
Improving bandwidth efficiency in a
multi-service slotted dual bus optical ring

network

Mohamad Chaitou, Gérard Hébuterne, and Hind Castel
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Abstract. The paper proposes two IP packet aggregation techniques,
called DAT (Deterministic Aggregation Technique) and WATT (Work-
conserving Aggregation Technique with Timer), to adapt IP traffic to a
multi-service optical slotted network. To perform aggregation, IP packets
belonging to different classes of service (CoS) are polled according to the
strict priority (SP) or to an hybrid version of the probabilistic priority
(PP) scheduling discipline originally proposed in [1, 2]. An approximate
analytical model is given in the case of DAT under the SP discipline.
In addition, extensive simulations are used to study the impact of self-
similar traffic on the aggregation processes. Finally, performance com-
parisons between the aggregation techniques and the standard approach
(where no aggregation is performed) are carried out in the context of a
slotted dual bus optical ring network (SDBORN) which is a candidate
viable solution for metropolitan area networks (MAN).

keywords. packet aggregation, slotted rings, bandwidth efficiency.

1 Introduction
In recent years, considerable research has been devoted to design IP full op-
tical backbone networks, based on Wavelength Division Multiplexing (WDM)
technology, in order to relieve the capacity bottleneck of classical electronic-
switched networks. In a long-term scenario, optical packet switching (OPS),
based on fixed-length packets and synchronous node operation, can provide a
simple transport platform based on a direct IP over WDM structure which can
offer high bandwidth efficiency, flexibility, and fine granularity. In order to sup-
port several CoS and to adapt the asynchronous and variable size behavior of IP
traffic to OPS networks, the aggregation of IP packets at the interface of optical
networks presents an efficient solution among few other proposals in literature
(e.g., [3]). This is because small IP packets are predominant in a real network
[4]. Moreover, in the current OPS technology, a typical guard time of 50 ns must
be inserted between optical packets [5]. This requires that optical packets must
be long enough to overcome the resulting link efficiency problems, and hence,
a possible issue is the aggregation of several IP packets in a single electronic
macro-packet with fixed size, called an aggregate packet which constitutes the
payload of an optical packet. Current researches on aggregation have focused on
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Fig. 1. The aggregation mechanism.

the filling ratio of the optical payload and on the aggregation delay (e.g., our
previous works [6], and [7]), without giving the impact of such aggregation on
the overall network performance and design. Furthermore, IP packets with same
CoS and destination are aggregated together which means that the filling ratio of
the aggregate packet risks being very low if the number of destinations becomes
large. The two aggregation techniques (DAT and WATT) are suggested to over-
come this limitation by aggregating IP packets regardless of their destinations.
The proposed application of the aggregation methods relies on a slotted version
of the metropolitan area network architecture called DBORN (Dual Bus Opti-
cal Ring Network) [8], where a high bandwidth efficiency can be achieved. The
presence of IP packets with different destinations in one optical packet does not
incur an additional processing complexity at intermediate nodes. This is because
in slotted DBORN (SDBORN), the optical packet is converted to the electronic
domain only after being received by a ring node which extracts IP packets des-
tined for it and locally drops those addressed to other nodes (see section 5).
The present paper is organized as follows. The aggregation techniques are de-
scribed in section 2. Section 3 presents the analytical model in the case of DAT.
In section 4 we present performance comparisons between the two aggregation
techniques, while in section 5 we present a network application for our proposals.
Finally, section 6 concludes the paper.

2 Description of the aggregation techniques

We present the description of DAT under the SP discipline, while WATT is
explained under the modified PP discipline (henceforth denoted by PP for sim-
plicity) which can be reduced to the SP one (see [1]). To be fair, all comparisons
between WATT and DAT have been carried out under the SP discipline.

2.1 The deterministic aggregation technique (DAT)

Let there be J classes of packets (throughout this paper the term ”packet”
stands for ”IP packet”), where packets with a smaller class number have a higher
priority than packets with a larger class number. Each class of packets has its
own queue (called arrival queue as shown in Fig. 1) and the buffer of the queue
is infinite1. A timer with time-out value τ is implemented, and at each timer

1 Our target is to compare the packet delay and bandwidth efficiency under different
scenarios (see section 5). For this reason, we suppose an infinite access buffer.



3

expiration (i.e. at instants {nτ, n = 0, 1, 2, . . .}) an aggregation cycle is initiated
by collecting IP packets from higher priority queues before those of lower priority.
Two possibilities of aggregation exist: aggregation without segmentation and
aggregation with segmentation. In the first one, if the size of a packet at the
head of queue i, {i = 1, . . . , J}, is greater than the gap, the packet cannot join
the aggregation unit. In this case, queues i + 1, . . . , J are checked to serve all
packets whose length is smaller than the gap. The aggregate packet will be sent
with the existing gap only when queue J is reached (see Fig. 1 where the packet
at the head of queue J cannot join the aggregation unit since its length is greater
than the gap). In the second one, we allow segmentation of a packet if its size
is greater than the remaining gap. That is, in this case the aggregate packet is
sent full.
2.2 The work-conserving aggregation technique with timer (WATT)
In this case, the aggregation process is governed by the following algorithm.

1: Monitor all arrival queues in the system (Fig. 1).
2: Find the set of non-empty queues NQ. If all queues are empty, go to Step 1.
3: Launch a timer with time-out value τ .
4: Poll a queue within the set NQ according to the probabilistic algorithm in

[1].
5: Fill the aggregate packet from the polled queue. If the aggregate packet

becomes full, send it to the conversion queue (cancel the running timer) and
go to Step 1, elsewhere exclude the polled queue from NQ and: go to Step
4 if NQ is not empty, or to the next step if NQ is empty 2.

6: Wait until at least one empty queue becomes non-empty before the timer
expiration. In the former case update NQ (ignore excluded queues) and go
to Step 4, while in the latter case (timer expires) send the aggregate packet
to the conversion queue and go to Step 1.

In the original PP discipline, one and only one packet is served if the system is
not idle [2]. However, in our approach the maximum number of IP packets will
be served (transmitted to the aggregation unit) when a queue is polled.
Note that we neglect the transmission time of IP packets from the arrival queues
to the aggregation unit, which is called the aggregation transmission time (see
section 4).

3 Analytical approach

In [6] we have presented a mathematical model depicting the case of WATT with
only one class and one type of packet size distribution. In the following we give an
analytical model for the case of DAT with segmentation. Each packet is modelled
by a batch of blocks having a fixed size of b bytes (see Fig. 1). Let X be the
batch size random variable with probability generating function (PGF) X(z),
2 In the case of aggregation without segmentation a polled queue is excluded if it

becomes empty or if the packet at its head is greater than the remaining gap. In the
case of aggregation with segmentation, a polled queue is excluded only if it becomes
empty.
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and probability mass function (pmf) {xn = P (X = n), n ≥ 1}3. The size of the
aggregate packet is fixed to N blocks (N > max(X)). We assume two queues and
independent arrival Poisson processes (only for the analytical model), with rates
λ1 and λ2 packet/s. We define {Ac

t , c = 0, 1, 2} as the number of blocks arriving at
queue c, (for c = 0 the queue corresponds to the combination of queues 1 and 2),
during an interval of time t, and we denote by

{
Ac

t(z) = eλct(X(z)−1)
}

its PGF.
First, we obtain the probability distribution of number of blocks just before a
timer expiration. For this purpose, we choose a set of embedded Markov points as
those points in time which are just before timer expirations. Let t0, t1, . . . , tn, . . . ,
be the epochs of timer expirations and define {Y c(tn), c = 0, 1, 2} by the number
of blocks in queue c at instant tn. Now let Y c

n = Y c(t−n ). Since the whole system
(queue 0) and queue 1 behave in a similar way (i.e., at a random epoch, the packet
at the head of the queue observes a gap of N blocks), the steady state distribution
for {Y c

n , n = 0, 1, 2, ...} is obtained by the same manner for {c = 0, 1}:
yc

k = lim
n−→∞

P (Y c
n = k), k ≥ 0

The following state equation holds for c = 0, 1:

Y c
n+1 =| Y c

n −N |+ +Ac
τ (1)

where | c |+ denotes max(0, c). The equilibrium queue length distribution (in
number of blocks) at an arbitrary time epoch is then described by the probability
generating function Y c(z), which can be derived from (1) in a straightforward
and well-known fashion. It is given by:

Y c(z) =
Ac

τ (z)(z − 1)(N − E[Ac
τ ])

zN −Ac
τ (z)

N−1∏

k=1

z − zk

1− zk
(2)

where, z1, z2, . . . , zN−1 are the N − 1 zeros of zN − Ac
τ (z) inside the unit circle

of the complex plane (there are exactly N −1 zeros as proved by the well-known
Rouche theorem), and E[...] is the expectation value of the expression between
square brackets. The complexity of computation of (2) depends on N . However,
even for large N , it is possible to obtain Y c(z) by resolving zN − Ac

τ (z) using
MATHEMATICA, and to obtain its corresponding pmf (yc

n) by using the inverse
fast fourier transform (ifft), in a few seconds. Equation (2) allows us to obtain
the pmf of the filling value (i.e. the number of blocks in the aggregate packet).
Let F c, {c = 0, 1, 2} be the filling value from queue c, and define the filling ratio
random variable by F c

r = F c/N . If we denote by {f c
n = P (F c = n), 0 ≤ n ≤

N} the pmf of F c, we obtain ({y0
n, n ≥ 0} is the pmf of Y 0):

f0
n =





y0
n 0 ≤ n < N − 1

1−
N−1∑

i=0

y0
i n = N

(3)

3 P (X) accounts for Pr(X)
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Equation (3) gives explicitly the pmf of the total filling value of the aggregate
packet, and it will be used later in numerical applications to compute the mean
filling ratio. To obtain the steady state distribution for {Y 2

n , n = 0, 1, 2, ...}, the
state equation can be written as:

Y 2
n+1 =| Y 2

n −G |+ +A2
τ (4)

where G represents the gap seen by a packet at the head of queue 2. It is given
by G = N − F 1, and hence, its pmf defined by {gn, n = 0, 1, 2, . . . , N} can be
obtained easily from (3) (by replacing superscript 0 with 1). The PGF of Y 2 is
then given by:

Y 2(z) =
A2

τ (z)(z − 1)(N − E[U ])
zN − U(z)

N−1∏

k=1

z − zk

1− zk
(5)

where U accounts for the random variable defined by: U = N + A2
τ − G, and

z1, z2, . . . , zN−1 are the N − 1 zeros of zN − U(z) inside the unit circle.
Now, let us denote by {Dc, c = 1, 2} the random variable standing for the ag-
gregation delay of a packet belonging to class c. To obtain Dc analytically, we
decomposed it into three parts: 1) the time period elapsed between the arrival
instant of the packet to queue c, and the instant when the packet reaches the
head of the queue (Dc

b), 2) the delay due to segmentation when the packet cannot
be inserted directly into the remaining gap of the aggregate packet (Dc

s), and 3)
the aggregation transmission time, i.e. the delay required to transmit IP packets
from arrival queues to the aggregation unit. The aggregation transmission time
is neglected in the analysis. By using the Little theorem, we can approximate
the average of Dc

b by the mean queuing delay of a random block in queue c, that
is: E[Dc

b] = E[Y c]
λc×E[X] , where Y c approximates the number of blocks in queue c

at a random instant.
Now, it is easy to show that Dc

s =
∑∞

n=1 pc,n
s × (nτ), where pc,n

s is the probabil-
ity that a class c packet is segmented n times before it completely leaves queue
c. We give an approximate estimation of Dc

s as follows. First, we suppose that
D
{c=1,2}
s = D0

s . That is, the segmentation delay suffered by a packet belonging
to class c is the same as that we obtain if we combine all the CoS queues in one
queue. Second, we suppose that N > max(X), i.e., the aggregate packet size is
greater than the maximum size of an IP packet, and hence, the incoming packet is
segmented at maximum once (since a packet at the head of queue 0 always finds a
gap of N blocks at a random epoch). This leads to restricting our approximation
to the first term, i.e., D0

s = p0,1
s ×τ . The following is a method to obtain p0,1

s : let
Ns be the random variable depicting the number of blocks that enter the aggrega-
tion unit before the first block of a random packet, given that the latter (the first
block of the packet) has entered the aggregation unit (Ns represents the number
of blocks having joined the aggregation unit when a part of the packet, i.e. at
least one block, joins it). The pmf of Ns, {P (Ns = n, n = 0, . . . , N − 1}, is given
by: P [Ns = n] =

∑∞
k=0 P

[
K0,a = kN + n

]
=

∑∞
k=0

∑∞
i=0 k0,a

i δ(i − kN − n) =∑∞
i=0 k0,a

i

∑∞
k=−∞ δ(i−kN−n), where K0,a is the number of blocks presented in
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Fig. 2. Comparing the performance of DAT and WATT under Poisson traffic

queue 0 seen at the arrival of the packet, and {k0,a
i , i > 0} its pmf. The PASTA

property implies that K0,a = K0 (K0 is the number of blocks at a random
instant). In addition, we approximate K0 by Y 0, i.e. by the number of blocks
before a random timer expiration. δ(n) is the Kronecker delta function, which
equals 1 for n = 0 and 0 for all other n, and {k0

i = 0, for i < 0}. Now we
make use of the following identity:

∑∞
k=−∞ δ(i − kN − n) = 1

N

∑N−1
s=0 as(i−n),

with: a = ej 2π
N . Thus, P [Ns = n, 0 ≤ n ≤ N − 1] =

∑∞
i=0 k0

i
1
N

∑N−1
s=0 as(i−n) =

1
N

∑N−1
s=0 a−snK0(as), where K0(as) is K0(z) evaluated at z = as (K0 is always

approximated by Y 0). Now it easy to obtain the pmf of Ns by a simple equivalent
matrix equation: if PNs denotes the row vector representing the pmf of Ns, i.e.
PNs = ( P (Ns=0) P (Ns=1) ... P (Ns=N−1) ), and if we define RK0 by the following
(1×N) matrix: ( K0(a0) K0(a1) ... K0(a(N−1)) ), (K0(ax) is K0(z) evaluated at ax)
we will have:

PNs =
RK1

N
×




a0 a0 a0 . . . a0

a0 a−1 a−2 . . . a−(N−1)

a0 a−2 a−4 . . . a−2(N−1)

. . . . . . . . . . . . . . . . . . . . . . . .

a0 a−(N−1) a−2(N−1) . . . a−(N−1)2




(6)

where the last matrix in (6) is an N × N matrix. Now, p0,1
s can be obtained

easily by: p0,1
s = P (X > N −Ns), (by using the ifft of X(z) and the pmf of Ns).

Note that the analytical model can be extended easily to J > 2 classes. In this
case, the filling ratio is obtained by combining all queues in one as in (3), and
the mean delay of a class i, 2 ≤ i ≤ J , is obtained by combining queues 1, . . . ,
i− 1 in one queue with rate λ1 =

∑i−1
k=1 λk.

4 Performance comparisons
In this section we focus on comparing the performance of the two packet ag-
gregation mechanisms presented in this paper. The studied parameters are the
filling ratio and the aggregation delay (as defined in Section 3). In the sequel,
unless mentioned differently, the following assumptions hold. Two classes with
equal arrival rates are considered. The arrival process of IP packets is Poisson
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Fig. 3. Impact of the presence of several classes with equal arrival rates in the case of
WATT

with an arrival rate θ = 900 Mb/s (the equivalent of λ packet/s in Fig. 1) , and
the used IP packet size distribution approximates the real one [4], i.e., 60% of
40-byte packets, 25% of 552-byte packets, and 15% of 1500-byte packets (for the
analytical model we suppose a block size b = 40 bytes). The aggregate packet
size is 3000 bytes (N = 75 blocks for the mathematical model), and the SP
discipline is adopted.
Fig. 2 demonstrates that simulation results in the case of DAT with segmentation
match very well those of the analytical approach, which proves the accuracy of
the mathematical model. Furthermore, the aggregation with segmentation shows
better performance than that without segmentation as the time-out increases.
This is due to the filling ratio improvement that exhibits the aggregation with
segmentation. Moreover, in the case of DAT, a time-out threshold must be re-
spected in order to prevent instability of queue 2 and consecutively instability
of the overall system. An upper bound of this threshold can be obtained ana-
lytically in the case of DAT with segmentation4, and by simulation in the case
of DAT without segmentation. In Fig. 2, we have observed that a threshold of
22.5 µs in the former case and 20 µs in the latter case are acceptable. Above
these values, class 2 packet delay increases abruptly, and the mean filling ratio
attains its maximum (1 for DAT with segmentation as Fig. 2(b) shows) since
queue 2 is always backlogged. In the case of WATT the system remains always
stable regardless of the time-out. This is due to the work-conserving property
of WATT and to the negligible value of the aggregation transmission time. This
explains also why WATT outperforms DAT when the time-out is smaller than
the stability thresholds (DAT allows to deliver empty aggregate packets, which
reduces the mean filling ratio as shown in Fig. 2(b)). In the sequel, unless men-
tioned differently, we consider the case of WATT without segmentation.
Fig. 3 illustrates the impact of service differentiation on the system performance.
It can be seen from Fig. 3(b) that if the number of the desired classes increases

4 We must have N > E[A0
τ ] = λ0τE[X] in Eq. 2.
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Fig. 5. The impact of the aggregate packet size and the IP packet size distribution

the filling ratio increases. This is because if a packet belonging to a queue i, has
its size greater than the gap, smaller packets belonging to other queues will be
allowed to fill the aggregate packet. Fig. 3(a) shows that this benefit affects the
packet delay which suffers from an augmentation proportional to the number
of classes. To explain this, take the case when a packet at the head of a queue
is greater than the gap. If only one class is available, the aggregate packet is
sent immediately to the conversion queue and a new aggregation cycle begins.
However, if two or more classes are available, the queue is excluded from the
NQ (non-empty queues) set and the aggregate packet is sent only if the timer
expires or if all queues become excluded from NQ as explained in section 2.2.
Fig. 4 presents the adavntage of the PP discipline in controlling the level of
differentiation between classes (4 classes with equal rates, θ = 900 Mb/s and
τ = 20 µs). Each queue is assigned a parameter 0 ≤ pi ≤ 1, i = 1, 2, 3, 4 as
explained in [1]. We consider p1 = p2 = 0.8, and we modify p3 from 0.1 to 1
(p4 = 1 as the PP discipline requires, see [1]). The results show that when p3

increases, the mean packet delay of class 3 is monotonically decreasing and that
of class 4 is monotonically increasing, while the delays of the two classes with the
highest priorities are almost constant. The filling ratio remains the same under
the SP and the PP discipline (this is not shown here).
In Fig. 5 we present the influence of the aggregate packet size and the IP packet
size distribution on the aggregation performance (θ = 900 Mb/s, τ = 20 µs and
one class is considered). We consider four packet size distributions represented by
X1, X2, X3 and X4. X1 is the distribution that approximates the real one, i.e.,
60% of 40-byte packets, 25% of 552-byte packets, and 15% of 1500-byte packets.
X2 is a discrete distribution where big size packets are predominant. That is,
we have 60% of 1500-byte packets, 25% of 552-byte packets, and 15% of 40-byte
packets. X3 is exponential with mean E[X3] = E[X1] = 387 bytes, and X4 is



9

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70  80

m
ea

n 
pa

ck
et

 d
el

ay
 (

µs
),

 m
ea

n 
fil

lin
g 

ra
tio

 (
%

)

time-out (µs)

DAT, delay, Self-Similar
DAT, delay, Poisson

DAT, filling ratio, Self-Similar
DAT, filling ratio, Poisson
WATT, delay, Self-Similar

WATT, delay, Poisson
WATT, filling ratio, Self-Similar

WATT, filling ratio, Poisson

Fig. 6. The effect of self-similar traffic

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5  6  7  8  9  10

m
ea

n 
pa

ck
et

 d
el

ay
 (

µs
),

 m
ea

n 
fil

lin
g 

ra
tio

 (
%

)

bit-rate (Gb/s)

delay, Self-Similar
delay, Poisson

filling ratio, Self-Similar
filling ratio, Poisson

Fig. 7. The effect of the aggregation trans-
mission time

exponential with mean E[X4] = E[X2] = 1044 bytes. It can be observed from
Fig. 5(b) that the filling ratio fluctuates in different ways for each packet size
distribution before it becomes monotonically decreasing. This is because when
the aggregate packet size is small, the latter is sent to the conversion queue due
to the presence of an IP packet which cannot be inserted into the remaining gap.
However, for large values of the aggregate packet size, the latter will be sent due
to the timer expiration. This also justifies why the delay (Fig. 5(a)) becomes
approximately constant for large values of the aggregate packet size. Note that
when big size packets are predominant (i.e., in the case of X2 and X4) the mean
filling ratio is improved for large values of the aggregate packet size (> 4000
bytes in Fig. 5(b)) at the expense of a little increase in the delay as shown in
Fig. 5(a).
The impact of self-similarity is depicted in Fig. 6, where a self-similar traffic
with a hurst parameter H = 0.9 (which represents a high degree of burstiness)
is generated by the method presented in [9]. In the case of WATT, it can be seen
that the filling ratio is enhanced under the self-similar traffic with respect to the
Poisson one, while the delay remains approximately the same under both types
of traffic. This is mainly due to the fact that aggregation cycles are performed
successively as long as the queues are not empty and since aggregation transmis-
sion time is negligible. However, in the case of DAT, the arrival of bursts leads
to abruptly increasing the queueing delay. Furthermore, in this case the mean
filling ratio is not meaningfully affected under both types of traffic (self-similar
and Poisson). This is because aggregation cycles are performed at fixed instants
regardless of the arrival pattern, and hence in the case of self-similar traffic the
filling ratio attains the maximum when bursts arrive and the minimum in the
absence of burst arrival. In the case of Poisson traffic, the filling ratio remains
close to its mean since at high loads, Poisson traffic arrival rate becomes more
constant as the packet inter-arrival duration decreases.
Fig. 7 aims to prove that neglecting the aggregation transmission time is a jus-
tifiable assumption in a real system. For this purpose we consider that θ = 900
Mb/s, and we study the impact of the link speed between the arrival queues (i.e.,
queues 1, 2, . . . , J) and the conversion queue (see Fig. 1). It can be observed that
a link speed of 1.5 Gb/s gives the same packet delay as that of 10 Gb/s regard-
less of the arrival pattern. Moreover the mean filling ratio is not affected by the
variation of the link speed. This means that a link speed of 1.5 Gb/s is sufficient
to consider that the probability of packet (or burst) arrival during the aggrega-
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tion transmission time is negligible, and hence the latter has no influence on the
waiting time of packets and can be neglected in the analysis.

5 Application to a slotted network

The proposed application is a slotted version of the Dual Bus Optical Ring Net-
work (DBORN) originally proposed in [8]. The topology of the slotted version
of DBORN (SDBORN) consists of a ring with two parallel fibers and it is based
on separating the transmission and the reception channels through a hub as Fig.
8 shows. The hub delivers empty slots on transmission channels. The upstream
channels (λup) are used for transmission and the downstream ones (λdown) are
used for reception. The header of the optical packet is attached to the payload
using the out-of-band technique, where headers circulate separately over a con-
trol channel (λc) (see [5]). We consider that each ring node is equipped with
one fixed transmitter and one fixed receiver, i.e. for each node we assign only
one transmission wavelength (λup) and only one reception wavelength (λdown)
as shown in Fig. 8(b). Note that only the control channel is converted to the
electrical domain for processing at each ring node, while the bulk of user infor-
mation remains in the optical domain until it attains the reception channel. This
is in perfect conformity with the notion of all-optical (or transparent) networks
in literature. In order to ensure a fair access to the ring, we implement a slot
reservation mechanism, and we suppose that each node is reserved the same
number of slots (ñ slots) at each ring latency (Ns slots). At the upstream bus,
ring nodes detect the header to determine the reservation status of the slot, while
at the downstream reading bus, ring nodes preserve the same behavior proposed
in the original DBORN, and hence, the optical signal is split, and IP packets
are recovered at each node. The latter drops packets which are not destined to
it (since aggregation is performed regardless of destinations).
Now let us consider the case of DAT. An aggregate packet (the payload of an
optical packet) is delivered to the network each τ as described before. Assume
that τθmax is the time-out required (expressed in slots) to warrant a desired level
of mean filling ratio (Fth % ) at the maximum arrival rate θmax. Moreover, we
suppose that Fth is required regardless of θ variations. Since θ < θmax, we get
τθ > τθmax . Now we assume that each node is reserved ñ = Ns/τθmax slots5

(i.e., each node is reserved a slot each τθmax). Hence, for a maximum number of

5 We suppose that Ns is integer multiple of τθmax , since in practice Ns >> τθmax .
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Fig. 9. The additional access delay in two different cases.

ring nodes Mmax = Ns

ñ , each node finds at each ring latency (Ns slots) as many
free slots as timer expirations. This approach guarantees that the delay that
an aggregate packet suffers in the conversion queue, before joining the optical
network, is at maximum τθmax irrespective of the arrival rate variation and of
the position of the node on the ring (see Fig. 9).
In the case of WATT, the number of slots reserved for a node will be given by:
ñ = Ns/τr, where τr must verify: λmax < 1/τr in order to sustain the stability
of the conversion which is supposed to be infinite (here, τr is different from the
aggregation time-out τ , and each node is reserved a slot at each τr). λmax is
the maximum arrival rate of aggregate packets to the conversion queue. Once
τr determined, we get the maximum number of ring nodes by the same relation
established in the case of DAT, i.e. Mmax = Ns

ñ , and we obtain by simulations
the access delay (in the conversion queue) of an aggregate packet.
In the case of no aggregation, we follow the same reasoning of the case of WATT
with the difference that λ will be the arrival rate of IP packets instead of aggre-
gate packets.
Numerical example: we suppose the following assumptions. θmax = 900 Mb/s,
self-similar traffic with H = 0.9, the IP packet size distribution X1 (see Section
4), an aggregate packet size N = 3000 bytes, τθmax = 20 µs, an optical payload
of 552 bytes in the case of no aggregation (since the majority of IP packets are
small, if the payload is large we get a considerable padding, and if it is small
we get a large number of guard times). Also, we considered a channel bit rate
D = 40 Gb/s, a ring length of 160 km (which corresponds to a ring latency
Rl = 800 µs), and a guard time of 50 ns. From θmax and the mean of X1, we
obtain for the case of no aggregation, λnoAgg = 0.29 × 106 packet/s, and hence
τnoAgg
r < 3.44 µs (by the stability law of the conversion queue as mentioned

before). Now if we consider that the time-out in the case of WATT is 20 µs, we
deduce from Fig. 6 that the mean filling ratio (Fth) is about 87%, and hence
λWATT = (θmax × 106)/(Fth × 3000 × 8) = 0.043 × 106 packet/s (θmax is also
the arrival rate (Mb/s) to the conversion queue since arrival queues are infi-
nite). Thus τWATT

r < 23 µs. Table 1 shows simulation results under different
scenarios. It can be seen that the bandwidth efficiency (Bw = θ ∗Mmax/D) is
improved when using aggregation (WATT or DAT). This is not surprising since
aggregation enhances the filling ratio of an optical payload. The deterministic
arrival process of aggregate packets in the case of DAT improves the total packet
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Table 1. Node number Mmax, bandwidth efficiency Bw and packet delay
packet delay (µs) Mmax Bw τr (µs)

No Agg. 296 18 40.5 % 3

WATT 400 30 67.5 % 20

WATT 105 28 63 % 18

DAT 304 30 67.5 % 20 (τθmax)

delay (aggregation delay + access delay in the conversion queue) when compared
to WATT where aggregate packets will arrive in bursts in the case of IP self-
similar traffic. Hence, although WATT outperforms DAT in terms of aggregation
performance (see section 4), DAT is better from an end-to-end view. Note that
the packet delay can be also improved at the expense of some loss in Bw by
modifying the value of τr.
6 Conclusion
We have proposed and analyzed a novel approach for efficiently supporting IP
packets in a slotted WDM optical layer with several QoS requirements. Two
packet aggregation techniques, called WATT and DAT have been presented and
analyzed under Poisson and self-similar traffic. Moreover, an accurate analytical
model in the case of DAT with segmentation has been introduced. The results
showed that the bandwidth efficiency is improved when using aggregation com-
pared to the standard approach (no aggregation) due to the enhancement in the
filling ratio of optical payloads. IP packet delay can be also decreased at the
expense of some loss in the bandwidth efficiency.
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