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Abstract. Common practice to determine the required bandwidth capacity for
a network link is to measure the 5 minute average link load, and then add a
safety margin to cater for the effect of burstiness on small time-scales. Because
of the substantial measurement efforts required to determine the burstiness, net-
work managers often rely on rules of thumb to find the safety margin, e.g. ‘mean
plus 50%’. In this paper we propose a novel method to accurately determine the
burstiness of traffic on small time-scales,withoutrequiring measurements on such
small time-scales. Our method is based on coarse-grained polling of the occu-
pancy of a buffer in front of the link, from which the burstiness on small time-
scales is inferred. We provide the theoretical foundations of our approach, and a
validation through both simulation using synthetic traffic as well as real network
traffic taken from various operational networks. It turns out that using our ap-
proach, it is possible to accurately determine burstiness on small time-scales (for
instance 10 ms), by sampling the buffer occupancy (for instance) every second.
Keywords: Network design and capacity planning, queueing network models

1 Introduction
Provisioning of network resources addresses the interrelationship between: (i) offered
traffic (in terms of both average load and burstiness), (ii) desired level of performance,
and (iii) the required capacity. Generally, more capacity is needed when offered load
and burstiness increase, or when the performance criterion becomes more stringent. To
operate a network in a viable way, provisioning procedures balancing (i), (ii), and (iii)
are required: scarce provisioning inevitably leads to performance degradation, whereas
(too much) over-provisioning results in a waste of resources.

Provisioning procedures are commonly based on rules of thumb. Considering a time
window in which network traffic can be assumed stationary, one often uses rules of the
type ‘the mean traffic rate, plus a margin of 50%’. Obviously, such a fixed margin is not
universally applicable. This motivates the use of formulae of the type

C = M + α
√

V (1)

for mean loadM , some factorα (reflecting the performance target, which is mostly
determined by the applications involved), and a standard-error term

√
V to account for

traffic fluctuations, see for instance [1]. Hence, the size of the ‘safety margin’ is affected
by the chosen performance target, and the burstiness of the offered traffic. From (1) we
conclude that provisioning (for a given performance target) requires knowledge of both
M andV .

The mean traffic rateM can be determined by standard coarse-grained traffic mea-
surements. A common way is to poll Interfaces Group MIB counters via the Simple
Network Management Protocol (SNMP) every 5 minutes; this yields the total amount
of traffic sent through the network interface over this time-interval. Determining the
burstinessV , on the other hand, is more involved, and is essentially the subject of this
paper.

Let A(t) denote the traffic offered over a window of lengtht > 0, and the function
V (t) := VarA(t). Then the analysis in this paper indicates that there is some ‘dominant
time-scale’T , such that the (burstiness)V in formula (1) corresponds toV (T ); hence it



is thisV (T ) that needs to be estimated. Note that the time-scaleT is usually relatively
small (for instance in the order of 100 ms, and often even considerably less). Clearly,
V (T ) can be estimated directly by doing measurements on time-scaleT , and computing
the sample variance. However, it is hard to do accurate measurements on these small
time-scales; they are hardly feasible through SNMP. This motivates the need for alter-
native, ‘cheap’ measurement techniques for determining the traffic variance on small
time-scales.

Contribution. As argued above, it is of crucial interest to develop methods for effi-
ciently and accurately estimatingV (T ) for small time-scalesT . The main contribution
of this paper is that we propose an alternative for ‘direct estimation’ (i.e., by doing
measurements on the time-scale of interest). In our approach the (i)buffer occupancy is
polledon a regular basis (for instance every 10 seconds), and (ii) subsequently we ‘in-
vert’ the resulting (estimated) buffer content distribution to the variance functionV (·).
Importantly, this approach eliminates the need for traffic measurements on small time-
scales. In this sense, we remark that our proposed procedure is rather counterintuitive:
without doing measurements on time-scaleT , we are still able to accurately estimate
V (T ). In fact, one of the attractive features of our ‘inversion procedure’ is that it yields
the entire ‘variance curve’V (·) (of course up to some finite horizon), rather than just
V (T ) for some pre-specifiedT .

Approach and organization.The variance estimation technique proposed in this paper
relies on the assumption that traffic is (fairly) Gaussian: for anyt ≥ 0, the amount of
traffic offered in a time window of lengtht is accurately described by a normal distri-
bution, parameterized by a meanMt and varianceV (t) := VarA(t). This Gaussianity
was observed in various measurement studies. Kilpi and Norros [2] have statistically
verified that the use of Gaussian traffic models is justified as long as the aggregation
is sufficiently large (both in time and number of flows), due to Central Limit type of
arguments. Importantly, Gaussian models cover long-range dependent processes, such
as fractional Brownian motion (fBm); traffic measurements in the 1990s showed that in
various situations this fBm model accurately models network traffic, see, e.g., [3].

Section 2 presents preliminaries on Gaussian queues. Particular attention is paid to
provisioning formulae (for both buffer and bandwidth), in line with (1). The provision-
ing formula motivate the need for methods to estimate the variance functionV (·), i.e.,
V (t) as a function of the interval lengtht. The formulae for Gaussian queues lead to our
efficient method for estimating theV (·), that is explained in Sect. 3; importantly, we
derive an ‘inversion formula’ that yieldsV (·) from the empirically determined buffer
content distribution. In Sect. 4 we describe the inversion procedure, and demonstrate it
by using synthetic traffic (in this case fBm traffic).

In the inversion procedure, we have identified three sources of possible errors, viz.:
the (large-deviations) asymptotics give anapproximationof the overflow probability
(rather than an exact formula), the buffer content distribution isestimatedthrough the
buffer polling procedure, and weassumethat traffic is (accurately approximated by)
Gaussian. In Sect. 5 we present a detailed, quantitative study of the impact of each of
these errors on the resulting estimation of the variance.

To investigate the applicability of the procedure in practice, we have performed
extensive numerical experiments with real data from various real-life settings. These
networks have different access technologies and link speeds, and different applications



and user populations. We present and discuss the results of this experimental validation
in Sect. 6.

Section 7 presents a number of reflections of the feasibility of implementing our es-
timation procedure, and concludes that there are no conceptual impediments. Section 8
concludes, and and lists a number of possible directions for future work.

2 Gaussian queues – motivation
In this section we review some basic principles of Gaussian traffic, and recapitulate
the main fundamental (large-deviations) theory for queues with Gaussian input. Then
we derive, for this Gaussian setting, a number of dimensioning rules. These formulae
motivate the need for estimating specific traffic characteristics, viz., the mean rateM

and the variance functionV (·), cf. provisioning rule (1).

Preliminaries on Gaussian queues – many-sources asymptotics.Considern inde-
pendent, statistically identicalGaussiansources. It is assumed that the traffic pattern
generated by an individual source corresponds to a Gaussian process with stationary
increments. This type of sources is characterized by their mean traffic rateµ, and their
variance functionv(t), for t ≥ 0. With Ai(t) denoting the amount of traffic generated by
theith source in an interval of lengtht ≥ 0, thenEAi(t) = µt, andVarAi(t) = v(t).

Now suppose that then sources feed into a queue with capacityC, and apply the
scalingC ≡ nc. It is well-known that the stationary queue length, sayQn has the
same distribution as the maximum of the corresponding ‘free-buffer process’:Qn

d
=

supt>0

`Pn
i=1 Ai(−t, 0)− nct

´
. The following fundamental result is found in, e.g., [4]:

Lemma 1 Suppose that there is anα < 2 such thatv(t)/tα → 0 for t → ∞. Then, for
anyb > 0, andc > µ:

I(b) := − lim
n→∞

(1/n) log Pr(Qn ≥ nb) = inf
t>0

(b + (c− µ)t)2/(2v(t)) .

The above result holds for the system ‘scaled byn’, but gives rise to an approximation
for the ‘unscaled’ situation, see also for instance [4], [5, Eq. 3]. WithB ≡ nb, consider
the probability that the buffer contentQ exceedsB. DenoteM ≡ nµ as the aggregate
mean, andV (t) ≡ nv(t) as the aggregate variance.

Approximation 2 For anyB > 0, andC > M ,

Pr(Q > B) ≈ exp

„
− inf

t>0
(B + (C −M)t)2/(2V (t))

«
. (2)

Provisioning formulae. One of the major tasks in network management is the provi-
sioning of resources: choose the link rate and/or buffer size such that some pre-specified
performance criterion is met. The above approximation formula (2) provides us with a
tool for developing such provisioning rules. For several performance criteria, we derive
the corresponding rules.

Link provisioning of an unbuffered resource.Suppose the goal is to provision the link
such that the probability of exceeding the capacityC for a period of lengthT is smaller
thanε. Hence we have to find the smallestC = C(T, ε) such that:
exp

`
−((C −M)T )2/(2V (T ))

´
≤ ε, cf. (2). It is readily checked that this yields, with

δ :=
√
−2 log ε,

C(T, ε) = M + δ/T ·
p

V (T ) . (3)

Notice thatC(T, ε) decreases inε, as expected: the less stringent the performance target,
the less bandwidth is needed.



Link provisioning of a buffered resource.In the setting of provisioning rule (3) we
considered an unbuffered resource. In practice, however, network elements are often
equipped with a queue, to absorb traffic rate fluctuations. If the router has a queue of
sizeB, and suppose we wish to provision the capacity, we have to find the minimal
C = C(ε) such that (2) is belowε. Hence we are searching for:

min
˘
C | ∀t > 0 : exp

`
−(B + (C −M)t)2/(2V (t))

´
≤ ε

¯
.

After rearranging terms, we find:
C(ε) = M + inf

t>0

“
δ/t ·

p
V (t)−B/t

”
. (4)

Again, the bandwidth required decreases inε. Moreover, it also decreases inB: the
larger the queue, the better traffic fluctuations can be absorbed by the buffer, and hence
less link capacity is needed.

Buffer provisioning.Similarly, we can determine the minimum required bufferB =

B(ε): B(ε) = inf
t>0

“
δ
p

V (t)− (C −M)t
”

. (5)

Example 3 fBm. Motivated by several measurements studies [3], we focus here on one
of the key models in current traffic theory, namely fractional Brownian motion input,
i.e., Gaussian traffic withV (t) = σ2t2H – take for simplicityσ = 1. H ∈ (0, 1) is the so-
called Hurst parameter; for network traffic a typical value is 0.7-0.8. Straightforward
computations give for (3):

C(T, ε) = M + δ/T 1−H .

When computingC(ε) in (4), the optimizingt is given byB1/H(1−H)−1/Hδ−1/H , yield-
ing:

C(ε) = M + δ1/H ((1−H)/B)1/H−1 H .

In buffer provisioning rule (5) the optimizingt is given by(δH)1/(1−H)(C−M)−1/(1−H),
such that:

B(ε) =
“
δH/(C −M)H

”1/(1−H)

· (1−H)/H .

The main conclusion from this section is that the above provisioning formulae (3), (4),
and (5) indicate that it is of crucial importance to have accurate estimates of the average
traffic rateM , as well as the variance curveV (·) (i.e., V (t) as a function oft ≥ 0);
having these at our disposal, we can find the required bandwidth capacity or buffer size.
As estimatingM is straightforward, the next sections concentrate on efficient methods
for estimating the variance curveV (·).

3 Derivation of the inversion formula
As mentioned in the introduction, the mean traffic rateM can be determined by standard
coarse-grained traffic measurements. It is clear that determining the variance curveV (·)
is more involved. The standard way to estimateV (T ) (for some interval lengthT ) is
what we refer to as the ‘direct approach’. This method is based on traffic measurements
for disjoint intervals of lengthT , and just computes their sample variance. It is noted
that the convergence of this estimator could be rather slow when traffic is long-range
dependent [6, Ch. I], but the approach has two other significant drawbacks:
1. When measuring traffic using windows of sizeT , it is clearly possible to estimate

V (T ), V (2T ), V (3T ), etc. However, these measurements obviously do not give any
information onV (·) on time-scalessmallerthanT . Hence, to estimateV (T ) mea-
surements should be done at granularityT or less;T is typically rather small. This
evidently leads to a substantial measurement effort.



2. The provisioning formulae (4) and (5) require knowledge of theentire variance
functionV (·), whereas the direct approach described above just yields an estimate
of V (T ) on a pre-specified time-scaleT . Therefore, a method that estimates the
entire curveV (·) is preferred.

This section presents a powerful alternative to the direct approach; we refer to it as
the inversion approach, as it ‘inverts’ the buffer content distribution to the variance
curve. This inversion approach overcomes the problems identified above. We rely on
the many-sources framework of Sect. 2.

Define the ‘most likely epoch of overflow’ for a given buffer valueb > 0: tb :=

arg inft>0(b + (c− µ)t)2/(2v(t)); note thattb is not necessarily unique. Define the setT
as follows:T := {t > 0 | ∃b > 0 : t = tb}. The following theorem gives, for anyt > 0,
an upper bound on the variancev(t), for givenI(b), and presents conditions under which
this upper bound is tight.

Theorem 4 (i) For any t > 0, v(t) ≤ infb>0(b + (c− µ)t)2/(2I(b));
(ii) There isequalityfor all t ∈ T ;
(iii) If 2v(t)/v′(t)− t grows from 0 to∞ whent grows from 0 to∞, thenT = (0,∞).

Proof. Clearly, due to Lemma 1, for allb > 0 and t > 0, we have thatI(b) ≤ (b +

(c − µ)t)2/(2v(t)), which implies claim (i) immediately. Now consider at ∈ T . Then
there is ab = bt > 0 such thatI(b) = (b + (c − µ)t)2/(2v(t)). We thus obtain claim
(ii). Now consider claim (iii). We have to prove that for allt > 0 there is ab > 0 such
that t = tb. Evidently, tb solves2v(t)(c − µ) = (b + (c − µ)t)v′(t), or, equivalently,
b = bt := (2v(t)/v′(t)− t) (c− µ). Hence, it is sufficient ifbt grows from0 to∞ whent

grows from0 to∞.

Note that even if condition (iii) does not apply, as was found in some recent traces, see
[7], v(t) will be bounded from above by the infimum overb, due to (i). Remarkably,
Theorem 4 gives, loosely speaking, that for Gaussian sources the buffer content dis-
tribution uniquely determines the variance function. This property is exploited in the
following heuristic.

Approximation 5 The following estimate of the functionV (t) (for t > 0) can be made
using the buffer content distribution:

V (t) ≈ inf
B>0

(B + (C −M)t)2

−2 log Pr(Q > B)
. (6)

Hence, if we can estimatePr(Q > B), then ‘inversion formula’ (6) can be used to re-
trieve the variance; notice that the infimum can be computed for anyt, and consequently
we get an approximation for the entire variance curveV (·) (of course up to some finite
horizon). These ideas are exploited in the procedure described in the next section.

4 Demonstration of the inversion procedure
In this section we show how the theoretical results of the previous section can be used
to estimateV (·). First, we propose an algorithm for estimating the (complementary)
buffer content distribution (in the sequel abbreviated toBCD), such that, by applying
Approximation 5, the variance curveV (·) can be estimated. In our demonstration, sec-
ond, we specialize to the case of synthetic input, i.e., traffic generated according to some
stochastic process; we choose fBm input, but we emphasize that the procedure could



be followed for any other process. Finally, we compare, for fBm, our estimation for
V (·) with the actual variance curve, yielding a first impression of the accuracy of our
approach (a more detailed numerical evaluation follows in Sect. 5 and 6).

The inversion procedure consists of two steps: (1) determining theBCD, and (2) ‘in-
verting’ theBCD to the variance curveV (·) by applying Approximation 5. We propose
the following algorithm:

Algorithm 6 Inversion approach.

1. Collect ‘snapshots’ of the buffer contents:q1, . . . , qN ; here qi denotes the buffer
content as measured at timeτ0 + iτ , for someτ > 0. Estimate theBCD by the
empirical distribution function of theqi, i.e., estimatePr(Q > B) by φ(B) = #{i :

qi > B}/N .
2. EstimateV (t), for anyt ≥ 0, by infB>0(B + (C −M)t)2/(−2 log φ(B)).

In the above algorithm, snapshots of the buffer content are taken at a constant frequency.
To get an accurate estimate of theBCD, both τ andN should be chosen sufficiently
large. We come back to this issue in Sect. 5. Notice that we chose a fixed polling fre-
quency (i.e.,τ−1) in our algorithm, but this is not strictly necessary; theBCD-estimation
procedure obviously still works when the polling epochs are not equally spaced.

In the remainder of this section we demonstrate the inversion approach of Algo-
rithm 6 through a simulation with synthetic (fBm) input. The simulation of the queue
fed by fBm yields an estimate for theBCD; this estimatedBCD is inverted to obtain the
estimated variance curve, which is compared with the actual variance curve.

Simulation procedure. Concentrating on slotted time, we generate traffic according
to some stochastic process. In this example we focus on the case of fBm input, but it
is stressed that the procedure could be followed for any other stochastic process. The
traffic stream is fed into a simulated queue with link rateC. The buffering dynamics are
simulated as follows: (1) using a fBm simulator [10], fBm is generated with a specific
Hurst parameterH ∈ (0, 1), yielding a list of ‘offered traffic per time slot’; (2) for every
slot, the amount of offered traffic is added to, and an amount equal toC is drained
from the queue (while assuring the queue’s content is non-negative); (3) everyτ slots,
the queue’s content is observed, yieldingN snapshots that are then used to estimate
Pr(Q > B) (cf. Algorithm 6). In this demonstration of the inversion procedure, we
generate an fBm traffic trace with Hurst parameterH = 0.7 and length224 slots. The
link capacityC is set to0.8, and we take snapshots of the buffer content everyτ = 128

slots.

Estimating the variance curve.We now discuss the output of the inversion procedure
for our simulated example with fBm traffic. First we estimate theBCD; a plot is given
in Fig. 1. For presentation purposes, we plot the (natural) logarithm of theBCD, i.e.,
log Pr(Q > B). TheBCD in Fig. 1 is ‘less smooth’ for larger values ofB. This is due to
the fact that large buffer levels are rarely exceeded, leading to less accurate estimates.
Second, we estimate the varianceV (t) for t equal to the powers of2 ranging from20 to
27, using theBCD, i.e., by using Algorithm 6. The resulting variance curve is shown in
Fig. 2 (‘inversion approach’). The minimization (overB) was done by straightforward
numerical techniques. To get an impression of the accuracy of the inversion approach,
we have also plotted in Fig. 2 the variance curve as can be estimated directly from the
synthetic traffic trace (i.e., the ‘direct approach’ introduced in Sect. 3), as well as the
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real variance function for fBm traffic, i.e.,V (t) = t2H . Figure 2 shows that the three
variance curves are remarkably close to each other. This confirms that the inversion
approach is an accurate way to estimate the burstiness.

5 Error analysis of the inversion procedure
In the previous section the inversion approach was demonstrated. It was shown to per-
form well for fBm with H = 0.7, under a specific choice ofN andτ . Evidently, the key
question is whether the procedure still works under other circumstances. To this end,
we first identify the three possible sources of errors:

– The inversion approach is based on theapproximation(2).
– Pr(Q > B) is estimated; there could still be an estimation error involved. In partic-

ular, we wonder what the impact of the choice ofN andτ is.
– The procedureassumesperfectly Gaussian traffic, although real network traffic may

not be (accurately described by) Gaussian.
We will now quantitatively investigate the impact of each of these errors on our ‘indirect
approach’. These investigations are performed through simulation as outlined in Sect. 4.

Approximation of the buffer content distribution. In Equation (2) an approximation
of theBCD is given. As the inversion approach is based on this approximation, evidently,
errors in (2) might induce errors in the inversion.

We first determine the infimum in the right-hand side of (2), which we consider as
a function ofB. In line with the previous section, we choose fBm input:M = 0 and
V (t) = t2H . Straightforward calculations now reveal that we can rewrite (2), viz.:

log Pr(Q > B) ≈ −1/2 · (B/(1−H))2−2H (C/H)2H .

We verify how accurate the approximation is, for two values ofH: the pure Brown-
ian caseH = 0.5, and a case with long-range dependenceH = 0.7 (in line with earlier
measurement studies of network traffic). Several runs of fBm traffic are generated (with
different random seeds),224 slots of traffic per run. We then simulate the buffer dynam-
ics. ForH = 0.5 we choose link rateC = 0.2, for H = 0.7 we chooseC = 0.8; these
choicesC are such that the queue is non-empty sufficiently often (in order to obtain a
reliable estimate of theBCD). Figures 3 and 4 show for the various runs the approxima-
tion of theBCD, as well as their theoretical counterpart. It can be seen that, in particular
for smallB the empirically determinedBCD almost perfectly fits the theoretical approx-
imation.
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Estimation of the buffer content distribution. As we estimate theBCD on the basis
of snapshots of the buffer content, there will be some error involved. The impact of
this error is the subject of this subsection. It could be expected that the largerN (more
observations) andτ (less correlation between the observations), the better the estimate.

First, we investigate the impact ofN . The simulator is run as in previous cases (with
H = 0.7), with the difference that we only use the firstx% of the snapshots samples to
determinePr(Q > B). Figure 5 shows the estimation of the buffer content distribution,
for variousx ranging from 0.1 to 100. The figure shows that, in particular for relatively
smallB, a relatively small number of observations suffices to get an accurate estimate
of theBCD.

Second, we investigate the impact of the interval length between two consecutive
snapshotsτ . Figure 6 shows the determinedBCD for τ ranging from observing every
32 to every 8192 slots. It can be seen that, particularly for smallB the fit is quite good,
even when the buffer content is polled only relatively rarely.
The impact of the Gaussianity assumption.Approximation (2) explicitly assumes
that the traffic process involved is Gaussian. Various measurement studies find that
real network traffic on the Internet is (accurately described by) Gaussian, see, e.g., [3];
others claim, however, that particularly on small time-scales, traffic may not be Gaus-
sian [2]. Therefore we now investigate how sensitive our ‘inversion approach’ is with
respect to Gaussianity of the input traffic.
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We study the impact of non-Gaussianity by mixing, for every slot, a fractionα of the
generated fBm traffic with a fraction1 − α traffic from an alternative (non-Gaussian)
stream, before the mixture is fed to the (virtual) queue. Note that the variance of the
mixture isV (t) = α2V[fBm](t) + (1 − α)2V[alt](t). We varyα from 1 to 0, to assess the
impact of the non-Gaussianity.

The alternative input model that we choose here is an M/G/∞ input model, inspired
by, e.g., [4,8]. In the M/G/∞ input model, jobs arrive according to a Poisson(λ) process.
The job durations are i.i.d., and during their duration each job generates traffic at a
constant rater. In line with measurements studies, we choose Pareto(β) jobs. As the
objective is to assess the impact of varying the parameterα, we have chosen to select
the parameters of the M/G/∞ model such that the fBm and M/G/∞ traffic streams are
‘compatible’, in that their mean and varianceV (·) are similar, which is achieved as
follows.

The means of both traffic stream are made compatible by adding a drift to the fBm
inputs equal to the mean of the M/G/∞ traffic stream, i.e.,λr/(β− 1). Hereλ andr can
be chosen arbitrarily. The Gaussianity of the fBm input is not affected by the addition
of such a drift.

To make the variances of both traffic streams compatible, we make use of a deriva-
tion in earlier work of the exact variance functionV (t)[alt], see [11]. It is not possible
to achieve the desired ‘compatibility’ of the variance on all time scales. As long-range
dependence is mainly a property of long time-scales, we choose to focus on these.
For larger time scales, the variance of the M/G/∞ traffic stream roughly looks like
V[alt](t) ≈ 2r2λt3−β/((3− β)(2− β)(β − 1)), assumingβ ∈ (1, 2). We can now estimate
the remaining parameters and compute the variance of the traffic mixture.

The next step is to run, for different values ofα, the simulation. We then deter-
mine the (theoretical) variance curve of the traffic mixture, and compare it to the vari-
ance curve found through our ‘indirect approach’. In Fig. 7 we focus on the ‘nearly-
Gaussian’ casesα = 0.8 andα = 0.9, which are plotted together with their theoretical
counterparts. The figure shows that the presence of non-Gaussian traffic has some, but
no crucial impact on our inversion procedure. We also consider the (extreme) case of
α = 0, i.e., no Gaussian traffic at all, to see if our inversion procedure still works. In
Fig. 8 the various variance curves are shown: the theoretical curve, the curve based on
the ‘direct approach’, as well as the curve based on the inversion approach. Although
not a perfect fit, the curves look similar and still relatively close to each other (but, of



course, the fit is worse than forα = 0.8 and0.9). Note that the non-Gaussian traffic may
‘have some Gaussian characteristics’ if there is a large degree of aggregation, by virtue
of central-limit type of arguments, which may explain that the fit is still reasonable.

We conclude that our simulation experiments show the ‘robustness’ of the inversion
procedure. Despite the approximations involved, with a relatively low measurement
effort, the variance curve is estimated accurately, even for traffic that is not perfectly
Gaussian. Given the evident advantages of the inversion approach over the ‘direct ap-
proach’ (minimal measurement effort required, retrieval of the entire variance curve
V (·), etc. – see the discussion in Sect. 3), the former method is to be preferred. In the
next section we verify whether this conclusion also holds for real (i.e., not artificially
generated) network traffic.

6 Empirical validation of the inversion procedure

Whereas the previous sections studied the performance of our inversion approach by
executing simulation experiments with synthetic traffic, in this section we use traces of
real network traffic. We evaluate the inversion approach by comparing with the ‘direct
approach’.

Measurement and simulation setup.The traces used here are collected at the so-
called (Ethernet) uplinks of five distinct networks (i.e., links that connect these networks
to their Internet service providers). These networks resemble various scenarios, such
as different types of users (e.g. students, ‘normal consumers’, and web-servers), and
different access techniques (ranging from 512 kbps ADSL to 100 Mbps Ethernet), in
order to test our ‘indirect approach’ under different circumstances. For each network,
we have hooked up an off-the-shelf PC to a router/switch that copies all traffic from/to
the uplink to the measurement PC. Using the standard tcpdump software, all packet
headers are captured, time-stamped [9], and subsequently made anonymous through
the tcpdpriv tool to protect the users’ privacy. In this way we have obtained over 400
traces in total, each of them containing 15 minutes of traffic.

The collected packet traces are used in two ways: (1) to estimate the variance curve
through the ‘direct approach’; and (2) to ‘replay’ the traffic through a virtual queue and
link, analogous to the simulation procedure described in Sect. 4, and then applying the
‘indirect approach’ to estimate the variance, cf. Algorithm 6.

Empirical validation. Because of paper length restrictions, we cannot discuss here the
empirical validation for all traces, nor all networks that we have measured. Therefore
we resort to presenting only the validation of two of the hundreds of traces; empirical
validation of the other traces has shown similar results. The first example is based on a
trace captured from the 1 Gbps uplink of an ADSL access network that has about 800
subscribers. The second example is about a web-server farm, with approximately 150
servers; access is 100 Mbps Ethernet, and the uplink is 30 Mbps.

We have set the ‘sampling interval’τ (used to estimate theBCD) to 1 second, to
ensure that a considerable number of snapshots (900) can be taken. A substantial frac-
tion of these snapshots, also depending on the value of the output link’s capacity, do not
provide any information as the buffer turns out to be empty at the time the snapshot is
taken. We choose the smallest interval length for which we compare the variance esti-
mated through our inversion approach with the actual variance found through the ‘direct
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approach’, to be 10 ms (which is, in other words, 100 times as small as the interval we
poll the buffer occupancy).

Figures 9 and 10 show the variance curves for the first and second example, re-
spectively. Clearly, the graphs demonstrate that the inversion approach is capable of
adequately estimatingV (·). Hence even for real network traces, of which for instance
the Gaussian character is far from evident, our coarse-grained buffer polling approach
suffices to estimateV (·). We recall that this implies that this eliminates the need for do-
ing detailed, small-time-scale, traffic measurements. In particular, our results indicate
that we can estimate the variance on the time-scale 10 ms, just by polling the buffer
content at a low frequency, without ever doing a traffic measurement on the 10 ms time
scale.

7 Discussion
After the numerical tests of the previous sections, the next issue concerns the feasibility
of implementing the inversion approach in operational environments.

The above experiments (both with artificial traffic and real traces) have been done
off-line, in that we have used scripts that ‘parse’ the synthetic and real traffic, mimicking
the buffer content dynamics. An interesting question is whether this approach is feasible
in run-time, in operational environments. From the proposed procedure, we can derive
three functional requirements for an implementation of the inversion procedure.

First, a notion of the amount of data in a buffer. This has already been addressed in
real Internet routers: Random Early Detection (RED) [12] queuing algorithms, which
are widely implemented in modern routers, also keep track of the amount of queued
data. Second, a way to poll the buffer occupancy; SNMP may be used for this (in case
the entire procedure is not run on the router itself). Third, software/hardware to deter-
mine theBCD, and then determine the resulting estimate ofV (·). This has also already
been addressed – see our results in this paper.

The above aspects lead us to believe that there are no fundamental or conceptual
problems preventing the actual application of our approach in practice.

8 Concluding remarks

We have presented a novel method to determine the burstiness of network traffic; here
burstiness is in terms of the varianceV (T ) of the traffic generated in an arbitrary win-
dow of lengthT . Our approach estimates the entire variance curveV (·) (of course up



to some horizon), also on small time-scales,without performing detailed traffic mea-
surements. Instead, the buffer content is polled (at some coarse-grained frequency) to
obtain an estimate of the buffer content distribution. Then this distribution is ‘inverted’
to find the variance curve of the traffic rates, which gives the ‘burstiness’V (T ) of the
network trafficat any time scaleT (up to some horizon). Knowledge of the variance
curve can immediately be used in provisioning formulae. We have presented the mathe-
matical foundations under this inversion method, and have investigated its accuracy by
performing a thorough analysis of the possible sources of error. Although there exists
an assumption on Gaussianity of the traffic, the error analysis has shown that even when
the traffic is not perfectly Gaussian, our inversion method gives good results.

Furthermore, we have validated our approach in various real-life settings. This has
shown that our inversion method provides remarkably accurate estimates of the traffic’s
burstiness. In particular, we have observed that our approach yields reliable estimates
of the variance for very small time-scales. A seemingly counterintuitive but representa-
tive example: by sampling from the buffer occupancy every second we have found an
accurate estimate of the variance on the time-scale of 10 ms.

In future work we intend to investigate the impact of the precise choices of the
queue’s link rateC on our inversion approach. In particular it would be interesting to
optimizeC such that the fit is optimal (with respect to some optimality criterion). We
also intend to test our approach in even more real-life settings, and extend the concept
to a network setting.
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