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Abstract. The replica server placement problem determines the optimal loca-
tion where replicated servers should be placed in content distribution networks, 
in order to optimize network performance. The estimated traffic demand is fun-
damental input to this problem and its accuracy is essential for the target per-
formance to be achieved. However, deriving accurate traffic demands is far 
from trivial and uncertainty makes the target performance hard to predict. We 
argue that it is often inappropriate to optimize the performance for only a par-
ticular set of traffic demands that is assumed accurate. In this paper, we propose 
a scenario-based robust optimization approach to address the replica server 
placement problem under traffic demand uncertainty. The objective is to mini-
mize the total distribution cost across a variety of traffic demand scenarios 
while minimizing the performance deviation from the optimal solution. Empiri-
cal results demonstrate that robust optimization for replica server placement 
can achieve good performance under all the traffic demand scenarios while 
non-robust approaches perform significantly worse. This approach allows con-
tent distribution providers to provision better and predictable quality of service 
for their customers by reducing the impact of inaccuracy in traffic demand es-
timation on the replica server placement optimization. 

1   Introduction 

Content Distribution Networks (CDNs) aim to efficiently deliver web content from 
servers to users through the Internet. In order to achieve this goal, CDN providers 
replicate their server infrastructure in multiple locations. The replication technique 
brings two major advantages to CDNs: first, it minimizes content download time 
since the replicated servers can be placed quite close to the requesting users; and, 
second, it allows the CDN providers to operate seamlessly if one of its servers is not 
available. For simplicity, we call each replicated server a replica in this paper. 

To efficiently deliver web contents, a CDN provider needs to decide where to 
place replicas and how many replicas are required, so as to optimize network per-
formance [1,2] and to support Quality of Service (QoS) guarantees [3,4]. This is 
known as the Replica Server Placement (RSP) problem. Achieving optimal and pre-
dictable RSP design is extremely important for the success of the CDN business as 
users will abandon a web site that fails to provide content in an acceptable response 
time1. In the literature, the RSP problem has been formulated as the minimum P-
median problem, taking as input a set of estimated traffic demands. In theory, if the 
traffic demands are perfectly known, then an optimal and predictable performance for 
the RSP can be obtained. Unfortunately, deriving accurate traffic demands is far from 

1 According to Zona Research [19], about $4.35 billion may be lost in online business revenues in 1999 
due to unacceptably slow response times. 



trivial since Internet traffic patterns change over time as a result of unpredictable user 
behavior in traffic request. In addition, perfect (noiseless) flow measurements are 
rarely available on all links and egress/ingress points of the network [5]. Hence, traf-
fic demands are usually derived with a degree of uncertainty whose consequence is to 
prevent conventional RSP optimization from producing optimal and predictable per-
formance; this may subsequently lead to potential loss in business revenues. In this 
paper, we argue that it is insufficient to optimize CDNs performance for only a par-
ticular set of traffic demands given relevant inaccuracy. Instead, we need to funda-
mentally rethink the way in which we design CDNs for coping with uncertainty so as 
to avoid ‘risky’ solutions characterized by unsatisfactorily high traffic demand uncer-
tainty in order to sustain, at least, stable business revenues. To the best of our knowl-
edge, this important issue has not been investigated in the literature. 

Rather than assuming accurate traffic demand estimation, which is not possible as 
explained, we propose an approach based on the principles of Scenario-based Robust 
Optimization (SRO) [6,7]. When applied to the RSP, SRO structures uncertainty by 
using a set of potential traffic demand scenarios, each exhibits structural difference in 
traffic volume distribution. The objective of this robust RSP is thus to optimize per-
formance objectives across a variety of such scenarios. We formulate the robust RSP 
problem as an integer programming problem and solve it by the MINLP solver. Simu-
lation results demonstrate that the robust RSP approach achieves significantly better 
performance than non-robust optimization approaches under traffic demand uncer-
tainty. In addition, the robust RSP approach guarantees the resulting performance to 
be within a specified envelope from the optimal solution. 

The rest of this paper is organized as follows. In Section 2, we review the deter-
ministic RSP problem formulation. We then present a robust version of RSP in Sec-
tion 3.  Section 4 presents three alternative strategies to tackle the robust RSP prob-
lem, which are used for performance comparison. In Sections 5 and 6, we present our 
evaluation methodology and simulation results. Finally, we conclude the paper in 
Section 7. 

2   Deterministic Replica Server Placement Problem 

 
Table 1 shows the notation used throughout this paper. The deterministic (i.e. non-
robust) version of RSP [1] can be summarized as follows. A CDN network is mod-

Table 1. Notation 

NOTATION DESCRIPTION 

I A set of user nodes, indexed by i 
J A set of potential server nodes, indexed by j 
S A set of traffic demand scenarios, indexed by s. This includes the base and the developed 

traffic demands 
di Traffic demand from user node i 
ds,i Traffic demand of user node i under scenario s 
ci,j Cost to transport one unit from server node j to user node i 
Xj A variable indicating whether node j is selected as server node 
Yi,j A variable indicating whether traffic demand of user node i is assigned to server node j 

*
sz  

The optimal total distribution cost under scenario s if input data is perfectly known for that 
scenario 



eled as a graph G=(N,E) where N and E are network nodes and links. Given a set of 
user nodes I⊆N and a set of potential server nodes J⊆N, select P out of J to be server 
nodes2 and assign each user traffic demand to the closest server. A distribution cost 
dici,j is incurred if traffic demand di is assigned to server node j, where ci,j is a general 
cost that may represent hop count, IGP cost, delay or any other performance metric. 
Since the most concerned performance metric for RSP is content download time [8], 
we assume ci,j, to be the delay between i and j over the shortest path in terms of hop 
count. The goal of RSP is thus to select P nodes as server nodes so as to minimize the 
total distribution cost3 over all traffic demands. In [1], the RSP problem has been 
proven NP-hard by mapping it to the uncapacitated minimum P-median problem. The 
problem formulation of the deterministic RSP can be summarized as follows: 

i i,j i j
i I j J

Minimize  d c Y ,
∈ ∈
∑ ∑  (1) 

subject to the following constraints: 
i j

j J
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∈
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i j ji I j J Y X,, :∀ ∈ ∈ ≤  (3) 
j
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X P

∈
=∑  (4) 

{ }i i ji I j J X Y ,, : , 0,1∀ ∈ ∈ ∈  (5) 
Objective function (1) minimizes the total distribution cost over all traffic demands. 
Constraint (2) ensures that each traffic demand is assigned to one server. Constraint 
(3) ensures that, whenever traffic demand di is assigned to node j∈J, then j must have 
been selected as server node. Constraint (4) states that P out of N servers are to be 
selected. Constraint (5) is the standard integrality constraint.  

3   Robust Replica Server Placement Problem 

In this section, we present a Scenario-based Robust Optimization (SRO) approach for 
RSP optimization to manage traffic demand uncertainty. SRO is a comprehensive 
mathematical programming framework for robust decision making. The SRO frame-
work applied to the RSP problem consists of three elements, as depicted on Figure 1. 

A. Using scenarios to 
structure traffic demand 

uncertainty

B. Choice of robustness
criteria

C. Formulation of robust
RSP problem

Generated
input data 
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Selected 
robustness
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Figure 1. Scenario-based robust optimization framework for the replica server placement problem 

A. Using Scenarios to Structure Traffic Demand Uncertainty 
Decision makers may develop discrete scenarios that provide visions of alternative 
possible futures, and then use these them to structure their uncertain input data. Thus, 
scenarios are devised for representing the decision maker’s perceptions about alterna-
tive environments in which their decisions might be applied, in the most appropriate 
manner based on internal knowledge and experience.  

2
 In line with [1,2], we assume a full replication for content distribution, i.e. each server has large storage 

capacities to hold the whole contents for serving any user request. 
3 Since the distribution cost takes into account the link delay, minimizing the total distribution cost over 
all traffic demands is effectively equivalent to minimizing the content download time for these traffic 
demands. 



When applied to the RSP, SRO models uncertainty as a set of potential traffic de-
mand scenarios. This set of traffic demand scenarios cover at least different critical 
views of possible traffic characteristics instant, e.g. morning, afternoon and evening. 
In fact, since the sources of errors or fluctuations in the traffic demands are well un-
derstood, their magnitude can be estimated within some known accuracy [5,21]. 

B. Choice of Robustness Criteria 
Recall that the aim of the scenario-based robust optimization is to produce decisions 
that will have a reasonable objective value under any potential input data scenario. 
Different criteria can be used to select among robust decisions. We apply two criteria 
[6] to our robust RSP optimization, which make it more suitable for CDN providers 
to consider from a practical point of view. 

The first criterion is minimax, which aims at getting the best out of the worst pos-
sible conditions. This criterion is chosen based on a general observation that the deci-
sion makers are (in many cases) risk-averse, meaning that the RSP solution CDN 
providers want is neither the “optimal” for a particular traffic demand scenario nor 
the “worst” for any scenario but one that performs reasonably well across all the 
scenarios. Such risk-averse behavior may also be observed from capacity overprovi-
sioning employed by top-tier Internet service providers as a means to provide good 
service to all IP traffic in their backbone networks [18]. Hence, CDN providers may 
want to optimize the worst-case network performance in order to prevent severe un-
predicted performance degradation and the need for future expensive network capac-
ity upgrading. The minimax criterion can thus be expressed by minimizing the worst-
case total distribution cost across the set of traffic demand scenarios, i.e. 

s S
Minimize   F sMax ( )

∀ ∈
 (6) 

where F(s) is the resulting total distribution cost under traffic demand scenario s.  
Although the minimax criterion can produce reasonably good performance across 

all the traffic demand scenarios, it may lead to RSP solutions that are overly conser-
vative or pessimistic, thereby accepting unnecessary high costs in non-worst-case 
scenarios. We illustrate this conservative effect by the example in Table 2.  

Table 2. Example of total distribution cost under four different traffic demand scenarios 

            Scenario  
Solution 

 
s1 

 
s2 

 
s3 

 
s4 

x1 89 90 87 93 
x2 79 81 75 95 
optimal 74 76 70 82 

Two solutions, x1 and x2, produce different total distribution costs for four traffic 
demand scenarios (s1, s2, s3, s4). The solution named “optimal” represents the optimal 
total distribution cost for each scenario if the traffic demands of that scenario are 
perfectly known. If only the minimax criterion of equation (6) is considered, x1 is the 
best solution since it has lower worst-case total distribution cost than that of x2 (93 vs. 
95). However, x1 has higher cost than x2 under scenarios s1, s2 and s3, and their costs 
deviate highly from the optimal ones. One may observe that if s1, s2 or s3 occurs, x1 
will no longer be the best solution except only for the case where s4 occurs. However, 



the occurrence probability (prob) of s4 is likely going to be less than that of s1, s2 and 
s3 altogether, i.e. prob(s4) < prob(s1) + prob(s2) + prob(s3). 

Ideally, CDN providers may want to obtain a RSP solution that not only has good 
worst-case total distribution cost but also has the total distribution cost as close as 
possible to the optimal in each scenario. We therefore employ as the second criterion 
the minimization of relative regret. The relative regret of a solution in a given sce-
nario is defined as the performance difference in percentage between the solution in 
that scenario and the optimal solution for that scenario. Thus, CDN providers may 
seek a RSP solution that keeps the worst-case total distribution cost as low as possible 
while minimizing the performance deviation of each scenario from optimality.  

By jointly optimizing the minimax and relative regret criteria, a bi-criteria robust 
RSP problem is formulated. The solution that simultaneously optimizes both objec-
tives is called pareto-optimal. However, as shown in the example of Table 2, the two 
objectives may conflict with each other and balancing relevant trade-offs is non-
trivial, in particular how to determine their weighted importance. We thus resort to 
using the ∈-constraint method [20], which is one of the most favored methods of 
generating pareto-optimal solutions. In this technique, one objective is selected for 
optimization, while the other one is constrained so as not to exceed a tolerance value 
(∈). We apply the ∈-constraint method to the robust RSP by placing a constraint on 
the relative regret that may be attained by the solution while optimizing the worst-
case total distribution cost across all the scenarios. More specifically, the constraint 
dictates that the relative regret in any scenario must be no greater than ∈, where ∈ ≥ 0. 
In other words, the cost under each scenario must be within 100(1+∈)% of the opti-
mal cost for that scenario sz* . By successively adjusting∈, one can obtain solutions 
with smaller relative regret but greater worst-case total distribution cost and vice 
versa. One objective of this paper is to demonstrate empirically that substantial im-
provements in robustness can be attained without large increases in the worst-case 
total distribution cost.  

C. Problem Formulation 
By taking into consideration the minimax and the relative regret criteria, we revise the 
deterministic RSP problem into a robust RSP problem. The optimization objective of 
the robust RSP problem is to 
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Constraints (8)-(11) are identical to constraints (2)-(5). Constraint (12) enforces 
the ∈-constraint condition. Compared to the deterministic RSP, which minimizes the 



total distribution cost for a particular traffic demand scenario, the robust RSP opti-
mizes the worst-case total distribution cost across a variety of traffic demand scenar-
ios, as expressed by the objective function (7). On the other hand, it is not surprising 
that the robust RSP problem is NP-hard since it is an extension of the deterministic 
RSP problem, which is itself NP-hard [1]. When the number of traffic demand sce-
narios |S| = 1 and ∈=∞, the robust RSP problem reduces to the deterministic one. 

4   Alterative Strategies for Managing Traffic Demand Uncertainty 

Our implementation of the robust RSP is only one of several methods that can be 
used to help dimension a network under traffic demand uncertainty. Some common 
alternative approaches, such as mean-value model, worst-case model and stochastic 
optimization, can be considered for performance comparison. When applied to the 
RSP, these approaches differ in their structural traffic volume distribution.  

A. Mean-value Model 
In the mean-value model, each element of the mean traffic demand is defined as: 

i s i
s S

d d S        i I, /
∈

= ∀ ∈∑   (13) 

where |S| is number of traffic demand scenarios. The mean traffic demand is then 
taken as input to solve the deterministic RSP problem (Eq. 1-5). 

B. Worst-case Model 
In the worst-case model, each element of the worst-case traffic demand is defined as: 

i s,i
s S

d  d     i IMax
∈

= ∀ ∈   (14) 

In a similar fashion to the mean-value model, this worst-case traffic demand is then 
taken as input for solving the deterministic RSP. Note that the total traffic volume of 
the worst-case traffic demand serves as upper bound of the other traffic demands. 

C. Stochastic Optimization (Expected Value Criterion Model) 
Stochastic optimization is typically used for solving decision-making problems under 
risk situations. In the context of stochastic optimization, the expected value criterion 
model is commonly used. The model seeks the minimization of the expected total 
distribution cost over all traffic demand scenarios. The input data of the RSP assumes 
that each traffic demand scenario is probabilistic and the optimization objective is to  

s s,i i,j i j
s S i I j J

minimize  d c Y ,α
∈ ∈ ∈
∑ ∑ ∑  (15) 

where αs is the occurrence probability of traffic demand scenario s. Without loss of 
generality, we assume in this paper each traffic demand scenario has equal occurrence 
probability. This assumption is also known as Laplace criterion [9] for decision mak-
ing under uncertainty. The Laplace criterion is based on the principle of insufficient 
reason. It asserts that, if one is completely unaware of which scenario will happen, 
then these scenarios may be treated as equally likely, since there is no reason to be-
lieve otherwise. 



5   Evaluation Methodology 

A. Network topology 
Our simulation is performed on 30-node AS-level topologies with node degree of 3, 
generated by the BRITE topology generator [10]. Each node and link in the topology 
represents an AS and a physical link between ASes respectively. Each link is associ-
ated with a propagation delay generated by BRITE. We assume that all ASes are user 
nodes and they are also considered as potential server nodes. The cost between two 
ASes (i.e. ci,j) is the sum of link propagation delays along the shortest AS-hop path. 
Since the communication cost within an AS is often much better than between differ-
ent ASes, we assume that at most one replica can be placed within each AS and we 
neglect the distribution cost generated by users attached to the same AS as the replica.  

B. Web Content Traffic demand 
We generate synthetic traffic demands for our evaluation. We attach a traffic demand 
to each AS, which represents the total traffic demand requested at the AS. Previous 
work has shown that web traffic is not uniformly distributed. According to [11], the 
popularity of web content follows a Zipf-like distribution of y∼x-α, which is a widely 
adopted model for real Web traces. The default value of popularity parameter α is set 
to be 0.75 with a reference to the analysis of real Web traces in [11]. 

We generate traffic demand scenarios using the methodology proposed in [6]: the 
traffic demand can vary within known ranges or can be estimated within known accu-
racy. This range is denoted by an error margin parameter ω ≥ 1. We consider base 
traffic demand which can be thought of as our best “guess” of the actual traffic de-
mand. The set of applicable traffic demand scenarios, which we call developed traffic 
demands, includes each scenario s with error margin such that  

{ }s i i id d d      i I, : /ξ ω ξ ω= ∈ ≤ ≤ ∀ ∈   (16) 

These developed traffic demands can be thought of as corresponding to traffic fluc-
tuation or random errors in traffic estimation. The above method for generating traffic 
demand scenarios has also been used to evaluate many practical optimization prob-
lems [6] such as the robust Knapsack Problem. We remark that this traffic demand 
generation process is our best attempt to model web traffic fluctuation, as no synthetic 
model for the actual behavior of traffic in real networks can be found in the literature. 

C. Comparison of RSP Approaches 
We compare the performance of the following RSP approaches in our simulation: 

 Deterministic: we run the deterministic RSP individually for each of the base 
and the developed traffic demands. We then use each of these RSP solutions to 
obtain the total distribution cost that would be achieved by the other traffic 
demand scenarios. In our simulation, we denote as “base” the deterministic op-
timization taking the base traffic demand as input. Likewise, the term “first” 
denotes the deterministic optimization taking the first of the developed traffic 
demands as input and so forth. 

 Statistical: we run the mean-value and the worst-case models. These models 



produce their traffic demands using the base and the developed traffic de-
mands. We denote as “mean” and “worst” the two models respectively. 

 Robust: we run the robust RSP approach by taking the base and the developed 
traffic demands as input data scenarios. We denote this approach as “robust”. 

 Stochastic: we run the stochastic optimization (i.e. the expected value crite-
rion model) by taking the base and the developed traffic demands as input data 
scenarios. We denote the stochastic optimization as “stochastic”. 

D. Performance Metrics 
The following two performance metrics [7] are used to evaluate different RSP ap-
proaches. For these metrics, lower values are better than high values. 

 Solution robustness: an RSP solution is robust to the total distribution cost if 
it performs reasonably well for any realization of the traffic demand scenarios 
s∈S. For this metric, we capture the worst-case (i.e. the highest) total distribu-
tion cost under all the traffic demand scenarios for each RSP approach. 

 Relative robust deviation: we capture the maximum relative regret under all 
the traffic demand scenarios for each RSP approach. 

6   Simulation Results 

All the RSP approaches presented in this paper have been implemented using the 
AMPL modeling language [12] and solved by the Mixed Integer Nonlinear Pro-
gramming (MINLP) solver [13]4. The MINLP solver implements a branch and bound 
algorithm searching a tree whose nodes correspond to continuous nonlinear optimiza-
tion problems. The continuous problems are solved using filterSQP, a Sequential 
Quadratic Programming solver, which is suitable for solving large nonlinear problems.  

An important element in our simulation is the generation of various traffic de-
mand scenarios. Following the methodology described in Section 5-B, we generate a 
base traffic demand and five developed traffic demands. Each simulation result takes 
approximately 10 minutes running time on average. 

A. Evaluation of Solution Robustness 
In this section, we evaluate the solution robustness of different RSP approaches. Re-
garding the value of ∈, we initially set it to ∞ and then evaluate its impact on the 
worst-case total distribution cost and relative regret in the subsequent sections.  

Figures 2(a) & (b) show the worst-case total distribution cost as a function of er-
ror margin for P=5 and P=10 respectively, where P is the number of servers to be 
selected. Similar result patterns for all the RSP approaches are exhibited in the two 
figures. An obvious difference between them is that the higher the P, the lower the 
worst-case total distribution cost because more servers can be located closer to the 
users. Therefore, we make a performance analysis that is applicable to both P results.  

When ω=1.0, all the RSP approaches produce identical performance because they 
use identical traffic demand. At all other values of error margin, we observe a general 
phenomenon that the deterministic approach (“base”, “first”…“fifth”) is the worst 
performer. This result is expected: in fact the RSP solution optimized for a particular 

4
 Ideally, heuristics are proposed to handle large-scale NP-hard optimization problems. However, since 

this paper aims at demonstrating the effectiveness of the robust RSP approach on coping with traffic 
demand uncertainty, we therefore solve the RSP problem using mathematical programming. Neverthe-
less, we are motivated to devise efficient heuristics to solve the problem as our future work. 
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(a)  P=5 
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(b)  P=10 

Figure 2. Worst-case total distribution cost vs. error margin 

traffic demand scenario may no longer maintain optimality for the other scenarios that 
have different structural traffic distribution. The performance gets worse when the 
error margin is large. In contrast, the statistical approach (i.e. “mean” and “worst”) 
has slightly better performance than the deterministic approach. For the mean-value 
model, since the mean traffic demand is mixture of traffic characteristics from differ-
ent traffic demand scenarios, it usually performs better than the deterministic ap-
proach that optimizes for only one traffic demand scenario. On the other hand, the 
worst-case model performs even slightly better than the mean-value model since the 
worst-case performance is optimized; this is close to the optimization objective of the 
robust RSP. This model, however, is overly conservative and does not produce truly 
optimal performance under traffic demand uncertainty. This is demonstrated by the 
superior performance of the robust approach. 

Unlike the others, the worst-case total distribution cost of the robust approach in-
creases smoothly as the error margin increases. This shows that the performance is 
not overly sensitive to errors in traffic demand estimation. Compared to the robust 
approach, the stochastic approach can only perform as well as the mean-value model. 



This phenomenon is expected because both approaches would behave optimally in 
the mean. However, they show poor performance at some particular realization of 
scenarios. On the whole, for coping with traffic demand uncertainty, the robust ap-
proach has significantly minimized the worst-case total distribution cost over the 
deterministic approach (about 15%-30% across different error margin values) and 
both the statistical and stochastic approaches (about 8%-20%). 

B. Evaluation of Relative Robust Deviation 
5 Table 3.   Relative regret (in %) for P=10 and ω = 2.0 

We would like to know for the results presented so far how much their performance 
deviates from the optimal one. We present the relative robust deviation results in 
Table 3. For brevity, we only show the results for P=10 and error margin equal to 2.0. 
For all other values of error margin, we have reached a similar conclusion. 

The results in Table 3 can be interpreted as follows. Each row represents the solu-
tion of a given RSP approach, and each column represents a traffic demand scenario. 
The value of the table element αij (that is row i, column j) corresponds to the relative 
regret that would result for traffic demand scenario j if the solution of RSP approach i 
was implemented. Therefore, the values on the diagonal represent zero relative regret. 
The maximum relative regret under all the traffic demand scenarios for each RSP 
solution in the row is shown in bold and underline face. The results show that the 
deterministic approach has the highest maximum relative regret. The robust approach 
is the best performer followed by the statistical and the stochastic approaches. This 
result is similar to that in Figure 2(b); in general, the higher the worst-case total dis-
tribution cost, the higher the maximum relative regret. 

C. Evaluation of ∈ 
One of the objectives of the robust RSP is to minimize the maximum relative regret 
(by the choice of∈) with as little increase in the worst-case total distribution cost as 
possible. To illustrate this trade-off, we used the constraint method of multi-objective 
programming [14] to generate a trade-off table between the worst-case total distribu-
tion cost and the maximum relative regret. In particular, we first solved the problem 
with ∈ = ∞ and recorded the two performance metrics; we then set ∈ equal to the 
maximum relative regret minus a small step down value (e.g. 0.2%) and re-solved the 
problem, continuing this process until no feasible solution could be found for a given 
value of ∈. We performed this experiment using the traffic demand scenarios with 

       Scenario 
Solution 

 
base 

 
first 

 
second

 
third

 
fourth

 
fifth 

 
mean 

base 0 17.23 18.23 23.04 29.43 17.54 15.21 
first 22.24 0 35.11 25.32 26.51 19.24 14.31 
second 21.45 19.92 0 27.34 24.12 28.72 17.9 
third 22.45 15.33 19.37 0 30.18 14.35 12.45 
fourth 19.26 27.21 28.23 19.62 0 38.12 20.59 
fifth 27.78 23.57 25.12 19.43 27.27 0 18.56 
mean 12.45 14.39 14.63 20.21 18.41 12.77 0 
worst 10.22 16.32 9.56 14.56 20.45 14.13 7.72 
robust 7.11 11.67 5.12 10.67 5.22 4.25 3.24 
stochastic 14.15 12.21 14.13 16.24 21.31 13.74 9.43 

5 Traffic demand produced from the worst case model is not included in the table column since it has 
higher traffic volume than the other traffic demand scenarios.  



error margin equal to 2.0 and P=10. The results are summarized in Table 4.  
Table 4. Worst-case total distribution cost versus maximum relative regret 

∈ Total Distribution Cost % Increase Max Rel Reg % Decrease 

∞ 9753 0.0% 11.67% 0.0% 
0.1147 9806 0.55% 11.27% 3.42% 
0.1107 9863 1.13% 9.89% 15.25% 
0.0969 10102 3.57% 8.54% 26.82% 
0.0834 10187 4.46% 7.43% 36.33% 

The column marked “∈” gives the value of ∈ used to solve the problem; “Total 
Distribution Cost” is the worst-case total distribution cost; “% Increase” is the per-
centage by which the worst-case total distribution cost is greater than that of the 
found solution using ∈ = ∞ ; “Max Rel Reg” is the maximum relative regret of the 
best found solution; and “% Decrease” is the percentage by which the maximum 
relative regret is smaller than that of the found solution using ∈ = ∞. It is clear that 
large reductions in the maximum relative regret are possible with only small increases 
in the worst-case total distribution cost. For example, the last solution represents a 
36.33% reduction in the maximum relative regret with only less than a 4.46% in-
crease in the worst-case total distribution cost. These results justify the use of the ∈-
constraint approach since it costs very little to achieve robustness. 

D. Performance Summary of the RSP Approaches 
The simulation study in this section evaluated the performance of different RSP ap-
proaches. Simulation results have shown that the robust approach produces signifi-
cantly better worst-case total distribution cost than non-robust approaches under traf-
fic demand uncertainty. The robust approach also guarantees the performance of the 
solution to be within a specified envelope from the optimal solution, thereby improv-
ing robustness on RSP performance. We therefore conclude that the robust RSP ap-
proach can make RSP performance more robust and predictable.  

7   Conclusions 

In this paper we faced the problem of RSP, assuming that traffic demand uncertainty 
is handled by a set of traffic demand scenarios. By using the principles of scenario-
based robust optimization, we proposed a novel integer programming formulation for 
robust RSP. We provided empirical results to assess the performance of several 
commonly used techniques for robust RSP. The results show that the robust RSP 
approach, whose optimization runs across the set of traffic demand scenarios, signifi-
cantly improves the solution robustness while it also minimizes the performance 
deviation from the optimal solutions. We believe that our work provides insights to 
CDN providers on how to design robust CDNs by reducing the impact of inaccuracy 
in traffic demand estimation so as to provision better and predictable QoS for their 
users and avoid potential loss in business revenues. 

We emphasize that our idea of SRO is not only limited to the RSP problem. In fact, 
the CDN-related design problems to which it can be applicable are numerous. Exam-
ples are web object replication [15,18], request routing [18], cache location [16] and 
topological design for service overlay networks [17]. A common characteristic of 



these CDN design problems is that their optimization objectives are influenced by the 
accuracy of estimated traffic demands. We believe that the robust approach can be 
adopted by CDN providers as a means to make their networks more robust. 
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