
Interestingly, the distortion caused by the physical layer is clearly visible and
deeply affects the periodicity of CBR flows. Packets have been generated as one
every 5ms. If their transmission were not delayed, we would expect the ideal
frequency spectrum of a pulse train with a pulse every N/T , N = 1, 2... and



T = 5ms. The CPS, hence, would appear as a step function with a step every
T .

Focusing on the “udp wired” curve, indeed, we notice a step behavior due
to bumps of power corresponding to the main harmonic components at N/T .
This confirms that periodicity is actually preserved on the wire, whereas it is
significantly reduced for wireless streams. The “wireless good and not congested”
case still presents a step behavior, even though the amplitude of bumps decreases,
while, when congested and bad located flows are analysed, the periodicity of CBR
traffic completely disappears.

In order to observe a similar behavior for TCP streams, we first need to ob-
serve how the signal power is distributed over the frequencies of a TCP signal.
For this reason, Figures 1(c) and 1(d) are reported. There, the DFT Power Spec-
trum of a TCP wireless and a TCP wired connection are respectively compared.
In the first, clear high-powered spectrum components are concentrated at the
low time scale. These harmonic components refer to those packets sent inside
the TCP congestion window, whose transmission is not delayed by the reception
of TCP acknowledgements. A large amount of power is then concentrated at the
higher time scales and expresses the effect of Round Trip Times RTTs. In the
second power spectrum, shown in Figure 1(d) the transmission over the wireless
medium has the effect of removing most of the periodicity, by reducing the signal
power and distributing it over the whole bandwidth. Dominant frequencies are
no more discernible.

When the original traffic stream is not periodic, in order to catch the pe-
riodicity distortion, we need to focus our analysis on those parts of the traffic
streams where packets are sent in a back to back fashion, thus where the access
network effects are more visible. In the case of TCP traffic, this means taking
into account the packets transmitted within a TCP window: we need to apply a
filter and preserve only the high frequency bandwidth (i.e. the low time scales)
where these phenomena can be caught. The filter can be easily applied over the
sequence of packet interarrivals, dropping all the big interarrival times exceed-
ing a certain threshold, TRTT . In this work TRTT has been choosen to be set
to 10ms, so as to exclude big RTTs but include all the delays introduced by
consecutive retransmissions in highly congested wireless networks.

Thanks to this observation, we are able to isolate TCP wired flow from all
the TCP wireless ones through the CPS, as in the UDP/CBR case (Figure 1(b)).

Sample Entropy
The DFT methodology, is computationally expensive and is difficult to be

incorporated within an automated algorithm. A natural way to measure the
“uncertainty’ is to use the concept of Entropy. We describe here the concept of
empirical entropy, since we deal with empirical distributions. Let the random
variable X denote the value of interarrival times, i.e. the time between back
to back packets. X is randomly sampled or observed for m times inducing the
empirical probability distribution on X, p(xi) = mi/m, xi ∈ X and mi is the
frequency of times X is observed to take the value xi. The empirical entropy of
interarrival time distribution is then H(x) := −∑

xi∈X p(xi) log2 p(xi). Empiri-
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Fig. 2. Variance and Entropy of interarrival packet times

cal entropy values computed on the same distribution can be different, depending
on the time scales considered to discretize the samples. For our computations, a
bin size of 100µs has been chosen to compute the PMF.

We compute the entropy of the PMF of packet interarrivals across time.
Interarrivals are filtered as in the case of spectral analysis and each single point
is computed acquiring the PMF of interarrival packet times every 20 seconds at
the remote monitoring point.

Figure 2 presents variance and entropy for UDP and TCP streams as a func-
tion of time. Entropy evaluation, differently from standard metrics like average
value, median and variance, provides indeed a faithful estimation of the infor-
mation content of a set of outcomes. Variance, for instance, is a measure of the
average distance of the outcomes from the mean and quantifies how spread a
distribution is around its mean value. This is not enough, though, to quantify
the amount of observational variety and randomness retained in a set of obser-
vations. As a matter of fact, distributions that present low values of variance
may assume high entropy values and vice versa. In the case of our experiments,
the variance evaluation for UDP experiments, shown in Figure 2(a), is already
able to differentiate wired flows from wireless ones. It also consistently increases
in presence of congestion and low signal level within wireless environments. De-
lays and retransmissions result in a higher variability in packet arrivals, that
affects the innate periodicity of CBR traffic. This does not hold for TCP flows



though, whose variance is reported in Figure 2(b). Values range from 10−4 to
10−3 without a clear distinction among the different cases.

In Figure 2(c) and Figure 2(d), instead, entropy values are clearly separated
for all the cases, no matter which transport protocol is used. The information
content is very low (around 1 bit) for the wired interarrivals, while it grows
significantly for wireless packet flows. The difference between wired and wireless
is still evident even when just one wireless client is transmitting in the WLAN.

3 Detection Algorithm

From the lessons learnt during the controlled experiments, we can define a generic
algorithm to classify end hosts based on their access media. The input of our
scheme is a packet-level trace collected at a monitoring point. In the first stage,
packets are aggregated on the basis of the IP address source. Within each IP-
source set, 5-tuple flows are then isolated. Interarrival times between consec-
utive packets are computed and then filtered: only those, falling below TRTT ,
with TRTT = 10ms, are kept. The algorithm then computes two values: 1) the
empirical entropy HIP , evaluated on the whole IP-source aggregated traces; 2)
the empirical entropy of the largest (in terms of number of interarrivals) 5-tuple
flow of each IP-source trace, HIP,5. We then define Variation of Entropy the
difference ∆H = HIP −HIP,5.

The two values HIP and ∆H are used to classify hosts. The pseudo-code of
the proposed methodology is reported below:

If HIP ≤ Hlower

then the host is wired

else if HIP ≥ Hupper

then the host is wireless

else if Hlower < HIP < Hupper

if ∆H ≥ ∆HT HR

then the host is wired

else if ∆H ≤ ∆HT HR

then the host is wireless

The thresholds are trained using a small set of passive traces and chosen
as Hlower = 3.5bits, Hupper = 5bits and ∆HTHR = 0.5. Figure 3 shows the
PMF of entropy computed over the training dataset and helps explaining the
selection of thresholds. The mass of entropy for wireless flows is concentrated
for HIP ≥ Hupper (the vertical dotted line on the right), while wired entropy
values have higher probability for HIP ≤ Hlower (vertical line on the left). The
PMF exhibits an overlapping area in the range [Hlower,Hupper] bits, where the
two distributions are superimposed.

For the flows that fall into that region we use the variation of entropy as
discriminator. With wireless hosts, the uncertainty measured by HIP,5, i.e. on
the largest 5-tuple flow, already accounts for the effects introduced by the wire-
less transmission. As a consequence, adding other smaller 5-tuple flows has a
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marginal impact on the value of the aggregate entropy resulting in a low ∆H.
In the case of wired hosts, instead, the variation of entropy is driven by different
factors. When HIP is large, ∆H is measuring the impact of aggregating different
flows. By adding more outcomes the distribution defined over a limited interval
becomes more informative, i.e., the aggregate entropy grows [6].

4 Evaluation

Performance evaluation is carried out on two different datasets, namely Intel
and Dartmouth traces. In order to evaluate the algorithm accuracy, results are
compared with the ground truth, i.e. we know which IP addresses have been
assigned to Ethernet and WLAN hosts form predefined blocks. Intel traces are
collected on the access link of the Cambridge laboratory using a CoMo mon-
itoring system [10]. The traffic contains a mix of connections sourced from 93
different hosts, out of which 27 use the wireless LAN. The Dartmouth traces are
publicly available and refer to wide area wireless measurements taken at different
APs in the university campus of Dartmouth college. We analysed connections
from 162 distinct wireless IP addresses.

All results from both the datasets are summarised in Figure 4(a). Hosts
with at least two interarrival times are scattered on the basis of the aggregated
entropy (x-axis) and variation of entropy (y-axis). Vertical lines at 3.5 and 5 bits
delimit the interval [Hlower,Hupper], while the horizontal line at 0.5bits reports
the threshold ∆HTHR, used to select on the basis of the variation of entropy.

Most of the IP addresses map unambigously in the wireless or wired regions.
A dense cloud of wireless hosts can be noticed where the aggregate entropy is
above Hupper and the variation of entropy below ∆HTHR. Most of the wired
hosts, on the other hand, are either spread in the region below Hlower, or in
the overlapping zone where the variation of entropy is higher. However, several
hosts fall in the region where the classification is not certain. This is mainly
due to the very small number of observations (i.e. few packets belonging to few



0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Entropy of aggregated flows [bits]

V
ar

ia
tio

n 
of

 e
nt

ro
py

 [b
its

]

wired
wireless

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Entropy of aggregated flows [bits]

V
ar

ia
tio

n 
of

 e
nt

ro
py

 [b
its

]

wired
wireless

(a) Full datasets (b) Interarr ≥ 200

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250

A
lg

o
ri
th

m
 A

c
c
u
ra

c
y
 %

Number of Interarrivals

Dartmouth Wireless Data

Entr + Var Entr
Minimum Interarr

Minimum Entr
 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

A
lg

o
ri
th

m
 A

c
c
u
ra

c
y
 o

n
 I
n

te
l 
IP

s
%

Number of Interarrivals

Intel IPs

Entr + Var Entr
Minimum Interarr

Minimum Entr

(c) Accuracy (Dartmouth) (d) Accuracy (Intel)

Fig. 4. Performance on Dartmouth and Intel datasets

connections) that we see in the traces from those end systems. Indeed, if we
consider just those IP address for which we can measure at least 200 interarrival
times, the accuracy improves significantly. Figure 4(b) shows the scatter plot for
those end systems.

We have also compared the accuracy of our method with the accuracy of al-
ternative (and simpler) approaches. Figures 4(c) and 4(d) compare the accuracy
of three methods as a function of the number of observed packets per source.

The curve labelled as “Entr + Var Entr” refers to our proposal. “Minimum
Interarr” refers to an approach that just looks at the minimum interarrival be-
tween all packets from the same source. This approach is based on the fact that
on the wireless media two back-to-back packets still need to contend for the
medium. Therefore, if the interarrival is above 100µs (i.e., the minimum inter-
arrival of two 802.11a/g packets with no payload) the source is considered a
wireless host.

Interestingly, the minimum interarrival method performs very well on the
Dartmouth dataset (Figure 4c) while it performs poorly on the Intel dataset
(Figure 4d). The reason behind this is that some packets are queued on the wired
interface right before the monitoring point leading to very small interarrival
times. By picking always the minimum interarrival, this method leads therefore
to large errors.



The curve “Minimum Entr” computes the minimum Entropy among all 5-
tuple flows of a given source IP address. An Entropy below Hlower indicates
that the source is wired. This approach always underperforms our proposed
mechanism even when a large number of samples is considered.

5 Related Works

Recent research work has focused on characterizing and studying wireless traffic
with the aim of highlighting essential differences and analogies with wireline
traffic [1] [2] [11]. The results from these studies were found informative to
develop the proposed detection scheme.
Studies closer to that presented in this paper are in [3–5]. In the first, the authors
propose an access network type classification scheme, where a host interested in
determining the connection type of a remote user, requests to send a known
sequence of packets. Interarrival times of received packets are then recorded.
At this stage, the host is able to infer the user’s connection type based on the
median and entropy of the sequence of packet interarrival times. The scheme
proves to be strongly reliable, but, unlike our solution, it requires the remote
user cooperation.

In the second, the classification scheme is also strongly related to our solution.
A Bayesian inference algorithm is developed to estimate and classify whether
TCP flows have traversed an 802.11 WLAN. The methodology relies on the
time intervals occurring between TCP-ACK pairs and infers the connection type
of a user based on this observations. Unlike the previous classification scheme,
detection is performed through passive measurements, but the identification is
possible only for clients that are employing the TCP protocol.

The output of this algorithm is the fraction of wireless flows with a certain de-
gree of belief. The error, estimated as the difference between the inferred fraction
of wireless flows and the actual one, is bounded within +/- 0.05. The output of
our algorithm, instead, extends this information by providing the identification
of each single host within a certain traffic trace. The accuracy error, computed
as the number of mistaken detections over all considered hosts, reaches 1% and
6% in the two data sets.

Moreover, the methodology in [4] makes an inefficient use of traces because
the detection is carried out only using TCP ACK-pairs with an inter-ACK time
of 400us. (Due to TCP self clocking, wireless flows show a low number of such
ACK-pairs, thus often 90% of wireless flows contain less than 10 ACK-pairs.)
Differently our algorithm converges faster because it considers inter-packet pairs
belonging to both UDP and TCP traffic connections whose time distance is
below 10ms.

The TCP-ACK pairs technique is also employed in [5]. In this work, some
of the aforementioned limitations, e.g. the efficiency in the trace analysis, the
promptness and accuracy of results, are overcome by using two effective sequen-
tial hypothesis tests, with and without training data, respectively. However, the
detection is still limited to hosts sourcing TCP connections only.



Valid references to information-theoretic techniques applied to traffic analysis
can be found in [7], [8], [9], where entropy of packet arrivals is used to detect
traffic anomalies in wired networks. Research work in [12] discusses the use of
information theory and uncertainty to characterize wireless networks. Finally,
Spectral Analysis of traffic flows is applied in [13], with the purpose of detecting
and classifying denial of service attacks.

6 Conclusion

We have presented a method to classify wired and wireless hosts only based on
passive traffic observations at a remote location. Our method does not require
any cooperation from the end-systems and is protocol agnostic. The accuracy is
comparable with previously proposed approaches and outperforms näıve meth-
ods. Our future work is focused on testing the methodologies over larger datasets
in an attempt to isolate the specific sources of errors in our classification.
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