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Abstract. There is significant interest in the network maragnt community
about the need to improve existing techniques fostering multi-variate

network traffic flow records so that we can quickhfer underlying traffic

patterns. In this paper we investigate the usdustering techniques to identify
interesting traffic patterns in an efficient manniéfe develop a framework to
deal with mixed type attributes including numerjcatategorical and
hierarchical attributes for a one-pass hierarchiabktering algorithm. We
demonstrate the improved accuracy and efficiency oaf approach in
comparison to previous work on clustering netwoafic.

1 Introduction

There is a growing need for efficient algorithms detect important trends and
anomalies in network traffic data. In this papee present a hierarchical clustering
technique for identifying significant traffic flowatterns. In particular, we present a
novel way of exploiting the hierarchical structuvé traffic attributes, such as IP
addresses, in combination with categorical and mizaleattributes. This algorithm
addresses the scalability problems in previous agures [5-9] of network traffic
analysis as it is a one-pass, fixed memory algorith

A key challenge in clustering multi-dimensionalwetk traffic data is the need to
deal with various types of attributes: numericalilatites with real values, categorical
attributes with unranked nominal values and attabwvith hierarchical structure. For
example, byte counts are numerical, protocols ategorical and IP addresses have
hierarchical structure. We have proposed a hiereatlapproach to clustering that
exploits the hierarchical structure present in wekwraffic data. In network traffic a
hierarchical relation between two IP addressesreéflact traffic flow to or from a
common sub-network. We propose a common frameworkintorporate such
hierarchical attributes in the distance functiomof clustering algorithm.

The second contribution of this paper is the useaddingle-pass hierarchical
clustering technique to address the problems sdfby existing algorithms in terms
of their need to make multiple passes through ttaskt. In order to keep the size of
the reports small we present a number of summariza¢chniques over the cluster
tree.

In the next section we briefly summarize existiegaarch on identifying trends in
network traffic. In Section 3 we present our clusig and summarization algorithm
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called Echidna. We demonstrate the effectivenessipfipproach using an empirical
evaluation in Section 4.

2 Related Work

The problem of identifying network trends has bstudied by [5-9]. In [2], the
authors address the problem of finding patternsdtwork traffic by proposing a
frequent itemset mining algorithm. Their tool, eall AutoFocus [1] identifies
significant patterns in traffic flows by using figent itemset mining. It first creates a
report based on unidimensional clusters of netwtimks and then combines these
unidimensional clusters in a lattice to create affic report based on
multidimensional clusters. AutoFocus requires rpldtipasses through the network
traffic dataset in order to generagnificant multidimensional clusters. To address
this inefficiency, we consider the use of a hiehnéral clustering algorithm.

Our approach to finding multidimensional clustefsnetwork data builds on the
BIRCH framework [3], which is a clustering algoriththat uses &luster Feature
(CF) to represent a cluster of records in the fofra vector<n, LS SS>, wheren is
the number of records in the cluste§is the linear sum angSis the square sum of
the attributes of the records. Clusters are busihg a hierarchical tree called a
Cluster Feature Tree(CF-Tree) to summarize the input records.

The tree is built in an agglomerative hierarchicwnner (see Fig. 1). Each leaf
node consists df clusters, where each cluster is represented W@Htsecord. These
CF records can themselves be clustered at theeadmbdes. Figure 1 shows a CF-
Tree in fixed memory M with branching fact® and leaf node capacity. If P
denotes the size of a node in the tree, then iestatinly O(B*(1+logs M/P))
comparisons to find the closest leaf node in tee for a given record [3].
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Fig. 1. A Cluster Feature Tree
An open issue for using the BIRCH approach to elusetwork traffic records is
how to cope with numerical, categorical and higreal attributes which are used to
describe the network traffic. We also require ahwodtfor extracting significant
clusters from the CF-tree in order to generaterecise and informative report on the
given network traffic data. In the next section pvepose several modifications to the
BIRCH clustering approach to address these problems
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3 Our Approach to Clustering Network Traffic: Echidna

The input data is extracted from network traffic Grtuple records<SclP, DstIP,

Protocol, SrcPort, DstPort, bytes>, whereSclP, DstIP are hierarchical attributes,

bytes is numerical and the rest acategorical attributes. Our algorithm takes each

record and iteratively builds a hierarchical tréelosters called a CF-Tree. We now

describe the distance functions used for eaclbat&itype.

Distance functions: When clustering network traffic records we needcbnsider

three kinds of attributeswumerical, categorical andhierarchical.

a) Numerical Attributes: Aumerical attribute is represented by a scalfif [1R.
The centroidc[i] of a numerical attributein clusterC havingN points is given by

the mean of the N points. We calculate the distahdetween the centroids of two
clustersC; andC, by using the Euclidean distance metric.

b) Categorical Attributes: In the case ofategorical attribute,x[i] is a vectof]Z°,
wherec is the number of possible values that¢hategorical attributei can take. For
ad-dimensionatategorical attribute vectoiX, let thei™ attributex]i] be represented
asXx[i] ={ a1, a....a;}. The centroid gi]of a categorical attributei in clusterC

having N points is represented by a histogram of the freges of the attribute
values. The distance between clust€gsand C, in terms of a singleategorical
attribute is given by the Euclidean distance betwie frequency vectors of each
attribute.

c) Hierarchical Attributes: Ahierarchical attribute represent@ generalization
hierarchy in the form of ah-level tree applied to a domain of values at tleevéds
of the tree. A non-leaf node in the hierarchy geaeralization of the leaf nodes in
the subtree rooted at that node.

In a clusterC, the centroid for éierarchical attribute that corresponds to an IP

address is represented by an IP prgfixp, which is an aggregate of the IP addresses

[10] in that cluster. We calculate the distancenseein two cluster€; and C, with
centroids IR/ p,andip,/p,as &(Cy, &) = 32 -p if p > 8, or 24 ifp < 8,
wherep = CommonPrefix(1B,/ p,,IP,/ p,). The definitions ofCommonPrefix andIP

aggregation can be found in [10].

Intuitively, d, corresponds to the hierarchical distance froml¢laé level of the
tree to the most specific generalization of the teemtroids. In the case of IP
addresses, this corresponds to the size in logafitase 2) of the smallest subset that
would be required to contain these two clusters. &@mple, the distance between
128.0.0.252/32 and 128.0.0.254/31 is 2. The distdvetween two centroids is the
squared sum of the distances of each attributeyubim appropriate distance function.
Note that each attribute is scaled into the rar@&][so that no single attribute
dominates.

Radius Calculation: In order to control the variance of data recosithin a cluster,
we need some measure of treius of a cluster. Theadius for numerical and
categorical attributes can be represented in a straightforwaadner as the standard
deviation of the attribute values of the recordsthe cluster. In the case of
hierarchical attributes, we propose that thdius is proportional to the size of the
subtree in th@eneralization hierarchy covering the values that appear in the cluster.
Consider the case of IP addresses. We keep twablasiminlP and themaxIP,
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which correspond to the smallest and the largestalBes present in the cluster. Let
C[i]. range=(minlP, maxIP) denote the range of IP addresses present ibuwtii of
clusterC. We can measure thiadius in terms of the height of the smallest subtree in
the generalization hierarchy that coveraminlP and maxIP, which can be calculated
usingCommonPrefix asR, = (32-CommonPrefix(minlP, maxIP))/32. The final radius
value of the cluster is simply a linear combinatafrthe individual radius values of
different attributes types.

Cluster Formation: Following the general approach of BIRCH [3], eatisterC, is
represented by a cluster feature vector that cesitsilfficient statistics to calculate

the centroidC, andradius R, of the cluster. Each data recofdcorresponding to a 6-

tuple traffic flow record, is inserted by compariXgto the closest cluster starting
from the root along a path to a leaf node. At the leaf node, the data recoid
inserted into the closest &hd theradius R of the updated cluster is calculatedR|f
T, whereT is a threshold value in the range [0,1], and & ttumber of CF entries in
the node is less than a minimumthenX is inserted into the node as a new cluster. If
a node has no more space for a new CF entry, tleendde is split to create a new
node and the path to the root is updated recuysivel
Summarization: The clusters at each level represent a genedadieeof traffic flows,
which can be used to describe the traffic flowstle network. Since there is
redundant information between different levels, senmary report should contain
only those nodes of any level having significanditidnal information compared to
their descendant levels. We define significant soiteeterms of number of records,
Average Intra-Cluster distance andviaximum Intra-cluster distance measures that
intuitively pick those nodes that contain a heteragpus set of clusters.

An index node is considered significant if one tsfdescendants is significant. A
leaf node is significant if it has the followinggprerties:

a) The number of records in the leaf ndlis above a certain threshalgd

b) TheAverage Intra-cluster (Al) distance of the leaf nodg is above a threshold
Ta, where the Al distance of clust€rwith respect to its sub-clusterE,,...,C is

Al(C) = \/[22': Z': (C,-C )2 —1)] , whereC; andC; are sub-clusters &

i=1 j=2

¢) TheMaximum Intra-cluster (MI) distance of the leaf nod€ is greater than or
equal to the Al distance. The MI distance is gibgrMI(C) = max{d(C;, C)}, i=1,..)
andj=2,..]
Compression: We require a technique to further compress thabmr of significant
clusters that are included in the final report. @émsider a node to be significant if
the number of traffic records it contains is gredbanT,. Lemma 1 then gives the
upper and lower bound on the number of signifiazodes in the tree. The proof of
Lemma 1 can be found in [10].
Lemma 1: For a cluster tree of heightwith t traffic records and thresholfi, the

size of the repoyt is bounded byh L > p > 2L h>2 .

Compression of cluster report: LetC = {C4, C,,...,C} be the set of clusters in a path
P from the root to a node in levielof the CF-tree. Since a clustris represented as



Echidna: Efficient Clustering of Hierarchical Data for Network Traffic Analysis 5

a node in the tree, théd) consists of a set dfsub-clusters [ CF entries) at the same
leveli of the treeCi={C,;,C;;,..,Ci,}. It follows that
a) C;is significant if there exists @; in the pathP, such thaC; is significant,
wherei < |, i.e.,C; is an ancestor d;.
b) Lett andrt denote the traffic of; andCj, thent; > v, if i <]. In other words,
the size of clusteC; is greater than or equal to the size of cluSier
Letp be the compressed report, ahdandC; are significant cluster€; is included in
p if 1y -1 > T, whereT, is the threshold of recordd, can be expressed as a
proportion of the total traffic size, T, = rz, wherer = [0,1] andT is the total
traffic. In other words, a higher level clustemwisly included if it reports some traffic
not mentioned by its more specific significant siisters.
Complexity: Since the total number of attributes and thengeaof values are fixed,
we can consider that the cost of distance calauidietween a record and a cluster is
also constant. In a height-balanced CF-Tree witmdining factorB and m nodes,
logs m comparisons are required for each record to betegteénto the closest leaf
cluster. FoiN records the insertion time is bounded®§N * B(L+log, m)) -

4 Evaluation

Our aim was to test the accuracy and scalability oof hierarchical traffic
summarization algorithm. We have compared the acgyuand run-time performance
of our algorithm to AutoFocus [2] using 1998 DARRjataset [4]. Note that the
attack/normal labels in this dataset are usedvaluation purposes only, and are not
used as part of the cluster formation process.

Detection Accuracy: Our aim is to generate a summary traffic refploat identifies
important flows in network traffic. In this casegwse the DARPA traces (weeks 3-5)
to test whether the reports generated by Echidn@woFocus identify specific
attacks that appear in the traces. For each féejdentified the number and type of
attacks, reported as clusters in the summary refrantn Echidna and AutoFocus, and
identified the total number of occurrences of thatfack types in the traces (see
Table 1).

Echidna was able to detect 7 different types afckt compared to 4 attack types
detected by AutoFocus. Moreover, in the case ofptbeeep attack, Echidna detected
3 instances compared to 1 instance detected byFAates. In most cases, the attacks
that were detected can be characterized by thiireimce on the network bandwidth
during the time of the attack.

Run-time performance: In order to test the scalability of our algorithin
comparison to AutoFocus, we measured the exectitim required by Echidna and
AutoFocus for different traffic samples on a tinmaed dual 2.8GHz Xeon processor
machine with 4 GB RAM running SunOS 5.9 (see Fjg. 2

As predicted by the complexity analysis in SectiBn the computational
complexity of Echidna is linear with respect to thember of input traffic flow
records. Furthermore, Echidna shows a significadtiction in computation time and
variance in comparison to AutoFocus.
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Number of Detected Attacks
Time (s) Run-time Performance on DARPA traffic

Attack Total AF Echidna

2000 AutoFocﬂ ipsweep 5 1 3
1500 /l/ 1 Neptune 5 4 4
1000 T Nmap 2 0 1
500 T i S Pod 7 0 2

o W Satan 4 2 2

49 248 348 497 746 Syslog 2 0 1

Number of Traffic Records (x10% Smurf 7 3 3

Fig.2. Comparison of Run-time Performances Table 1. Dieteéccuracy

Conclusion

We have presented a clustering scheme called Exhidn generating summary
reports of significant traffic flows in network tr@as. The key contributions of our
scheme are the introduction of a new distance meédsu hierarchically-structured
attributes, such as IP addresses, and a set astieuito summarize and compress
reports of significant traffic clusters from a taerchical clustering algorithm. Using
standard benchmark traffic traces, we have denetesitrthat our clustering scheme
achieves greater accuracy and efficiency in corapario previous work.
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