
Echidna: Efficient Clustering of Hierarchical Data for
Network Traffic Analysis

Abdun Mahmood, Christopher Leckie, Parampalli Udaya

Department of Computer Science and Software Engineering
University of Melbourne, Australia

Email: {abdun,caleckie,udaya}@csse.unimelb.edu.au

Abstract. There is significant interest in the network management community
about the need to improve existing techniques for clustering multi-variate
network traffic flow records so that we can quickly infer underlying traffic
patterns. In this paper we investigate the use of clustering techniques to identify
interesting traffic patterns in an efficient manner. We develop a framework to
deal with mixed type attributes including numerical, categorical and
hierarchical attributes for a one-pass hierarchical clustering algorithm. We
demonstrate the improved accuracy and efficiency of our approach in
comparison to previous work on clustering network traffic.

1 Introduction
There is a growing need for efficient algorithms to detect important trends and
anomalies in network traffic data. In this paper, we present a hierarchical clustering
technique for identifying significant traffic flow patterns. In particular, we present a
novel way of exploiting the hierarchical structure of traffic attributes, such as IP
addresses, in combination with categorical and numerical attributes. This algorithm
addresses the scalability problems in previous approaches [5-9] of network traffic
analysis as it is a one-pass, fixed memory algorithm.

A key challenge in clustering multi-dimensional network traffic data is the need to
deal with various types of attributes: numerical attributes with real values, categorical
attributes with unranked nominal values and attributes with hierarchical structure. For
example, byte counts are numerical, protocols are categorical and IP addresses have
hierarchical structure. We have proposed a hierarchical approach to clustering that
exploits the hierarchical structure present in network traffic data. In network traffic a
hierarchical relation between two IP addresses can reflect traffic flow to or from a
common sub-network. We propose a common framework to incorporate such
hierarchical attributes in the distance function of our clustering algorithm.

The second contribution of this paper is the use of a single-pass hierarchical
clustering technique to address the problems suffered by existing algorithms in terms
of their need to make multiple passes through the dataset. In order to keep the size of
the reports small we present a number of summarization techniques over the cluster
tree.

In the next section we briefly summarize existing research on identifying trends in
network traffic. In Section 3 we present our clustering and summarization algorithm

2 Abdun Mahmood, Christopher Leckie, Parampalli Udaya

called Echidna. We demonstrate the effectiveness of our approach using an empirical
evaluation in Section 4.

2 Related Work
The problem of identifying network trends has been studied by [5-9]. In [2], the

authors address the problem of finding patterns in network traffic by proposing a
frequent itemset mining algorithm. Their tool, called AutoFocus [1] identifies
significant patterns in traffic flows by using frequent itemset mining. It first creates a
report based on unidimensional clusters of network flows and then combines these
unidimensional clusters in a lattice to create a traffic report based on
multidimensional clusters. AutoFocus requires multiple passes through the network
traffic dataset in order to generate significant multidimensional clusters. To address
this inefficiency, we consider the use of a hierarchical clustering algorithm.

Our approach to finding multidimensional clusters of network data builds on the
BIRCH framework [3], which is a clustering algorithm that uses a Cluster Feature
(CF) to represent a cluster of records in the form of a vector <n, LS, SS>, where n is
the number of records in the cluster, LS is the linear sum and SS is the square sum of
the attributes of the records. Clusters are built using a hierarchical tree called a
Cluster Feature Tree (CF-Tree) to summarize the input records.

The tree is built in an agglomerative hierarchical manner (see Fig. 1). Each leaf
node consists of l clusters, where each cluster is represented by its CF record. These
CF records can themselves be clustered at the non-leaf nodes. Figure 1 shows a CF-
Tree in fixed memory M with branching factor B and leaf node capacity L. If P
denotes the size of a node in the tree, then it takes only O(B* (1+logB M/P))
comparisons to find the closest leaf node in the tree for a given record [3].

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CCFF TTrreeee

CF1

child1

CF3

child3

CF2

child2

CF5

child5

CF1 CF2 CF6 prev next CF1 CF2 CF4 prev next

B = Maximum number of CF
records in a non-leaf node
L = Maximum number of CF
records in a leaf node Root

Non-leaf node

Leaf node Leaf node

T= Threshold Radius of a sub-cluster

Fig. 1. A Cluster Feature Tree

An open issue for using the BIRCH approach to cluster network traffic records is
how to cope with numerical, categorical and hierarchical attributes which are used to
describe the network traffic. We also require a method for extracting significant
clusters from the CF-tree in order to generate a concise and informative report on the
given network traffic data. In the next section we propose several modifications to the
BIRCH clustering approach to address these problems.

Echidna: Efficient Clustering of Hierarchical Data for Network Traffic Analysis 3

3 Our Approach to Clustering Network Traffic: Echidna
The input data is extracted from network traffic as 6-tuple records <SrcIP, DstIP,
Protocol, SrcPort, DstPort, bytes>, where SrcIP, DstIP are hierarchical attributes,
bytes is numerical and the rest are categorical attributes. Our algorithm takes each
record and iteratively builds a hierarchical tree of clusters called a CF-Tree. We now
describe the distance functions used for each attribute type.
Distance functions: When clustering network traffic records we need to consider
three kinds of attributes: numerical, categorical and hierarchical.
a) Numerical Attributes: A numerical attribute is represented by a scalar x[i] R∈ .

The centroid][ic of a numerical attribute i in cluster C having N points is given by

the mean of the N points. We calculate the distance dn between the centroids of two
clusters C1 and C2 by using the Euclidean distance metric.

b) Categorical Attributes: In the case of a categorical attribute, x[i] is a vector cZ∈ ,
where c is the number of possible values that the categorical attribute i can take. For
a d-dimensional categorical attribute vector X, let the ith attribute x[i] be represented
as x[i] ={ a1, a2,…,ac}. The centroid][ic of a categorical attribute i in cluster C

having N points is represented by a histogram of the frequencies of the attribute
values. The distance between clusters C1 and C2 in terms of a single categorical
attribute is given by the Euclidean distance between the frequency vectors of each
attribute.

c) Hierarchical Attributes: A hierarchical attribute represents a generalization
hierarchy in the form of an L-level tree applied to a domain of values at the leaves
of the tree. A non-leaf node in the hierarchy is a generalization of the leaf nodes in
the subtree rooted at that node.

In a cluster C, the centroid for a hierarchical attribute that corresponds to an IP
address is represented by an IP prefix pPI / , which is an aggregate of the IP addresses

[10] in that cluster. We calculate the distance between two clusters C1 and C2 with
centroids

11 / pPI and
22 / pPI as dh(C1 , C2) = 32 - p if p > 8, or 24 if p ≤ 8,

where p = CommonPrefix)/,/(2211 pPIpPI . The definitions of CommonPrefix and IP

aggregation can be found in [10].
Intuitively, dh corresponds to the hierarchical distance from the leaf level of the

tree to the most specific generalization of the two centroids. In the case of IP
addresses, this corresponds to the size in logarithm (base 2) of the smallest subset that
would be required to contain these two clusters. For example, the distance between
128.0.0.252/32 and 128.0.0.254/31 is 2. The distance between two centroids is the
squared sum of the distances of each attribute using the appropriate distance function.
Note that each attribute is scaled into the range [0,1] so that no single attribute
dominates.
Radius Calculation: In order to control the variance of data records within a cluster,
we need some measure of the radius of a cluster. The radius for numerical and
categorical attributes can be represented in a straightforward manner as the standard
deviation of the attribute values of the records in the cluster. In the case of
hierarchical attributes, we propose that the radius is proportional to the size of the
subtree in the generalization hierarchy covering the values that appear in the cluster.
Consider the case of IP addresses. We keep two variables minIP and the maxIP,

4 Abdun Mahmood, Christopher Leckie, Parampalli Udaya

which correspond to the smallest and the largest IP values present in the cluster. Let
C[i]. range=(minIP, maxIP) denote the range of IP addresses present in attribute i of
cluster C. We can measure this radius in terms of the height of the smallest subtree in
the generalization hierarchy that covers minIP and maxIP, which can be calculated
using CommonPrefix as Rh = (32-CommonPrefix(minIP, maxIP))/32. The final radius
value of the cluster is simply a linear combination of the individual radius values of
different attributes types.
Cluster Formation: Following the general approach of BIRCH [3], each cluster Cl is
represented by a cluster feature vector that contains sufficient statistics to calculate

the centroid lc and radius Rl of the cluster. Each data record X, corresponding to a 6-

tuple traffic flow record, is inserted by comparing X to the closest cluster starting
from the root along a path P to a leaf node. At the leaf node, the data record X is
inserted into the closest Cl and the radius Rl of the updated cluster is calculated. If Rl >
T, where T is a threshold value in the range [0,1], and if the number of CF entries in
the node is less than a minimum m, then X is inserted into the node as a new cluster. If
a node has no more space for a new CF entry, then the node is split to create a new
node and the path to the root is updated recursively.
Summarization: The clusters at each level represent a generalized set of traffic flows,
which can be used to describe the traffic flows in the network. Since there is
redundant information between different levels, the summary report should contain
only those nodes of any level having significant additional information compared to
their descendant levels. We define significant nodes in terms of number of records,
Average Intra-Cluster distance and Maximum Intra-cluster distance measures that
intuitively pick those nodes that contain a heterogeneous set of clusters.

An index node is considered significant if one of its descendants is significant. A
leaf node is significant if it has the following properties:

a) The number of records in the leaf node C is above a certain threshold Tr.

b) The Average Intra-cluster (AI) distance of the leaf node C is above a threshold
Tai, where the AI distance of cluster C with respect to its l sub-clusters C1,…,Cl is

AI(C) =










−−∑ ∑

= =

l

i

l

j
ji llCC

1 2

2)1(/)(2 , where Ci and Cj are sub-clusters of C

c) The Maximum Intra-cluster (MI) distance of the leaf node C is greater than or
equal to the AI distance. The MI distance is given by MI(C) = max{ d(Ci, Cj)}, i=1,..,l
and j=2,..,l
Compression: We require a technique to further compress the number of significant
clusters that are included in the final report. We consider a node to be significant if
the number of traffic records it contains is greater than Tr. Lemma 1 then gives the
upper and lower bound on the number of significant nodes in the tree. The proof of
Lemma 1 can be found in [10].
Lemma 1: For a cluster tree of height h with τ traffic records and threshold Tr, the

size of the report ρ is bounded by 2,2 ≥≥≥ h
TT

h
rr

τρτ .

Compression of cluster report: Let C = {C1, C2,…,Ch} be the set of clusters in a path
P from the root to a node in level h of the CF-tree. Since a cluster Ci is represented as

Echidna: Efficient Clustering of Hierarchical Data for Network Traffic Analysis 5

a node in the tree, then Ci consists of a set of l sub-clusters (l CF entries) at the same
level i of the tree Ci={C1,i,C2,i,..,Cl,i}. It follows that

a) Ci is significant if there exists a Cj
 in the path P, such that Cj is significant,

where i < j, i.e., Ci is an ancestor of Cj.
b) Let τi and τj denote the traffic of Ci and Cj, then τ i ≥ τj, if i < j. In other words,

the size of cluster Ci is greater than or equal to the size of cluster Cj.
Let ρ be the compressed report, and Ci and Cj are significant clusters. Ci is included in
ρ if τi - τj > Tr, where Tr is the threshold of records. Tr can be expressed as a
proportion of the total traffic size, Tr = rτ, where r = [0,1] and T is the total
traffic. In other words, a higher level cluster is only included if it reports some traffic
not mentioned by its more specific significant sub-clusters.
Complexity: Since the total number of attributes and their range of values are fixed,
we can consider that the cost of distance calculation between a record and a cluster is
also constant. In a height-balanced CF-Tree with branching factor B and m nodes,
logB m comparisons are required for each record to be inserted into the closest leaf
cluster. For N records the insertion time is bounded by))log1(*(mBNO B+ .

4 Evaluation
Our aim was to test the accuracy and scalability of our hierarchical traffic
summarization algorithm. We have compared the accuracy and run-time performance
of our algorithm to AutoFocus [2] using 1998 DARPA dataset [4]. Note that the
attack/normal labels in this dataset are used for evaluation purposes only, and are not
used as part of the cluster formation process.

Detection Accuracy: Our aim is to generate a summary traffic report that identifies
important flows in network traffic. In this case, we use the DARPA traces (weeks 3-5)
to test whether the reports generated by Echidna or AutoFocus identify specific
attacks that appear in the traces. For each file, we identified the number and type of
attacks, reported as clusters in the summary reports from Echidna and AutoFocus, and
identified the total number of occurrences of these attack types in the traces (see
Table 1).

Echidna was able to detect 7 different types of attacks compared to 4 attack types
detected by AutoFocus. Moreover, in the case of the ipsweep attack, Echidna detected
3 instances compared to 1 instance detected by AutoFocus. In most cases, the attacks
that were detected can be characterized by their influence on the network bandwidth
during the time of the attack.

Run-time performance: In order to test the scalability of our algorithm in
comparison to AutoFocus, we measured the execution time required by Echidna and
AutoFocus for different traffic samples on a time shared dual 2.8GHz Xeon processor
machine with 4 GB RAM running SunOS 5.9 (see Fig. 2).

As predicted by the complexity analysis in Section 3, the computational
complexity of Echidna is linear with respect to the number of input traffic flow
records. Furthermore, Echidna shows a significant reduction in computation time and
variance in comparison to AutoFocus.

6 Abdun Mahmood, Christopher Leckie, Parampalli Udaya

Fig.2. Comparison of Run-time Performances Table 1. Detection Accuracy

Conclusion
We have presented a clustering scheme called Echidna for generating summary
reports of significant traffic flows in network traces. The key contributions of our
scheme are the introduction of a new distance measure for hierarchically-structured
attributes, such as IP addresses, and a set of heuristics to summarize and compress
reports of significant traffic clusters from a hierarchical clustering algorithm. Using
standard benchmark traffic traces, we have demonstrated that our clustering scheme
achieves greater accuracy and efficiency in comparison to previous work.

References

1. http://www.caida.org/tools/measurement/autofocus/
2. C. Estan, S. Savage. and G. Varghese. Automatically Inferring Patterns of Resource

Consumption in Network Traffic problem. In Proceedings of SIGCOMM 2003
3. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method

for very large databases. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 103-114, 1996

4. http://www.ll.mit.edu/IST/ideval/data/1998/1998_data_index.html
5. A. Medina, K. Salamatian, N. Taft, I. Matta, and C. Diot. A Two-step Statistical

Approach for Inferring Network Traffic Demands (Revises Technical Report BUCS-
TR-2003-003).

6. A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and N. Taft.
Structural analysis of network traffic flows, In Proceedings of ACM SIGMETRICS,
June 2004.

7. A. Lakhina, M. Crovella, and C. Diot. Characterization of Network-Wide Anomalies
in Traffic Flows. Technical Report BUCS-2004-020, Boston University, 2004.

8. K. Lan, and J. Heidemann. On the correlation of Internet flow characteristics.
Technical Report ISI-TR-574, USC/Information Sciences Institute, July, 2003.

9. K. C. Claffy, G. C. Pluyzos, and H. W. Braun. Applications of Sampling
Methodologies to Network Traffic Characterization. In Proceeding of ACM
SIGCOMM, 1993.

10. A. Mahmood, C. Leckie, P. Udaya. Echidna: Efficient Clustering of Hierarchical
Data for Network Analysis. (http://www.cs.mu.oz.au/~abdun/TR01112005.pdf)

 Number of Detected Attacks

Attack Total AF Echidna

ipsweep 5 1 3

Neptune 5 4 4

Nmap 2 0 1

Pod 7 0 2

Satan 4 2 2

Syslog 2 0 1

Smurf 7 3 3

Run-time Performance on DARPA traffic

0

500

1000

1500

2000

49 248 348 497 746

Number of Traffic Records (x103)

Echidna

AutoFocus

Time (s)

