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Abstract. The Constrained Routing Problem is a multi-criteria opti-
mization problem that captures the most important aspects of Qual-
ity of Service routing, and appears in many other practical problems.
The problem is NP-hard, which causes exact solutions to require an in-
tractable running time in the worst case. ε-approximation algorithms
provide a guaranteed approximate solution for all inputs while incurring
a tractable (i.e., polynomial) computation time. This paper presents a
performance evaluation of these two types of algorithms. The main per-
formance criteria are accuracy and speed.
keywords: QoS routing, performance evaluation, RSP algorithms.

1 Introduction

One of the key issues in providing guaranteed Quality of Service (QoS) is how to
determine paths that satisfy QoS constraints. Solving this problem is known as
Constrained routing or QoS routing. The research community has extensively
studied this problem, resulting in many QoS routing algorithms (see [5] for
an overview and performance evaluation). Research has mainly focused on a
two-parameter optimization problem called the Restricted Shortest Path (RSP)
problem. Before presenting the formal definition of the RSP problem, we intro-
duce some terminology and notation.
Let G(N,L) denote a network topology, where {N} is the set of N nodes and

{L} is the set of L links. The number of QoS measures (e.g., delay, hop count) is
denoted bym. Each link is characterized by anm-dimensional link weight vector,
consisting of m non-negative QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ {L})
as components. The QoS measure of a path can be either additive (e.g., delay,
jitter, the logarithm of packet loss), in which case the weight of a path equals
the sum of the weights of its links, or bottleneck (e.g., available bandwidth), in
which case the weight of a path is the minimum (or maximum) of the weights
of its links. Without loss of generality [9], we assume all QoS measures to be
additive.
The RSP problem is formally defined as follows.

Definition 1 Restricted Shortest Path (RSP) problem: Consider a network
G(N,L). Each link (u, v) ∈ {L} is specified by m = 2 nonnegative measures:



a cost c(u, v) and a delay d(u, v). Given a delay constraint ∆, the RSP prob-
lem consists of finding a path P ∗ from a source node s to a destination node
d such that d(P ∗) ≤ ∆ and c(P ∗) ≤ c(P ) ∀P : d(P ) ≤ ∆, where c(P )

d e f
=P

(u,v)∈P c(u, v) and d(P )
d e f
=
P
(u,v)∈P d(u, v).

The RSP problem is known to be NP-hard [1]. To cope with this worst-case
intractability, heuristics and ε-approximations have been proposed, as well as a
few exact algorithms.
As described in [5], many studies focused on heuristic solutions, which may

perform well in certain scenarios. However, in the most general case they cannot
provide any performance guarantee, which makes them unpredictable. We focus
on the two classes of exact and ε-approximation algorithms, which can (rig-
orously) provide a predefined level of QoS guarantees. For the ε-approximation
algorithms mainly theoretical results exist and no empirical results are published.
Exact algorithms provide the optimal solution, however their running time may
be very high in the worst case. In this paper we evaluate two representative
algorithms, distinguish their worst cases, provide empirical results and discuss
and compare the relative strengths of the two approaches.
The outline of the paper is as follows. In Section 2 we describe the two

algorithms: we choose SAMCRA [9] as a representative of the class of exact RSP
algorithms and SEA [6] as a representative of the class of RSP ε-approximation
algorithms. In Section 3 we delineate the worst-case scenarios of each of the two
algorithms. In Section 4 we conduct an empirical comparison between the two
algorithms. Finally, we discuss some open problems in Section 5 and provide a
brief conclusion in Section 6.

2 RSP algorithms

2.1 SAMCRA

SAMCRA [9] stands for Self-Adaptive Multiple Constraints Routing Algorithm
and is a general exact QoS algorithm, which incorporates four fundamental con-
cepts: (1) a nonlinear measure for the path length. When minimizing a linear
function of the weights, solutions outside the constraints area may be returned.
An important corollary of a nonlinear path length is that the subsections of
shortest paths in multiple dimensions are not necessarily shortest paths them-
selves. This necessitates to consider in the computation more paths than only
the shortest one, leading to (2) a k-shortest path approach. The k-shortest path
algorithm is essentially Dijkstra’s algorithm that does not stop when the des-
tination is reached, but continues until the destination has been reached by k
different paths, which succeed each other in length. To reduce the search space
we use (3) the principle of non-dominated paths3, and (4) the look-ahead con-
cept. The latter precomputes (via Dijkstra’s algorithm) one or multiple shortest

3 Often also referred to as Pareto optimality. A path P is dominated by a path Q if
wi(Q) ≤ wi(P ), for i = 1, ...m, with inequality for at least one i.



path trees rooted at the destination and then uses this information to compute
end-to-end lower bounds to reduce the search space. SAMCRA can be used with
different length functions, and can therefore be easily adapted to solve the RSP
problem. The nonlinear length that we have used is:

l(P ) =

½
c(P ), if d(P ) ≤ ∆
∞, else

(1)

By employing this length function, SAMCRA can guarantee to find the minimum-
cost path within the delay constraint.

2.2 SEA

SEA [6] stands for Simple Efficient Approximation and is an ε-approximation
algorithm that (like most ε-approximation algorithms) specifically targets the
RSP problem. ε-approximation algorithms are characterized by a polynomial
complexity and ε-optimal performance. An algorithm is said to be ε-optimal if
it returns a path whose cost is at most (1+ε) times the optimal value, where
ε > 0 and the delay constraint is strictly obeyed. ε-approximation algorithms
perform better in minimizing the cost of a returned feasible path as ε goes to
zero. However, the computational complexity is proportional to 1/ε, making
these algorithms impractical for very small values of ε. SEA is based on Hassin’s
algorithm [3], which has a complexity of O((LNε + 1) log logB), where B is an
upper bound on the cost of a path. It is assumed that the link weights are
positive integers. This ε-approximation algorithm initially determines an upper
bound (UB) and a lower bound (LB) on the optimal cost. For this, the algorithm
initially starts with LB = 1 and UB = sum of (N -1) largest link-costs, and then
systematically adjusts them using a testing procedure. Once suitable bounds are
found, the approximation algorithm bounds the cost of each link by rounding

and scaling it according to: c0(u, v) =
j
c(u,v)(N+1)

εLB

k
+ 1 ∀ (u, v) ∈ {L}. Finally,

it applies a pseudo-polynomial-time algorithm on these modified weights. SEA
improves upon Hassin’s algorithm by finding better upper and lower bounds and
by improving the testing procedure. In this way SEA obtains the polynomial
complexity of O(LN(log logN + 1

ε )).
It is also worth mentioning that there is another class of approximation al-

gorithms, e.g. [2], that approximate the delay constraint rather than the cost.
Indeed, this is a heavier compromise, but the reward is in terms of a smaller run-
ning time. Yet another approach is to specialize on the network topology (e.g.,
assume a hierarchical structure) and thus provide an exact and computationally
tractable solution [7].

3 Worst-case scenarios

NP-hard problems may be solvable in some (or even many) instances, while
displaying intractability in the worst case. It is therefore important to gain some
understanding at what constitutes a worst-case scenario for a particular problem
or algorithm.



3.1 Exact algorithms

Worst-case scenarios for exact QoS algorithms were identified in [4], and ac-
cording to [5] they also resulted to be worst-case scenarios for several heuristics.
Summarizing [4], the intractability of the constrained routing problem hinges
on four factors, namely: (1) The underlying topology, because the number of
paths in some classes of topologies can be bounded by a polynomial function
of N ; based on empirical results [4], other classes of topologies, like the class of
random graphs that have a small expected hop count, also appear to be com-
putationally solvable. (2) Link weights that can grow arbitrarily large or have
an infinite granularity; when link weights are bounded and have a finite granu-
larity, which is often the case in practice, it can be proved that the constrained
routing problem is solvable in polynomial time; in fact, this is the property that
ε-approximation algorithms rely on to guarantee a polynomial complexity. (3)
A very negative correlation among the link weights; empirical results [4] indi-
cate that there is hardly any “intractability” for the entire range of correlation
coefficients ρ ∈ [−1, 1], except for extreme negative values. (4) The values of
the constraints: if they are very large, then it is easy to find a path within the
constraints, while if they are very small, then it is easy to verify that there is no
path that meets the constraints. If, indeed, the four above-mentioned conditions
are all necessary to “induce intractability,” they could allow network and service
providers to properly dimension their infrastructures so as to avoid intractable
scenarios.

3.2 ε-approximation algorithms

The class of ε-approximation algorithms are based on entirely different concepts
and may not be affected by the worst-case scenarios of exact algorithms. In this
section we delineate the worst-case scenarios for ε-approximation algorithms,
and in particular for SEA.
The rounding and scaling performed by SEA prevents that a solution that is

exactly a factor (1+ ε) larger than optimal can be returned. The scaled weights

are computed via c0(u, v) =
j
c(u,v)(N+1)

εLB

k
+ 1 ∀ (u, v) ∈ {L} and hence we

have that c(u, v) ≤ c0(u,v)εLB
N+1 ≤ c(u, v) + εLB

N+1 . The maximum error that can be

made along any path therefore equals (N−1)εLB
N+1 ≤ (N−1)εc(P∗)

N+1 < εc(P ∗). The
maximum path error of εc(P ∗) can only be approximated from below for large
N .
The factor that affects performance is not so much the topology as the distrib-

ution of weights over the links. Let us consider two nodes, s and d, interconnected
by two links as displayed in Figure 1. Let the delay of each link be 1, and let the
costs be c(l1) = 1, c(l2) = 1 + εLB

N+2 . We assume that
N+1
εLB is an integer number,

then scaling the link costs results in c0(l1) = c0(l2) =
N+1
εLB +1. Hence, due to the

scaling performed by the algorithm, the weights of the two links would appear
identical, and the algorithm may pick link l2, which is a factor (1 + ε

4) more
costly than link l1, when LB = c(P ∗) = 1. SEA cannot return a path that is a
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Fig. 1. Example topology consisting of two nodes and two links, where each link is
characterized by a cost and a delay. The left topology represents the original weights,
while the right topology gives the scaled weights (according to SEA).

factor (1 + ε
3) more costly than optimal in this topology. Note that, depending

on the implementation details of the algorithm, either of the two paths could be
chosen. This source of “randomness” reduces the expected error over multiple
graphs.

Another measure that determines the worst-case error of SEA is the value of
the lower bound LB. SEA first determines upper and lower bounds, such that
UB
LB ≤ N . Hence, for the lower bound holds that c(P∗)

N ≤ LB ≤ c(P ∗). In case

LB = c(P∗)
N , the worst-case error that SEA could make is upper bounded by

εc(P∗)
N .

Finally, in a general topology, the weights are unlikely to constitute worst-
case errors. To obtain a worst-case error, the link weights should be chosen from
two classes, namely link weights that, when scaled and rounded, do not lead to
an error and link weights that, when scaled and rounded, give the maximum
attainable error. The optimal path would then consist of the “error-free” link
weights, while the approximation algorithm could return in the worst case a path
that includes only the “erroneous” link weights. If the weights are randomly
assigned to the links, then there is a smoothing effect over the various links. So,
for pushing the algorithm to its limit, one could (either or both):

— Consider very simple topologies, with a small number of edges and low con-
nectivity.

— Assume some correlation among the weights of consecutive links, in an at-
tempt to cancel the “smoothing effect.” In addition, the weights of the links
should be chosen out of a small set, in which the differences are such that
the scaling operation would incur the maximal possible error.

— We should focus on large values of the weights and the delay constraint, since
for small values a pseudo-polynomial algorithm would provide a solution that
is both optimal and computationally solvable.



4 Performance evaluation

We have performed a comprehensive set of simulations to compare between SAM-
CRA and SEA. We have used Waxman graphs [8], complete graphs, random
graphs of the type Gp(N), where p is the link density, power-law graphs, and
lattices. In each class of graphs, the delay and cost of every link (u, v) ∈ {L}
were taken as independent uniformly distributed random integers in the range
[1,M ]. However, for the class of lattices, the delay and the cost of every link (u, v)
were also negatively correlated: the delay was chosen uniformly from the range
[1,M ] and the corresponding cost was set toM +1 minus the delay. Simulations
for different values of M did not display any significant differences, so we have
chosen M = 105. In each simulation experiment, we generated 104 graphs and
selected nodes 1 and N as the source and destination, respectively. For lattices,
this corresponds to a source in the upper left corner and a destination in the
lower right corner, leading to the largest minimum hop count. For power-law
graphs, this corresponds to a source that has the highest nodal degree and a
destination that has the lowest nodal degree in the graph. For the other classes
of graphs, this is equivalent to choosing two random nodes.
The delay constraint ∆ was selected as follows. First, we computed the least-

delay path (LDP) and the least-cost path (LCP) between the source and the
destination using Dijkstra’s algorithm. If the delay constraint ∆ < d(LDP),
then there is no feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we compared between the
algorithms considering the values d(LDP) < ∆ < d(LCP), as follows:

∆ = d(LDP) +
x

4
(d(LCP)− d(LDP)) (2)

In all simulations we chose x = 2, except when evaluating the influence of the
constraints, in which case we considered x = 0, 1, 2, 3, 4.

4.1 Simulation results

SAMCRA always finds the optimal path within the delay constraint. We there-
fore evaluated SEA based on how successful it is in minimizing the cost of a
returned feasible path, when compared to SAMCRA. The effective approxima-
tion α of SEA is defined as

α =
c(PSEA)

c(PSAMCRA)
− 1

where c(Px) is the cost of the feasible paths that are returned by algorithm x.
We plot E[α], var[α], and max[α] based on the 104 iterations. We also report
the execution time of the compared algorithms. Figure 2 displays the effective
approximation α and execution time as a function of ε for lattice graphs with
N = 100, and independent uniformly distributed random link weights.
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Fig. 2. Effective approximation α and execution time as a function of ε. The results are
for Lattice graphs with N = 100, and the link weights are independent and uniformly
distributed random variables.

We can clearly see that α << ε, which means that SEA hardly or never
reaches a worst-case performance. Even the performance for ε = 1 is surpris-
ingly good. The reason that α << ε is partly due to the assignment of the
link weights according to a uniform distribution. Given that the link costs are
uniformly distributed in the range [1,M ], then the scaled and rounded costs are

approximately uniformly distributed in the range [
j
(N+1)
εLB

k
+ 1,

j
M(N+1)
εLB

k
+ 1].

As any real number x can be written as x = bxc + hxi, where bxc denotes the
largest integer smaller or equal to x and where hxi ∈ [0, 1) denotes the fractional
part of x, the round-off error of link (u, v) equals 1 −

D
c(u,v)(N+1)

εLB

E
, for which

holds 0 ≤ 1 −
D
c(u,v)(N+1)

εLB

E
≤ 1. Assuming that (N+1)

εLB is a fixed fractional

number that is known to SEA before it executes its main procedure, the size
of the round-off error is determined by the costs c(u, v). Since these costs are
uniformly distributed, we believe that the round-off errors are well approximated
by a uniform distribution. If this holds, then our expected round-off error on a
link is only half its worst-case value.

The expected α displays an approximately linear increase on the log-log scale,
with a slope that is almost equal to 2. Therefore, in our simulated range, chang-
ing the value of ε has a quadratic impact on the effective approximation α.
We can also see a clear correspondence between ε and the execution time: the
larger ε, the smaller the execution time. The results approximately follow a lin-
ear line with a slope of -1 on a log-log scale, which indicates that the time is
inversely proportional to ε, as was expected from the worst-case time complexity
O(LN(log logN+ 1

ε )). However, even for ε = 1 the execution time of SEA is still
by an order of magnitude larger than the execution time of SAMCRA. Figure 3
plots the effective approximation α as a function of the constraint values. A larger
constraint means that more paths obey it. This larger search space results in a
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Fig. 3. Effective approximation α and execution time as a function of x in equation
(2). The results are for Lattice graphs with ε = 0.1 and N = 100, and the link weights
are independent and uniformly distributed random variables.

higher probability of making an erroneous decision (within the ε margin). The
execution times of SAMCRA and SEA seem hardly influenced by the different
constraints. Actually, by choosing x in Equation (2) as x = 0 or x = 4, the RSP
problem is polynomially solvable, with solutions LDP and LCP respectively. For
x = 1, 2, 3 SAMCRA is able to solve the RSP problem in a similar time span,
suggesting that these simulated instances were also polynomially solvable.

Figure 4 displays the effective approximation α and execution time as a
function of N .
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Fig. 4. Effective approximation α and execution time as a function of N with ε = 0.1.
The results are for lattice graphs, and the link weights are independent and uniformly
distributed random variables.



We can see that α slightly decreases with N . If N grows, there may be many
paths that have a length close to the shortest feasible path. Finding one of these
paths is less difficult than finding the true RSP path. The relative difference in
time between SAMCRA and SEA remains fairly constant: SAMCRA is more
than 10 times faster than SEA.
Figure 5 displays the results for negatively correlated random link weights.

According to [4], this simulation setting corresponds to a worst-case scenario for
exact algorithms.
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Fig. 5. Effective approximation α and execution time as a function of N with ε = 0.1.
The results are for Lattice graphs, and the link weights are negatively correlated,
uniformly distributed random variables.

Contrary to the decrease of α in Figure 4, we observe an increase of E[α]
with N . Also, the values of α are much higher (considering the smaller values of
N). Therefore, this worst-case scenario for exact algorithms also seems to affect
ε-approximation algorithms, although not to the extent of constituting a worst-
case scenario for SEA. The difference in execution time is clear: SAMCRA incurs
an exponential computation time, whereas SEA is (always) a polynomial-time
algorithm. Therefore, there is a cross-over point (at N = 40), where SAMCRA
starts to run slower than SEA.
We have simulated in the class of random graphs with different link densities

p (p = 1 corresponds to the class of complete graphs). The values of α in Figure 6
increase with p, which suggests that SEA has more difficulty with dense graphs.
Dense graphs have more links than sparse graphs and hence the probability of
making round-off errors increases. Also, the denser a graph becomes, the shorter
the expected hop count will be. With a short expected hop count, situations like
in Figure 1 are more likely to occur than when the expected hop count is large,
like in the class of lattices. A small effective approximation was also observed for
the sparse Waxman graphs. The effective approximation α and execution time,
as function of ε and N , in the class of Waxman graphs displayed a similar trend
as in Figure 2 for the class of lattices, and hence are not plotted here.
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Fig. 6. Effective approximation α and execution time as a function of the link density
p. The results are for random graphs with ε = 0.1, N = 100, and the link weights are
independent and uniformly distributed random variables.

We have also simulated in the class of power-law graphs, which are considered
to contain the Internet graph. In power-law graphs the nodal degree distribution
is Pr[d = i] = ci−τ , where c is a constant such that

PN−1
i=1 ci−τ = 1. Measure-

ments in the Internet suggest that τ ≈ 2.4 and therefore we have chosen this
value for the generation of our power-law graphs. Since the source referred to the
node with the highest degree and the destination to the node with the lowest de-
gree, the probability that there is only one path between source and destination
is much higher in this class of power-law graphs than in the other considered
classes of graphs. Our simulations for different ε showed that for N = 100 and
ε < 0.1, α was zero. Furthermore, we deduced that the effective approxima-
tion α in the class of power-law graphs with τ ≈ 2.4 was the lowest among the
considered classes of graphs.
Finally, we have simulated with a chain topology. By choosing the weights

as in Figure 7, the error when rounding and scaling link (i, i + 2) equals 2ε
N+1

and the total error that can be accumulated in the worst case along the lower
path with N−1

2 hops is N−1
N+1ε. Since the optimal cost equals N − 1, the effective

approximation α can be found to obey α = (N−1)ε
(N−1)(N+1) =

ε
N+1 , which perfectly

matches our result in Figure 7, as seen by the straight line on a log-log scale.

4.2 Simulation conclusions

In this subsection we summarize the conclusions that can be drawn from our
simulation results.

1. Besides the better performance, the running time of the exact algorithm
SAMCRA was at least ten times faster than the running time of SEA, in all
simulated scenarios except for the constructed worst-case scenario of Figure
5.
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2. The actual performance of SEA, as measured by the effective approximation
α, was much better than the theoretical (1 + ε) upper bound.

3. The combination of many paths with a small hop count between source and
destination leads to larger α on average than in the case of a large hop count
or very few paths.

4. Changing the value of ε seems to have a quadratic impact on the effective
approximation α.

5. The correspondence between the time t that SEA needs to solve an instance
of the RSP problem and ε, nicely follows t ∼ 1

ε .

5 Discussion

SEA has a much better performance than the theoretical (1 + ε) bound. The
question therefore rises if we can make this bound sharper without increasing the
time complexity. For instance, instead of only rounding up, one could consider
rounding to the nearest number (e.g., if the granularity is 0.1 then 0.57→ 0.6 and
0.52→ 0.5). The overall worst-case error ε will then be halved and the expected
error might tend to 0 (under a uniform distribution of the link weights).
The extension of RSP approximation algorithms like SEA to the more gen-

eral QoS algorithms that handle m > 2 constraints would still be polynomial.
However, the complexity would increase with O(Nm), which may be prohibitive.
It is possible to devise approximation schemes that can also work with real

weights. This can be done via an extra phase of rounding and scaling. The
solution will still be polynomial, but a second source of inaccuracy (that can
also be bounded) is introduced.
How to take advantage of the strengths of SAMCRA and SEA? One approach

is to invoke SAMCRA with a running time “budget” T , within which it attempts
to retrieve the optimal solution. In case SAMCRA encounters a hard instance, T
may not suffice to accomplish this task. In this case, SAMCRA is halted and the



SEA algorithm is invoked. The combined approach has the following properties:
it guarantees an ε-optimal solution, it has a polynomial worst-case running time,
and empirical evidence shows that, usually, an optimal solution would be found
quickly.

6 Conclusions

The Restricted Shortest Path (RSP) problem seeks to minimize the cost of a
path while obeying a delay constraint. The importance of this problem is undis-
puted, since it appears in many different research fields and plays a key role in
Quality of Service (QoS) routing. Unfortunately, the RSP problem is NP-hard.
Many algorithms have been proposed, which can be subdivided into the classes
of exact solutions, ε-approximations, and heuristics. Only the first two classes
can provide some (rigorous) level of guarantee on the optimality of the solu-
tion. We have therefore focused on these two classes, represented by the exact
SAMCRA algorithm and the ε-approximation algorithm SEA. ε-approximation
algorithms mainly have been studied theoretically, providing worst-case bounds,
but not empirically. We have therefore compared SEA to SAMCRA. In worst-
case scenarios, the complexity of SAMCRA is prohibitively high, but in most
instances it ran significantly faster than SEA. SEA, on the other hand has a very
good accuracy and polynomial running time.
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