
PeerMint: Decentralized and Secure
Accounting for Peer-to-Peer Applications

David Hausheer1, Burkhard Stiller2,1

1 Computer Engineering and Networks Laboratory TIK
Swiss Federal Institute of Technology, ETH Zurich, Switzerland

2 Department of Informatics IFI, University of Zurich, Switzerland
{hausheer,stiller}@tik.ee.ethz.ch

Abstract. P2P-based applications like file-sharing or distributed storage benefit
from the scalability and performance of completely decentralized P2P infrastruc-
tures. However, existing P2P infrastructures like Chord or Pastry are vulnerable
against selfish and malicious behavior and provide currently little support for
commercial applications. There is a need for reliable mechanisms that enable the
commercial use of P2P technology, while maintaining favorable scalability prop-
erties. PeerMint is a completely decentralized and secure accounting scheme
which facilitates market-based management of P2P applications. The scheme ap-
plies a structured P2P overlay network to keep accounting information in an effi-
cient and reliable way. Session mediation peers are used to minimize the impact
of collusion among peers. A prototype has been implemented as part of a modular
Accounting and Charging system to show PeerMint’s practical applicability. Ex-
periments were performed to provide evidence of the scheme’s scalability and re-
liability.

1 Introduction

Emerging peer-to-peer (P2P) applications benefit from the large amount of resources
provided by many individual peers. Using sophisticated techniques for aggregation and
replication of these resources, P2P-based systems are able to provide a much higher ro-
bustness and performance than traditional client/server-based applications. For exam-
ple, file-sharing applications like eMule [8] or BitTorrent [5] are able to provide access
to huge amount of content in a reliable way. At the same time, an increasing number of
applications make use of basic P2P network infrastructures like Chord [20] or Pastry
[17] and benefit from the good scalability properties of these systems.

However, many existing P2P infrastructures and applications suffer from peers
which behave in a selfish or malicious fashion [9], [18]. Moreover, there is currently
little support for commercial applications for which appropriate accounting and charg-
ing mechanisms are required. Compared to centralized systems, accounting of resource
usage is much more complex in a distributed environment and misusage of such mech-
anisms is more difficult to prevent.

PeerMint is a decentralized accounting scheme that provides the ability to keep
track of contribution and consumption of resources by peers. The scheme uses remote
peers to store and aggregate accounting information in a trustworthy and scalable way.
The aggregated accounting information can be used to enforce fair sharing of resources

between peers or as a basis for additional charging and payment mechanisms. A struc-
tured P2P overlay network is applied to map accounts onto a redundant set of peers and
organize them in an efficient and scalable manner. Other than similar work (cf. [1], [15],
[16], [22]), the proposed scheme uses session mediation peers to maintain session in-
formation about transactions between peers. This minimizes the impact of colluding
peers trying to increase their account balance without actually contributing resources.
Additionally, PeerMint provides economic flexibility by supporting the use of different
types of tariffs. The proposed scheme is secure in that it ensures the availability and in-
tegrity of the accounting data. However, it does not provide confidentiality or privacy,
as every peer is, in principle, able to access the accounting data of any other peer.

PeerMint has been designed and implemented as an accounting mechanism within
a generic and modular Accounting and Charging (A&C) system for P2P applications
[11]. The system separates generic accounting functionality such as session mainte-
nance and account configuration from individual underlying accounting mechanisms.
This enables the implementation of alternative accounting schemes with different prop-
erties, independently from existing core functionality. As the interface to the accounting
mechanism is very generic, the proposed scheme could also be used in other environ-
ments.

The remainder of this document is structured as follows: Section 2 presents the
main principles and requirements for an accounting mechanism for P2P applications.
Section 3 introduces the concept of remote accounting that is adopted in PeerMint and
gives an overview on the potential design space. A detailed description about the design
of PeerMint on top of Pastry is given in Section 4, while Section 5 presents its imple-
mentation within the Accounting and Charging system mentioned. In addition, the
scheme is evaluated with respect to scalability and robustness. Finally, Section 6 con-
cludes the paper and discusses some open issues.

2 Requirements and Definitions

The following describes the core principles which underlie the accounting scheme pro-
posed in this paper. The main goal of an accounting mechanisms is to ensure account-
ability [7] by providing a set of functionality that enables to account for the use of serv-
ices or resources offered within a particular P2P application. As such it gives peers an
incentive to contribute their own resources and serves as a basis to punish selfish be-
havior like free-riding. Vital accounting mechanisms are the processing of accounting
events describing the amount of used resources, the application of respective tariffs, as
well as the creation and maintenance of accounts to store and aggregate the accounting
information and to keep track of the account balance. Accounting schemes may imple-
ment any specific type of accounting, from simple local or centralized accounting to
more sophisticated remote or token-based accounting [10]. Individual accounting
schemes usually fulfill specific requirements with respect to efficiency, scalability, and
economic flexibility, as well as security and trustworthiness, among which there is al-
ways a trade-off. While, e.g., local accounting scales perfectly with O(1), it features
very bad security properties, as a peer can easily modify its account locally. Such a
scheme would therefore only be suitable in trusted environments or for purposes where

security is not important. Specific accounting mechanisms used in existing P2P appli-
cations are, e.g., BitTorrent’s tit-for-tat mechanism [5] or eMule’s credit system [8].
Other related accounting mechanisms that have been developed for use in P2P systems
are, e.g., Karma [22], PPay [23], Mojo Nation [14] or the approach presented in [2].
Similar mechanisms have been developed for Grid computing [3], [21].

The main terms and concepts used to describe the proposed mechanism are intro-
duced in the following. The term session refers to the use of a particular service or re-
source, e.g., the download of a file or the use of some amount of computing power. A
session has always two session partners, a provider peer and a consumer peer. Further-
more, accounts are repositories which can be used to keep and aggregate accounting in-
formation, e.g., the amount of MBs uploaded or downloaded or the number of CPU cy-
cles used. Two types of accounts are distinguished, session accounts and peer accounts.
While session accounts are used to keep accounting information within a particular ses-
sion, peer accounts aggregate information from several sessions, e.g., the total amount
of MBs uploaded and downloaded by a particular peer. Peer accounts may also be used
to keep information about a peer’s reputation or trustworthiness.

For every session there is a corresponding tariff. Its main purpose is to specify how
service usage needs to be accounted for. As such it is used to process accounting events
which are generated by the service instances running on both the provider and the con-
sumer side of a session. A tariff is represented by a specific tariff formula and a set of
tariff parameters which are previously agreed upon by both session partners. For exam-
ple, a volume-based tariff could be used to account for a file download. A tariff may
also contain further parameters that have to be computed dynamically during a session,
e.g., depending on the time of day or the balance of a particular account. Based on the
result from a tariff evaluation a generic balance update is created and forwarded to a
particular account. Note that the term balance update is used rather than charge to make
clear that this does not necessarily imply a monetary payment. Balance updates are han-
dled as accounting events and can thus be processed further. It depends on the applied
tariff when and by how much the balance of a particular session or peer account is up-
dated. Using tariffs, a variety of settlement schemes can be supported. For example, a
peer account may be updated at the beginning or at the end of a session, which can be
used to implement a pre-payment or post-payment scheme. In addition, more fine-
grained updates of peer accounts are possible during a session, e.g., after a particular
amount of the service has been provided or a certain time has passed.

3 Remote Accounting Concept

This section introduces the basic concept of remote accounting as it is used by Peer-
Mint. In general, remote accounting is based on the idea that accounts are held remotely
on other peers. Remote peers are third-party peers, which are typically different from
the peers currently providing or using a particular service that needs to be accounted for.
Using remote accounting, accounts can be distributed and replicated over several peers,
which, if designed appropriately, can increase the reliability and availability of the ac-
counting data. In addition, a higher credibility or trustworthiness can be achieved, when
many peers are involved in doing the accounting.

The example depicted in Figure 1(a) illustrates the basic concept of remote account-
ing. The scenario demonstrates two peers involved in a session. Both peers hold a local
session account, while their peer accounts are held on two different remote peers.
Whenever tariff evaluation results in a balance update affecting a peer account (e.g., af-
ter a session was terminated), balance updates are forwarded to both peers holding the
respective accounts. The remote peers collect the balance updates from both session
partners. If both peers agree on the balance update (i.e. by sending equal balance up-
dates), the peer accounts are updated accordingly. If, for any reason, the two peers dis-
agree, the peer accounts would not be changed.

Unfortunately, the described accounting scenario faces a collusion problem. The
two session partners could forward balance updates only to the peer holding the provid-
er’s account. Thus, the provider’s account would be updated, while the consumer’s ac-
count remained unchanged. To prevent this, peer account holders would need to interact
with each other to decide whether the accounts need to be updated or not, which highly
increases the accounting overhead.

The slightly different concept which underlies PeerMint is depicted in Figure 1(b).
In this scenario a remote peer (mediator peer) is holding the session account for a par-
ticular service session on behalf of the respective provider and consumer peers. Both
peers send their balance updates to the mediator peer which updates the session account
accordingly. An ongoing session may immediately be terminated if the session partners
disagree. In contrast to the previous scenario, the peer accounts which are typically held
by other remote peers can only be updated by the mediator peer.

3.1 Design Space for Remote Accounting
The concept of remote accounting is very general and covers several potential sub-

types. An overview on possible variants of remote accounting is given below.

Central Accounting. This is the simplest form of remote accounting and is only
mentioned for completeness. Using this type of accounting, accounts would be kept on
a centralized place, e.g., on a large database residing on a central server. Central ac-
counting is simple to maintain and control, and is usually highly trusted. However, the
goal is to avoid any central elements in the network, as they represent a single point of
failure and do not scale for a large number of peers.

Peer A
(Provider)

Peer B
(Consumer)

Service

Peer C
(Mediator)

Session
Account

Bala
nce

Update
BalanceUpdate

Update Peer
Accounts

(b) Remote session accounts

Peer A
(Provider)

Peer B
(Consumer)

Service

Peer holding
B‘s account

Peer holding
A‘s account

Peer
Account

BalanceUpdate

Balance

U
pdateBalance

UpdateB
al

an
ce

U
pd

at
e

Session
Account

(a) Remote peer accounts

Fig. 1. Remote accounting examples

Hybrid Accounting. Hybrid accounting features the simplicity of central account-
ing, while being more scalable with respect to the number of peers. In hybrid accounting
a dedicated set of peers (so-called super-peers) are used as account holders. Super-peers
are typically peers which are highly trusted by a group of peers (clients) attached to
them. If the size of such a group is limited, the hybrid approach scales quite well. How-
ever, appropriate incentives need to be given to super-peers, to provide the extra ac-
counting efforts. For instance, every peer may periodically pay a flat fee to its super-
peer covering the costs for keeping and updating the accounting data.

Distributed Accounting. Distributed or decentralized accounting seems to be most
promising approach for P2P applications, as it completely distributes the accounting
load over all peers. Moreover, since all peers are equally involved in doing the account-
ing the scheme scales very well and no payments are necessary to compensate for any
accounting costs. An important design dimension within distributed accounting is the
redundancy of accounts. Non-redundant accounting describes the case, where every ac-
count is held by only one peer, while redundant accounting refers to accounts being rep-
licated over several peers.

In the following, central and hybrid accounting will not further be investigated. In-
stead, the focus will be put on distributed accounting as adopted by PeerMint. The dis-
tributed redundant accounting case is discussed more detailed in the following section.

4 PeerMint Design

A non-redundant accounting approach as described in the previous section supersedes
the need for any synchronization between accounts, however, it has some severe draw-
backs. If for any reason a particular peer goes offline, accounts held by that peer would
temporarily not be accessible anymore. Even worse, if a peer completely withdraws
from the network, the corresponding accounting data would permanently be lost. More-
over, a malicious peer could easily modify and misreport the balance of an account it is
responsible for.

Therefore, it is reasonable to introduce redundancy (cf. [19]), i.e. to replicate ac-
counts over several peers to increase the robustness of the distributed scheme. Figure 2
illustrates the case of distributed redundant accounting as it is used in PeerMint. Both
session and peer accounts are held by several independent peers. Provider and consum-
er peers involved in a session send their balance updates to a redundant set of m session
mediation peers which are responsible for holding the session account for the current
session (Phase 1). Each session mediation peer then checks if the two peers agree and
updates the session account accordingly. Whenever a session account triggers a peer ac-
count update, the mediation peers send a balance update to the 2x p peers holding the
respective peer accounts (Phase 2). The two phases may be repeated several times in-
dependently. To overcome byzantine failures (cf. [12]), the resulting account balance is
agreed upon using majority decisions. Only if the majority of mediation peers report the
same balance update, the peer accounts will be updated. Whenever a peer goes offline
or permanently withdraws from the P2P network a new peer takes over its task. The new
peer (shown as dashed circle) obtains the current balance from the other account hold-
ers.

Implementing such an accounting scheme in an efficient and secure way is a com-
plex task. Major difficulties are the mapping of accounts onto peers as well as necessary
account maintenance and synchronization activities. These aspects will be addressed
more detailed in the following.

4.1 Underlying Infrastructure
To map accounts onto peers, PeerMint applies a structured P2P overlay network. The
scheme has been implemented on top of Pastry [17] for which an open source imple-
mentation (FreePastry) is available. However, in principle any other infrastructure (e.g.
Chord [20]) could have been applied. This underlying infrastructure is used whenever
a peer joins and leaves the network that interconnects all peers involved in PeerMint’s
accounting mechanism. It is assumed that all peers possess a public/private key pair
which is used for peer identification and signing messages. The peers’ public keys are
certified by a trusted third party, which guarantees that a peer can only acquire a limited
number of identities. The keys are certified offline, i.e. prior to joining the network, thus
the certification process does not affect the performance of the accounting mechanism
itself. An alternative method to create secure keys in a distributed way which may be
adopted in future is presented in [4].

Every peer is assigned a unique 128-bit peer ID, which is calculated from the peer’s
public key using a secure hash function. Pastry provides an efficient prefix-based rout-
ing mechanism to find other peers in O(logb(N)) hops, where N is the number of peers
in the overlay network. Every node has a routing table with O(logb(N)) rows which is
continuously updated as peers join or leave the network. A number of n peers (called
leaf-set) which are numerically closest to the current peer are part of this routing table.
Similar to Karma [22], leaf-sets are used in PeerMint to map accounts onto peers as de-
scribed in the following.

4.2 Scheme Configuration
Every peer that participates in PeerMint’s accounting mechanism (i.e. typically all
peers in a particular application that uses PeerMint as underlying accounting scheme)
needs to configure an instance of the scheme locally. The scheme configuration speci-

Peer A
(Provider)

Peer B
(Consumer)

Service

Peers holding
A‘s account

Session
Mediation

Peers

Peers holding
B‘s account

Session
Account

Peer
Account

BalanceUpdate
Balance

Update

Bala
nc

e

1

2

Balance

Update
Upd

ate

Fig. 2. Distributed redundant accounting in PeerMint

fies the mapping function which is used to map accounts onto peers. It is important that
all peers within a particular application use the same mapping function. Currently, the
same hash function is applied as for calculating the peer ID, i.e. for peer accounts the
hash value of the peer ID is used as key, while for session accounts a unique session key
(session ID) is calculated by hashing the peer IDs of the two session partners combined
with an additional timestamp. For every key there is a peer (root node) which is numer-
ically closest to that key. The root node’s leaf-set is used to hold the respective account.

Apart from the mapping rule, the peer ID of any other peer needs to be given to
PeerMint which is used as bootstrap node to join an existing overlay network. Other-
wise a new network is created. Also the number of redundant peers used as account
holders can be configured. By default all peers in a leaf-set are used, but it is also pos-
sible to use a subset of the leaf-set or to extend the account holder set beyond the size
of a leaf-set.

4.3 Account Creation and Setup
A new peer account is created when a peer joins PeerMint’s accounting scheme for the
first time. The peer contacts the responsible root node using Pastry’s routing mecha-
nism. Pastry routing is only used once in the beginning. All subsequent messages are
directly sent over the underlying IP network. Every message exchanged between peers
is signed by the sender’s private key. The root node notifies all peers in the account
holder set about the new peer account and sends their node handles (i.e. peer ID, IP ad-
dress, and port number) back to the new peer. Peer accounts have an initial account bal-
ance, which is typically set to zero. However, a new account is created only, if none
does exist so far for the same peer ID. A peer can also remove its account, if the account
balance is positive. After a certain time of inactivity, a peer account is removed auto-
matically. There is a fallback mechanism to create an account in the presence of a ma-
licious root node. In this case, a peer tries to find another peer in the same leaf-set by
recursively contacting peers on the path to the root node. This peer then temporarily
takes over the role of the root node and notifies the corresponding peers. A peer can
check if it is responsible for a particular account by verifying if the key of the account
falls in the ID range of its own leaf-set (a different ID range applies if the account holder
set is greater or smaller than the leaf-set).

Session accounts are created in a similar way. Before the session starts, the two ses-
sion partners create an SLA which contains the tariff, the two peer IDs, and the session
ID. The SLA is signed by both provider and consumer peer and sent to the correspond-
ing root node responsible for the session account. The root node then forwards the SLA
to all peers responsible for the new session account and again sends their node handles
back to both session partners.

4.4 Account Balance Updates
Once all necessary accounts are created and set up, a session can start. An example for
a session between two peers is given in Figure 3. The figure shows all peers involved
in the session and the balance updates exchanged between them as described earlier.
The two phases indicated correspond to those shown in Figure 2. The session partners
regularly send balance updates to the corresponding session mediation peers (Phase 1).

The session mediators aggregate them and generate peer account updates as specified
in the tariff. To be able to forward them to the peer accounts (Phase 2), the correspond-
ing peer account holders are identified using Pastry routing. The signed SLA containing
the session ID is used by the session mediation peers to prove that they are eligible to
update the account.

4.5 Account Holder Set Maintenance
Peers may continuously join and leave PeerMint’s overlay network. Whenever a new
peer joins the network, Pastry notifies the corresponding instances of PeerMint that the
leaf-set has changed. Subsequently, the new peer obtains the balance of all accounts it
is responsible for. Based on this information, the new peer locally creates instances of
these accounts and sets their balance based on the majority of peers reporting the same
balance. If no majority decision can be taken (e.g., because the account is currently be-
ing updated, and therefore too many peers report different values) the new peer retries
to request the account balance until a consistent value is reported. Finally, if the new
peer becomes involved in an ongoing session, it notifies itself to the session partners.

Similarly, when a particular peer goes offline (i.e. does not respond anymore within
a certain time), Pastry notifies the corresponding peers about the change in the leaf-set.
This means that other peers will become responsible for the accounts that were held by
the peer which went offline. These peers obtain the current account balance in a similar
way like a new peer joining the overlay.

A peer which does not reply on synchronization requests or account queries is con-
sidered as being offline. Whenever a peer goes offline, all peers within its leaf-set send
a balance update to the leaving peer’s account holders to decrease its reputation. This
serves as an incentive for peers to stay online and behave correctly.

4.6 Account Queries
Any peer may query the balance of a particular peer account, e.g., to check whether a
peer which requests a service is credit-worthy. The same procedure as described in Sec-
tion 4.3 is used to find the responsible peers holding the account. In contrast to peer ac-
counts, session accounts can only be queried by corresponding session mediation peers

Hash(peer IDA)

Peer A

Peers holding
A‘s account

Hash(peer IDB)

Peers holding
B‘s account

Peer B

02128-1

Service

Hash(session ID)

Session
Mediation

Peers

Balance
Update

Balance
Update

Bala
nce

UpdateB
alance

U
pdate

1

2

Fig. 3. Example session in PeerMint

and the two peers involved in the session. However, there is no guarantee for the privacy
of these accounts, i.e. it may be possible that an unauthorised peer is able to obtain the
balance of a session account.

5 Implementation and Evaluation

The proposed scheme has been implemented in Java as part of an Accounting and
Charging (A&C) system developed within the MMAPPS project [11], [13]. As such it
implements a generic accounting scheme interface which is described in the following:

The first method of this interface, configureScheme, is used to initialize the scheme
with vital information like the local peer’s peer ID and further scheme-specific param-
eters such as the number of redundant peers used for the accounts. The method create-
PeerAccount creates a new peer account for the local peer. The same method can be
used to create an account for the peer’s reputation. The createSessionAccount method
notifies the session mediation peers about a new session and hands over the correspond-
ing SLA. Finally, notifyBalanceUpdate and queryAccount are used to update and query
a particular account, respectively.

PeerMint uses the common API [6] to interact with its local instance of FreePastry,
which is used as P2P communication infrastructure. As such it implements the three
main methods forward, deliver, and update, through which a FreePastry node notifies
forwarded and received messages, and changes in its leaf-set. All interactions between
instances of PeerMint are completely encapsulated in Pastry messages, which are either
routed over the overlay network (account holder lookup) or sent directly to the corre-
sponding destination node (all other tasks). For each task there is a dedicated message.
Based on their type, the messages are dispatched remotely and the corresponding meth-
ods are executed. Whenever a reply message is expected, e.g., containing a returned ac-
count balance, a new thread is created. The corresponding thread is started by the Wait-
ingThreadList class, when the expected message has arrived or after a certain time-out
has passed. In the latter case, the corresponding message is sent again.

PeerMint has been evaluated both analytically and through experiments with the
prototype in respect of overhead, scalability, and reliability (i.e. resistance against ma-
licious or faulty peers). The overhead and scalability of PeerMint was assessed by ana-
lyzing the storage space that is needed to keep the accounting data as well as the number
of messages being exchanged between peers. As mentioned in Section 4.1, there is a ba-
sic overhead of O(logb(N)) for maintaining the routing table and sending messages over
Pastry (cf. [17] for a detailed analysis of Pastry’s efficiency and scalability).

5.1 Analytical Evaluation
Apart from the overhead to maintain the underlying infrastructure, the following ef-

fort is needed to operate PeerMint’s accounting scheme. Recall that p is the number of
account holders per peer account, and m is the number of mediation peers per session
account. In addition, f describes the average fraction of peers being currently online, and
s is the average number of ongoing sessions. The overhead of PeerMint is shown in Ta-
ble 1. As it can be seen, the overall effort is moderate and often constant in relation to
N. The highest effort is needed to update peer accounts. However, these updates are usu-

ally much less frequent than session account updates. With respect to the scalability,
one can see that only account holder look-ups, needed for account creation and peer ac-
count updates or queries, depend on the size of the network.

Reliability denotes the ability of a scheme to perform correctly in the presence of
malicious and unreliable peers. In PeerMint reliability is achieved using redundant set
of peers as account holders. The size of an account holder set, p or m can be adjusted
based on the fraction of malicious or faulty peers in the network. PeerMint has a statis-
tically guaranteed reliability, if the number of account holders is higher than 3r + 1,
where r is the number of malicious or faulty nodes in an account holder set. This is the
optimum that can be achieved [12].

5.2 Experimental Results
To verify and complement the analytical results, the message overhead and reliability
of PeerMint has been measured in a set of simulation experiments with the implemented
prototype. The experiments were run with up to 1000 peers on a testbed of four Pentium
4 CPUs, 1.8 - 2.4 GHz, with 512 MB RAM using Java VM 1.4.2. In all experiments
performed the number of sessions s was set to 2000. For each session a consumer and
provider were assigned randomly, and each account was updated once per session.

Figure 4(a) shows the number of messages per session and peer for a varying
number of peers N in the network. The size of all messages is around 1kB. It can be
seen, that the messages overhead increases slowly in small networks, but levels off

Table 1. Overhead of PeerMint

Costs Cost driver Peer Accounts Session Accounts

Message
costs

Account creation p + O(logb(N)) m + 1 + O(logb(N))
Account update 2mp + O(logb(N)) 2m
Account synchronization p - 1 m - 1
Account query 2p + O(logb(N)) 2m

Storage costs Avg. #accounts per peer p / f ms / f

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

18

20

Number of peers

M

es
sa

ge
s

pe
r s

es
si

on
 a

nd
 p

ee
r

m=1,p=1
m=5,p=5
m=5,p=17
m=9,p=17
m=17,p=17

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Fraction of malicious peers [%]

R
el

ia
bi

lit
y

(c
or

re
ct

ne
ss

 o
f a

cc
ou

nt
s)

 [%
]

m=1,p=1,c=1
m=5,p=5,c=1
m=5,p=5,c=0
m=5,p=17,c=0
m=17,p=17,c=1
m=17,p=17,c=0

(a) Message Overhead
Fig. 4. Experimental results

(b) Reliability

when the network becomes larger. Thus, the system scales very well with the size of the
network.

Figure 4(b) shows the reliability of PeerMint (measured in the amount of accounts
held correctly) for a selected number of account holders m and p and the fraction of ma-
licious peers in the network. Malicious peers were modeled as account holders which
reported consistent (c=1) or arbitrary (c=0) false values (c relates to the amount of col-
lusion among malicious peers). As it can be seen, PeerMint can correctly keep accounts
with up to 30% malicious colluding peers by using 17 peer account holders and 17 ses-
sion mediators. Thus, the increase of the number of account holders results in a high re-
liability. Without collusion, reliability can even be achieved with as many as 50% or
more malicious peers.

6 Conclusions

Accountability is the key for a success of P2P systems. Based on PeerMint, the account-
ing scheme presented in this paper, it is possible to provide accountability for P2P ap-
plications in a secure and scalable manner. The paper described, how trustworthiness
and resilience of accounting data can be achieved in the presence of malicious or faulty
nodes, using redundant sets of independent peers. Implemented on top of an existing
P2P infrastructure, PeerMint provides scalable accounting functionality at a moderate
overhead. Its integration into a modular and generic Accounting and Charging system
enables the flexible use of PeerMint for a variety of P2P applications. In future work,
the presented accounting scheme will further be optimized and more extensively ana-
lyzed within real world environments.

Acknowledgements. This work has been performed partially in the framework of the
EU IST project MMAPPS “Market Management of Peer-to-Peer Services” (IST-2001-
34201), where the ETH Zürich has been funded by the Swiss Bundesministerium für
Bildung und Wissenschaft BBW, Bern, under Grant No. 00.0275. Additionally, the au-
thors would like to acknowledge discussions with all of their colleagues and project
partners.

References

1. K. Aberer, Z. Despotovic: Managing Trust in a Peer-2-Peer Information System; Tenth In-
ternational Conference on Information and Knowledge Management (CIKM’01), Atlanta,
Georgia, USA, 2001.

2. A. Agrawal, D. Brown, A. Ojha, S. Savage: Towards Bucking free-riders: Distributed Ac-
counting and Settlement in Peer-to-Peer Networks; Jacob School of Engineering Research
Review, UCSD, February 2003.

3. A. Barmouta, R. Buyya: GridBank: A Grid Accounting Services Architecture (GASA) for
Distributed Systems Sharing and Integration; 17th Annual International Parallel & Distrib-
uted Processing Symposium (IPDPS 2003) Workshop on Internet Computing and E-Com-
merce, Nice, France, April 2003.

4. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach: Security for structured
peer-to-peer overlay networks; Fifth Symposium on Operating Systems Design and Imple-
mentation (OSDI'02), Boston, MA, USA, December 2002.

5. B. Cohen: Incentives Build Robustness in BitTorrent; Workshop on Economics of Peer-to-
Peer Systems, Berkeley, CA, USA, June 2003.

6. F. Dabek, P. Druschel, B. Zhao, J. Kubiatowicz, I. Stoica: Towards a Common API for Struc-
tured Peer-to-Peer Overlays; 2nd International Workshop on Peer-to-Peer Systems (IP-
TP'03), Berkeley, CA, February 2003.

7. R. Dingledine, M. Freedman, D. Molnar: Accountability; In Peer-To-Peer: Harnessing the
Power of Disruptive Technologies, O'Reilly & Associates, Chapter 16, pp. 217 - 340, 1st edi-
tion, March 2001.

8. The eMule Project: http://www.emule-project.net/, October 2004.
9. P. Golle, K. Leyton-Brown, I. Mironov and M. Lillibridge: Incentives for Sharing in Peer-

to-Peer Networks; 3rd ACM Conference on Electronic Commerce, Tampa, Florida, USA,
October 2001.

10. D. Hausheer, N. Liebau, A. Mauthe, R. Steinmetz, B. Stiller: Token-based Accounting and
Distributed Pricing to Introduce Market Mechanisms in a Peer-to-Peer File Sharing Scenar-
io; 3rd IEEE Conference on Peer-to-Peer Computing, Linköping, Sweden, September 2003.

11. D. Hausheer, J. Gerke, B. Stiller: A Generic and Modular Accounting and Charging System
for Peer-to-Peer Applications; 14. Fachtagung Kommunikation in Verteilten Systemen 2005
(KiVS 05), Kaiserslautern, Germany, February 2005.

12. L. Lamport, R. Shostak, M. Pease: The Byzantine Generals Problem; ACM Transactions on
Programming Languages and Systems, Vol. 4, pp. 382-401, July 1982.

13. MMAPPS: Market Management of Peer-to-peer Services; EU Project, http://
www.mmapps.org/.

14. Mojo Nation: Technical Overview; http://www.mojonation.net/docs/
technical_overview.shtml, January 2002.

15. T. Ngan, D. Wallach, P. Druschel: Enforcing fair sharing of peer-to-peer resources; 2nd In-
ternational Workshop on P2P Systems (IPTPS), Berkeley, CA, USA, February 2003.

16. N. Ntarmos, P. Triantafillou: SeAl: Managing Accesses and Data in Peer-to-Peer Sharing
Networks; In Proceedings of the Fourth International Conference on Peer-to-Peer Computing
(P2P 2004), Zurich, Switzerland, August 2004.

17. A. Rowstron, P. Druschel: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. IFIP/ACM Middleware 2001, Heidelberg, Germany, No-
vember 2001.

18. J. Shneidman, D. Parkes: Rationality and Self-Interest in Peer-to-Peer Networks; 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, USA, February
2003.

19. J. Shneidman, D. Parkes: Using Redundancy to Improve Robustness of Distributed Mecha-
nism Implementations; In Proceedings of 4th ACM Conference on Electronic Commerce
(EC’03), San Diego, CA, USA, May 2003.

20. I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan: Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications; ACM SIGCOMM 2001, pp. 149-160, San Di-
ego, CA, USA, August 2001.

21. W. Thigpen, T. Hacker, L. McGinnis, B. Athey: Distributed Accounting on the Grid; 6th
Joint Conference on Information Sciences, pp. 1147-1150, 2002.

22. V. Vishnumurthy, S. Chandrakumar, E. G. Sirer: KARMA: A Secure Economic Framework
for Peer-to-Peer Resource; Workshop on Economics of Peer-to-Peer Systems, Berkeley,
CA, USA, June 2003.

23. B. Yang, H. Garcia-Molina: PPay: Micropayments for Peer-to-Peer Systems; ACM Confer-
ence on Computer and Communications Security (CCS ’03), Washington, DC, USA, Octo-
ber 2003.

