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Abstract. Soft state provides new services to packet-switching networks
by introducing a type of state in the network nodes which is refreshed by
periodical messages and otherwise expires. The operations of soft state
protocols, which are being designed with ever greater complexity, need
to be error-free and deadlock-free to avoid misusing network resources.
Thus, verification, formal analysis and validation of these protocols be-
come a vital task. In this paper we utilize formal techniques, specifically,
Specification and Description Language (SDL) and Message Sequence
Charts (MSCs), for modeling, analysis and validation of various soft state
protocols. We propose a general architecture for state management sys-
tems and find employing these techniques can help identify and correct
possible design errors, which may be caused by informal specifications.

1 Introduction

In communication networks, there is a need to maintain certain information
(“state”) in network nodes, associated with endpoint-generated sessions or calls.
For example, ATM switches maintain information about VCs such as bandwidth
allocation and VCI/VPI input-output mapping. The state maintained by the
network can be categorized as hard state and soft state. Hard state is installed
in nodes upon receipt of a setup message and is removed only upon receipt of
an explicit removal message. It is vital for the state initiator to know when the
state has been installed or removed, and ensure that installation and removal are
performed only once. Furthermore, since hard state remains installed unless ex-
plicitly removed, there needs a mechanism to remove orphan state that appears
once the state initiator has crashed or departed without removing state. In con-
trast, “soft state” refers to certain non-permanent state in network nodes which
will expire unless refreshed. Since soft state will eventually expire, in principle
this approach does not require explicit removal or a mechanism for removing
orphan state. Several routing protocols (e.g., BGP, OSPF and RIP) and early
Internet signaling protocol (ST-II) use hard state. Once the soft state paradigm
was applied to RSVP [1], which allows endpoints to establish QoS reservation
state in the network nodes along the path for their end-to-end communications,
it has been adopted by many other protocols, such as RTCP, PIM, SIP and
CASP [2].

By the use of state – either hard state or soft state – inside the network,
protocols can provide certain enhanced services for end-to-end communications,



such as QoS reservation setup or flow-coupled firewall configurations. Note both
hard state and soft state can be installed either in intermediate nodes or end
hosts only, or both. Due to the nature of state, unlike other types of proto-
cols, state management protocols often require extremely complex and powerful
mechanisms to ensure that the state is perfectly synchronized and up-to-date.
With the informal IETF specifications, operations of these protocols tend to be
error-prone. For example, a report [3] showed numerous problems or unexpected
behaviors in the specification and implementation of TCP, the dominating end-
to-end transport protocol which uses hard state in end hosts. With an ever-
increasing number of soft state protocols and the increase in their complexity,
unfortunately, the risk of design and implementation errors for soft state proto-
cols increases. An example is the “auto-refresh” loop in RSVP, possibly keeping
a state alive forever [1]. In general, it is vital to ensure the correctness of state
management operations in protocol specifications.

The methods for studying protocol operations and correcting possible flaws
can be classified into two basic groups. The natural, empirical (“trial-and-error”)
approach, is to study them with an actual implementation (or a prototype).
Another possibility involves a model-based approach in which protocol behav-
iors may be studied using a model of the protocol. The empirical approach is
only effective for examining standard, ordinary behaviors of a protocol, whereas
model-based approaches, based on simulation or analytical models, can be more
effective in determining possible errors in the design. Applying the latter ap-
proach to state management systems may reduce excessive problems (and costs!)
in standards and implementations, unlike the first method of debugging and cor-
recting these specifications. From our experience [4], real soft state protocols can
be rather complex and difficult to be analyzed through implementations. This
is partly due to the fact that soft state protocols must independently maintain
several types of timers and soft states associated with a given end-to-end session
in a distributed fashion. Moreover, they are generally specified informally and
imprecisely. Therefore, model-based approaches are preferred.

In this paper we employ a model-based approach to study basic function-
alities and liveness properties of general soft state systems, using the Specifi-
cation and Description Language (SDL) [5] and the Message Sequence Charts
(MSCs) [6]. As successfully demonstrated in other protocol modeling experiences
(e.g., [7]), SDL and MSCs are efficient tools for such tedious tasks. Based on [8],
we present a general architecture for state management systems and model such
a system with SDL/MSC. Demonstrating the feasibility of applying this ap-
proach in modeling soft state protocols and analyzing their basic properties, we
advocate a potential way of improving protocol descriptions. We focus on the
functionality modeling and validation following [8], including verification of (the
absence of) deadlocks and livelocks. Our goal here is not to model a real soft
state protocol such as RSVP or CASP, or hard state protocols like ST-II or TCP,
but rather to model general soft state protocols in order to capture and verify
the essential concepts and general functionalities of interest. There are other,



non-functional aspects of these protocols, such as complexity and performance,
but they are beyond the scope of this paper.

The rest of this section discusses related works. Given the importance and
difficulty in analyzing soft state protocols, Section 2 presents a general archi-
tecture covering all variants of soft state protocols, followed by SDL models for
representative soft state management (Section 3) and a verification of the models
(Section 4). Section 5 summarizes our experiences and outlines future work.

Previous studies on soft state protocols: System designers argue soft state
is “better” than hard state, and using soft state the handling of network condition
changes is “easy” [9, 10]. However, these claims are more based on intuitive, high-
level thoughts and explanations, instead of formal, exhaustive modeling and
analysis. In contrast to original expectations, soft state protocols developed and
being developed so far are still far from being simple, especially when coupled
with multicast sessions or traffic control models.

There are two types of soft state protocols which have been developed so
far: end-to-end protocols and hop-by-hop protocols. The former only involves
certain types of state in an end-to-end way, without involving any other nodes
in between; examples of this type include RTCP and SIP. Hop-by-hop protocols,
such as RSVP and CASP, on the other hand, involve state in one or more
router(s) in between in addition to state in the communicating ends. For the
purpose of demonstration and general discussions of soft state operations, we
have chosen to use the latter since it is more representative and comprehensive.

Given the particular importance of soft state protocols, recent studies have
looked at issues regarding their modeling and analysis. Raman and McCanne [9]
presented a model for the soft state notion based on Jackson queueing networks; a
performance study of hard state and soft state signaling protocols was performed
by Ji et al. [8]. Unfortunately, these studies lack more detailed formal modeling
and validation. Bradley et al. [11] studied the correctness and interoperability
issues with the HTTP protocol, and established that multi-stage interactions
between the HTTP server and clients can be stateful and error-prone; they then
verified these behaviors by using a formal checking tool SPIN [12]. However,
their study is limited to application-layer hard state management between two
endpoints and does not consider the soft state paradigm for packet-switching
networks (which may involve multi-hop behaviors of state management systems).

A brief introduction to SDL and MSC: An SDL system is divided into
building blocks that communicate using channels, whereas blocks are further
composed of processes. Processes (within a block) are connected using signal
routes. Each process is an extended finite state machine, which has its own
infinite queue and is assumed to operate independently from all other processes.
MSCs are another valuable description technique for visualizing and specifying
inter-system, asynchronous component interaction. MSCs’ strength lies in their
ability to describe communication between cooperating processes. Each process
is represented as an identifier and has a process life line that extends downward.



There are arrows representing messages passed from a sending to a receiving
process. Messages not starting or ending at a process life line are exchanged with
users, be they human or mechanical (the “environment”). Detailed descriptions
of SDL and MSC can be found in [5, 6]. Modern SDL development tools like
Telelogic Tau also support verification and validation based on developed models.

2 A General Architecture of State Management Systems

In contrast to hard state (HS) protocols, soft state (SS) protocols can be further
classified into 4 variants: “pure” soft state (pSS), soft state with explicit removal
(SS+ER), soft state with reliable trigger (SS+RT) and soft state with reliable
trigger/removal (SS+RTR) [8]. In this section, we present a simple abstraction
and typical operations for all these state management protocols (both soft state
and hard state), as well as possible problems that may occur in their operations.

We begin our modeling with a generic architecture for state management
systems as shown in Fig. 1, which covers two services and one protocol as below:

– The state message transport (ST) service, which transmits state messages
over the lossy channel.

– The state management service (SMP service), which is the service rendered
by the state management protocol to the state application (SA).

– The state management protocol (SMP) managing state in network nodes.

Expected behavior of state management protocols: Behaviors of a state
management protocol are determined by timers and state messages used by the
three types of protocol entities, namely the state initiator, forwarder and tar-
get. An important feature of soft state systems is timers. In a soft state system,
there can be three types of timers dealing with state management: the state
timer which will expire the state unless refreshed, the refresh timer which trig-
gers periodical refreshes, and the retransmission timer which triggers periodical
retransmission of trigger or removal messages (SS+RT or SS+RTR). In HS sys-
tems there are only retransmission timers for state trigger and removal messages,
while state timers and refresh timers are necessary for SS systems for operating
state refresh messages. The existence or absence of these timers and different
operations for state messages in a state management protocol determines which
protocol type it belongs to.

The MSCs are shown in Fig. 2 to illustrate various sate management proto-
cols. The communications between the three types of entities are realized through
several service primitives (Setup, Trigger, Teardown, and optionally, Refresh,
Resp, Notify and Remove). For simplicity purposes, we omit the Inform and
Resp primitives since they generally do not change state information.

The protocol communication takes place in 3 possible, distinct phases:
– State Setup: This phase is initialized by SA in the Initiator with a Setup.

Initiator can thereafter issue a Trigger towards Target. Upon the receipt of
Trigger, every Forwarder creates a state (which is associated with a state timer



for soft state protocols), and then forwards Trigger on. When Target receives
Trigger, it creates a state (which is associated with a state timer for soft state
protocols). If HS, SS+RT or SS+RTR is used, additionally Target issues back
a Notify to Initiator when it receives a Trigger. In this case, Initiator starts a
retransmission timer before it issues Trigger. If it does not receive a Notify after
the Retransmission timer expires, Trigger is transmitted again. After repeating
certain times, retransmission stops and Initiator becomes inactive again.

– State Maintenance: This phase is only used in soft state protocols. Upon
the expiration of the refresh timer, Initiator sends a Refresh1 towards Target
and restarts the timer. Any Forwarder or the Target receives the Refresh checks
whether corresponding state already exists: if yes, refreshes the state timer, oth-
erwise recovers a state together with a state timer. If it is not the Target, the
node forwards the Refresh onwards. If no Refresh is received in a Forwarder or
Target before the state timer expires, state will be removed.

– State Teardown: In pSS or SS+RT, there is no such phase; Initiator remains
inactive and states will expire in all the other nodes when their state timers time
out. In other state management protocols, a Remove is issued by the Initiator
towards the Target to remove all state and associated timers (should they ex-
ist). Additionally, if HS or SS+RTR is used, after Target receives Remove and
removes its state (and timers), a Notify is sent back to the Initiator. Initiator in
a HS or SS+RTR system retransmits Remove (no more than a maximal retrial
counter) if no Notify is received within a given time.

Possible problems in state management operations: Because the above
general model captures the key concepts and operations of all the 5 possible types
of state management protocols, we believe it can serve as the basis for studying
actual behaviors of real state management systems. The most obvious problem
that occurs in state management protocols is failure to install or remove state
correctly. In addition, there are timing considerations to be taken account, since
a protocol of this kind needs to be able to react to timer events and receipts of
state messages appropriately. An installed state can become invalid either due to
the receipt of a removal message or when the state timer expires. The latter can
occur when a state refresh or notify message gets lost during its transmission,
or when the state initiator crashes.

There are other potential problems with state management protocols, e.g.,
infinite state management loops, i.e., state messages enter a transmission circle
somewhere between an initiator and a target. This can be either an endless loop
consisting of a set of interacting states which cannot progress towards a next
expected behavior (livelock), or a state without possibilities to enter another
state (deadlock). A deadlock is most often caused by two processes waiting for
a message from each other; the result is that both wait and nothing happens.
In pSS, such loops are theoretically impossible, as it only allows refresh and
expiration operations for a state, and there is no resource contention. However,
1 Note some SS protocols (e.g., RSVP) allow initiated by intermediate nodes; here we

limit refreshes to be originated from Initiator for simplicity.



we cannot exclude this possibility in more comprehensive state management
protocols, due to more complex synchronization and/or notification mechanisms.

These are very undesirable since there appears to be a valid state manage-
ment behavior in any individual node, but in reality it cannot further deliver
other desired messages or jump out of certain running state(s). For example, the
following operation could be possible in the original description of SS+RT [8].

Example 1. A deadlock behavior in SS+RT can be briefly explained as follows:

1. Initiator initially sends a Trigger to Target through Forwarder. The link
between Forwarder and Target then suddenly goes down.

2. Trigger is lost before reaching Target, and Initiator cannot receive a desired
Notify which acknowledges the success of state installation along the path.

3. After retransmission timer expires, Initiator resends a Trigger.
4. Again the Trigger is lost, and Initiator still thinks it is just due to random

loss and retransmits the Trigger.
5. If there is no specification about which conditions to stop sending Triggers,

the result is a deadlock in which case Initiator is waiting for a Notify after
sending out a Trigger while Responder is waiting for a Trigger forever.

This error is somewhat easy to detect and fix. However, sometimes such flaws
can be very subtle, so that even senior designers cannot detect them in protocol
specifications, particularly in IETF informal, text-based specifications for com-
plex operations of state management protocols, which were designed typically
without formal modeling, validation and verification. For example, the inadvert
synchronization problem [13] was noticed as an important issue for periodical
soft state systems. In real specifications of some soft state protocols, for exam-
ple RTCP and RSVP, designers have tried to avoid this problem by setting the
refresh timers to be varied randomly (e.g., over the range [0.5, 1.5] times the
calculated interval). However, true randomness in a real implementation is hard
to achieve and moreover, as these intervals are sometimes not mandatory re-
quirements in protocol specifications (e.g., as a “should” requirement in RSVP),
typically default fixed values (30 seconds in case of RSVP) are used instead
in practice for implementation simplicity. All these contribute to the potential
synchronization problem of soft state management.

3 Modeling Soft State Protocols with SDL

Key modeling issues and the system model: Based on the above gen-
eral architecture, we chose the most comprehensive state management protocol,
SS+RTR in a hop-hop manner, as the target for modeling. Other variants can
be easily derived from this model by removing certain messages, timers, state
transitions and/or behaviors.

The address of each node is represented by a pre-assigned integer, 1, 2, 3,
respectively. The state message content is also simplified as a simple character
string. There are further issues vital for the modeling process:



– How do we model ST, so as to allow state messages (generally from Initiator
to Target) be visible for Forwarder?

– How do we model the lossy channel, which can be of a given loss rate?
– How do we model the duration (start and end) of a session state? This also

naturally reflects the system model, namely which information should be
made inside the system, and which needs to be put in the environments.

Fig. 3 shows the SMP system model for SS+RTR. We assume the SMP sys-
tem model to be composed of 3 nodes: Initiator, Forwarder and Target, each rep-
resented by a process. Furthermore, an additional process ST is used to transmit
SS messages from Initiator towards Target, or reverse. These 4 processes form a
single block SM of the system.

ST: ST is modeled as Fig. 4 and can be used for all SMP variants. We use
random Abstract Data Type (ADT) to simulate a given loss rate of the link.
Note the transport service should determine the direction (forward or backward)
according to the type of received messages It is easy to extend to form more
comprehensive STs e.g., those having different loss rates in different links.

SMP Entities: The Initiator process (Fig. 5) communicates with environments
through an SA-SMP interface. When it receives an ASetup with certain state
information data, it assigns a new session identifier (sid) and installs a soft state
locally, before going through the state setup and maintenance phases. When Ini-
tiator receives an ATeardown from the SA-SMP interface, it enters the teardown
phase. For simplicity sid is currently set as a fixed value. To avoid confusion
different notification messages have to be identified: Notify1 for notifying the
success of state setup, Notify2 for notifying state timer expiration in Target,
and Notify3 for notifying the success of state teardown.

The Forwarder process (Fig. 6) first listens to ST input. If a Trigger or
Refresh message arrives, it installs a soft state locally and forwards the message
on. Expiration of a local state in Forwarder only removes itself.

The Target process (Fig. 7) installs and (if it should exist) refreshes soft state
locally upon receipt of a Trigger or Refresh message. When receiving a Trigger
or Remove message, Target needs to notify Initiator about it. Expiration of a
local state in Target also accompanies a Notify2 to trigger a teardown.

4 Model Verification and Validation

Since state management protocols involve distributed timers and message inter-
action, their correctness is hard to verify using an informal description. We use
the Tau integrated package SDT 4.4 which includes support for SPIN, to verify
the SDL model of the SS+RTR protocol against deadlocks, unspecified recep-
tions, livelocks and unreachable states. In order to verify the model, we have
chosen the following scenario case study to validate our design against some of
the specific properties of the modeled SS+RTR protocol:



1. Establish a session between Initiator and Target.
2. Stop the state message transmission between Forwarder and Target.
3. Change the ST loss rate between Forwarder and Target to different values

between 0 and 1.
4. Stop the Target process.
5. Let Initiator teardown the session.

With the above scenario, we have covered all ST service primitives and SMP
service primitives as well as all important scenarios, but not all possible scenarios.
Therefore, after checking the scenario, we have used Tau validator to validate
all possible walk algorithms.

We generated a number of MSCs for this scenario case study to check the
protocol functionality at each stage of the simulation. For the SDL models de-
signed in Section 3, MSCs shown in Fig. 7-9 help us to identify the representative
protocol behaviors: 1) Fig. 7 represents the message interactions for state setup
phase (SS+RTR) upon the receipt of an external trigger (ASetup) is received by
the system, completed by a response indicating successful state establishment
from the system to the environment (AResp); 2) after that, the system goes
into the internal state maintenance phase without interactions with the envi-
ronment (shown in Fig. 8); 3) upon the receipt of an external trigger for state
teardown (ATeardown), the system enters into the state teardown phase (Fig.
9). Through a comparison with the general description, we are able to refine the
abstract system and make more concrete descriptions.

Through this procedure, we have found some modeling errors as well as flaws
in the original description, including the missing default behavior for some mes-
sage types, and unreachable states. We have found that an imprecise informal
specification can result in deadlocks and livelocks (for example, the retransmis-
sion counters and refresh durations – either explicit or implicit – are missing in
many text-based IETF specifications); through verification and validation of the
SDL models, these could be avoided. As an example we corrected a flaw in the
original description by adding description on retransmission counters.

Some other results show that in the first version of the models Notify1,
Notify2 and Notify3 messages received by Forwarder were not processed but
consumed; they need to be sent back to ST. Also, misused values of timers
can exclude Initiator from entering the Established state. We also come to the
following conclusion: by adding reliable trigger and explicit removal to soft state
protocols, the usage of state (reflected as network resources especially memories)
can be more efficient. This can be explained as, for example for the reliable
explicit removal case, if a user tries to remove a state, but the teardown message
is lost during transmission, the state will remain in place until it times out after
a relatively long time. Since state typically implies enhanced services for end-to-
end communications, maintaining a state incurs costs, thus users must pay for
the extra time that has been spent waiting for the state expiration.

With the developed model, we have verified these aspects against the de-
scription of SS+RTR, and improved upon it.



5 Summary and Future Work

Given the fundamental importance of soft state protocols, it is vital that their
behaviors are specified correctly. We have generalized and modeled behaviors for
different variants of soft state communications with the aid of formal techniques
SDL and MSC. On the other hand, we found that a weakness concerning inac-
curate timing in the tool; a more realistic performance evaluation has to rely
on tools with better real-time support. Two types of error sources are identified
during the modeling processes: one due to technical flaws in the specifications
and the other due to our modeling errors (which can also be caused by mis-
understanding of imprecise specifications). Nevertheless, formal techniques have
turned out to be of great help for efficient designing and engineering of soft state
communication models, and in particular functional behaviors (through check-
ing for possible deadlocks and livelocks). Currently we are modeling two realistic
soft state protocols, CASP and RSVP. Based on that we will further study how
soft state protocols handle node failure, mobility and route changes using formal
techniques.
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Fig. 6. SDL model for Target (SS+RTR)
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