
FPL-3: towards language support for distributed packet
processing

Mihai-Lucian Cristea1and Willem de Bruijn2 and Herbert Bos3

1 cristea@liacs.nl, +31715277037, Leiden University, Niels Bohrweg 1, 2333CA
2 wdb@few.vu.nl, +31204447790, Vrije Universiteit Amsterdam, De Boelelaan 1081HV

3 herbertb@cs.vu.nl, +31204447746, Vrije Universiteit Amsterdam, De Boelelaan 1081HV,
The Netherlands

Abstract. The FPL-3 packet filtering language incorporates explicit support for
distributed processing into the language. FPL-3 supports not only generic header-
based filtering, but also more demanding tasks, such as payload scanning, packet
replication and traffic splitting. By distributing FPL-3 based tasks across a pos-
sibly heterogeneous network of processing nodes, the NET-FFPF network mon-
itoring architecture facilitates very high speed packet processing. Results show
that NET-FFPF can perform complex processing at gigabit speeds. The pro-
posed framework can be used to execute such diverse tasks as load balancing,
traffic monitoring, firewalling and intrusion detection directly at the critical high-
bandwidth links (e.g., in enterprise gateways).

Key words: High-speed packet processing, traffic splitting, network monitoring

1 Introduction

There exists a widening gap between advances in network speeds and those in bus,
memory and processor speeds. This makes it ever more difficult to process packets at
line rate. At the same time, we see that demand for packet processing tasks such as
network monitoring, intrusion detection and firewalling is growing. Commodity hard-
ware is not able to process packet data at backbone speeds, a situation that is likely to
get worse rather than better in the future. Therefore, more efficient and scalable packet
processing solutions are needed.

It has been recognised that parallelism can be exploited to deal with processing at
high speeds. A network processor (NP), for example, is a device specifically designed
for packet processing at high speeds by sharing the workload between a number of in-
dependent RISC processors. However, for very demanding applications (e.g., payload
scanning for worm signatures) more power is needed than any one processor can offer.
For reasons of cost-efficiency it is infeasible to develop NPs that can cope with back-
bone link rates for such applications. An attractive alternative is to increase scalability
by exploiting parallelism at a coarser granularity.

We have previously introduced an efficient monitoring framework, Fairly Fast Packet
Filters (FFPF) [1], that can reach high speeds by pushing as much of the work as possi-
ble to the lowest levels of the processing stack. The NIC-FIX architecture [2] showed

how this monitoring framework could be extended all the way down to the network
card. To support such an extensible programmable environment, we introduced the spe-
cial purpose FPL-2 language.

In this paper, we exploit packet processing parallelism at the level of individual
processing units (NPs or commodity PCs) to build a heterogeneous distributed moni-
toring architecture: NET-FFPF. Incoming traffic is divided into multiple streams, each
of which is forwarded to a different processing node (Fig. 1). Simple processing occurs
at the lower levels (root nodes), while more complex tasks take place in the higher levels
where more cycles are available per packet. The main contribution of this paper consists
of a novel language that explicitly facilitates distribution of complex packet processing
tasks: FPL-3. Also, with NET-FFPF we extend the NIC-FIX architecture upwards,
with packet transmission support, to create a distributed filtering platform. Experiments
show NET-FFPF to be able to handle complex tasks at gigabit line-rate.

(system overloaded)
heavy traffic processing

NP

fast link

traffic processing

Traffic Splitter traffic processing

a) Problem: Traffic Monitoring
at very high speed

b) Solution: Distributed Traffic Monitoring Architecture

NP

slower links

NP

PC

fast link

Fig. 1.Moving to distributed traffic monitoring.

This paper builds on the idea of traffic splitting that was advocated by Markatoset
al. in [3] and Kruegelet al. in [4] for intrusion detection. However, we use it to provide
a generic high-speed packet processing environment. Markatoset al. focus on packet
headerprocessing and automatically generate the appropriate code for the splitter (im-
plemented on a network processor) from high-level snort rules. They show that traffic
splitting improves the packet processing performance even if the splitter and all pro-
cessing nodes reside on the same host. The traffic slicer in [4] employs a two-stage ap-
proach for intrusion detection where rules for traffic splitting are formed by modelling
the attacks. The NET-FFPF implementation resembles the slicer in that it also mangles
Ethernet frames to split the traffic. At a more fundamental level, however, NET-FFPF
differs from both of the above approaches in that it allows for processing hierarchies
that are arbitrarily deep and heterogeneous, whereby each level performs a part of the
total computation. Moreover, NET-FFPF offers explicit support for such processing at
the language level. By applying the splitter concept in a distributed fashion NET-FFPF
can facilitate such diverse tasks as load balancing, traffic monitoring, firewalling and
intrusion detection in a scalable manner, e.g., in enterprise gateways.

The remainder of this paper is organised as follows. In Section 2, the architecture
of the distributed monitoring system and its supporting language are presented. Sec-
tion 3 is devoted to the implementation details. The proposed architecture is evaluated
in Section 4. Related work is discussed throughout the text and summarised in Sec-
tion 5. Finally, conclusions are drawn and options for future research are presented in
Section 6.

2 Architecture

2.1 High-level overview

At present, high speed network packet processing solutions need to be based on special
purpose hardware such as dedicated ASIC boards or network processors (see Fig. 1a).
Although faster than commodity hardware, solutions based even on these platforms
are not sustainable in the long run because of a widening gap between growthrates in
networking (link speed, usage patterns) and computing (cpu, main memory and bus
speed).

To counter this scalability trend we propose the solution shown in Fig. 1b, which
consists of splitting the incoming traffic into multiple sub-streams, and then processing
these individually. Processing nodes are organised in a tree-like structure, as shown
in Figure 2. By distributing these nodes over a number of possibly simple hardware
devices, a flexible, scalable and cost-effective network monitoring platform can be built.

processing node
and/or splitter

network traffic IXP
0

1

2

N

PC

IXP

splitter

end user

Fig. 2.Distributed system overview.

Each node in the system performs a limited amount of packet processing (e.g., fil-
tering, sampling) and may split its incoming stream according to some arbitrary criteria
into multiple output streams that are sent to different nodes at higher levels. For exam-
ple, all TCP traffic is sent to node N1, all UDP traffic to node N2. As the traffic arrives
at node N0 at the full link rate, there will be no time for complex packet processing
on this node, due to the limited cycle budget. Therefore, at this node we perform only
a very simple classification of packets into substreams. Each substream’s packets are
forwarded to a dedicated node at the next level in the tree. In general, we do not restrict
classification to the number of processing nodes in the next level. In other words, it may
happen that packets of class X and packets of class Y are sent to the same node at the
next level. It also may be necessary to multicast packets to a number of nodes, e.g., a
TCP output stream sent to node N1 overlaps both an HTTP output stream sent to node
N2 and an SMTP stream sent to node N3.

The demultiplexing process continues at the next levels. However, the higher we
get in the hierarchy, the fewer packets we need to process. Therefore, more complex
tasks may be executed here. For instance, we may want to perform signature matching
or packet mangling and checksum recalculation. In principle, all non-leave nodes func-
tion as splitters in their own rights, distributing their incoming traffic over a number
of next level nodes. Optionally, an end-user can check out processing results from the

node he/she is interested in using special-purpose applications or third-party tools (e.g.,
tcpdump or Snort).

2.2 Distributed Abstract Processing Tree

The introduced networked processing system can be expressed in a distributed abstract
processing tree (D-APT) as depicted in Figure 3. The name is derived from a close
resemblance to ASTs (abstract syntax trees), as we will see later in this paper. For
an easier understanding of theD-APT functionality, we use the following notations
throughout the text. AD-APT is a tree composed of individual APTS, each of which
has its own dedicated hardware device. An APT is built up of multiple processing
elements (e.g., filters) and may be interconnected to other APTS through so-called in-
nodes and out-nodes. For example, N0.3, N0.5 are out-nodes, while N1.1, N2.1 are in-
nodes.

0.0

0.2 0.5

0.4
0.1

0.3

N0

root

out−node
1.2

1.1 1.3

1.4

1.5

N1

in−node

in−node

2.1
2.2

2.3

N2

in−node

out−node

Fig. 3.Distributed Abstract Processing Tree.

By ordering the processing nodes, APTS also describe the traffic streams that flow
between them. The incoming stream is decomposed into multiple substreams. Simple
processing is performed at the lower levels, on the left, while more complex processing
happens in the higher levels, on the right (see Fig. 3). Therefore, the amount of traffic
and per packet processing ability are well balanced on each tree node.

As an APT represents a traffic splitting as well as a processing AST, a stringent
requirement is that processing at any levelN continues exactly where it left off at level
N − 1. We can achieve this by explicitly identifying the breakpoint.

We note that the performance of the whole distributed monitoring system is deter-
mined by the total number of the processing nodes, the processing power of each node,
as well as the distribution of tasks over the nodes.

2.3 The FPL–3 language

As our architectural design relies on explicit breakpointing, we needed to introduce
this functionality into our framework. With FPL-3 we adopted a language-based ap-
proach, following our earlier experiences in this field. We designed FPL-3 specifically
with these observations in mind: first, there is a need for executing tasks (e.g., payload
scanning) that existing packet languages like BPF [5], Snort [6] or Windmill [7] cannot

perform. Second, special purpose devices such as network processors can be quite com-
plex and thus are not easy to program directly. Third, we should facilitate on-demand
extensions, for instance through hardware assisted functions. Finally, security issues
such as user authorisation and resource constraints should be handled effectively. The
previous version of the FPL-3 language, FPL-2, addressed many of these concerns.
However, it lacked features fundamental to distributed processing like packet mangling
and retransmission.

We will introduce the language design with an example. First, a program written for
a single machine (N0) is introduced in Figure 4. Then, the same example is ‘mapped’
onto a distributed abstract processing tree by using FPL-3 language extensions in Fig-
ure 5.

N0

0.0

0.2

0.1

IF (TCP) THEN
IF (HTTP) THEN

FOR (pkt_length)
scan (web_attack)

ELSE IF (MAIL)
scan (spam)

ELSE IF (UDP)

0.6

0.5

0.4

0.3

tcp

udp

mail scan 2

scan 1
http

from FPL−2 to APT

Fig. 4.Traffic monitoring program mapped onto APT.

Fig. 4 shows how the full stream is split at the root node N0.0 into two big sub-
streams:TCPandUDP. Then, theTCPsub-stream is again split into two substreams,
http andmail , by the intermediate node N0.1. Because each of these require heavy
computation, they are forwarded to the leaves: N0.5 and N0.6, respectively.

1.1 1.2
N1scan

web−attack

2.1
N2

2.3

2.2

scan
spam

0.1

0

0.2

N0

tcp

udp

IF (TCP) THEN

SPLIT
ELSE IF (UDP)

ELSE
TILPS
scan (spam)
SPLIT

ELSE IF (MAIL)
TILPS

scan (web_attack)

SPLIT
IF (HTTP) THEN

FOR (pkt_length)

http

rest

mail

from FPL−3 to dAPT

Fig. 5.mapping an APT to a D-APT using FPL-3’s SPLIT command.

When a task requires a large amount ofper-packetprocessing power (e.g., a full
packet scan for a worm), it becomes infeasible to perform this task on a single machine
when network speeds go up. However, the layered style that all protocols reside onto a
basic Ethernet frame gives enough parallelism for an eventually distributed processing
environment. Thus, we give the same example, written using theSPLIT extension for
a distributed processing environment and we take the hardware depicted in Figure 2
as environment. For the sake of simplicity we limit our tree to two levels. The pro-
gram is mapped into the D-APT shown in Figure 5 by taking into account both the user
request (our program) and a hardware description. As Figure 6 shows, the FPL-3 com-
piler translates the program into multiple output objects, one for each hardware device.

Currently, the object files need to be transferred and loaded by hand, but we plan to
incorporate a management system into NET-FFPF that will take care of loading and
releasing the runtime code as well as fetching the results of each node as one.

hardware config

filter script
FPL−3

mapping
compiler

FPL
node_1.uof

node_2.uof

node_3.ko

root.uof

runtime code objects

obj. code for NP

obj. code for NP

obj. code for NP

obj. code for linux
kernel

Fig. 6.User compiles an FPL-3 filter expression.

3 Implementation details

NET-FFPF builds on FFPF, a monitoring framework designed for efficient packet pro-
cessing on commodity hardware, such as PCs. FFPF offers support for commonly used
packet filtering tools (e.g., tcpdump, snort, libpcap) and languages (like BPF), as well
as for special purpose hardware like network processors (NPs). However, it is a single-
device solution. NET-FFPF extends it with distributed processing capabilities through
language constructs. Currently, we have support for two target platforms:1© IXP1200
network processors and2© off-the-shelf PCs running Linux. We briefly introduce the
first in the next section.

3.1 Network Processors

Network processors are designed to take advantage of the parallelism inherent in packet
processing tasks by providing a number of independent stream processors (µEngines)
on a single die. The Radisys ENP 2506 network card that was used to implement NET-
FFPF is displayed in Figure 7. For input, the board is equipped with two 1Gb/s Ethernet
ports 1©. The card also contains a 232 MHz Intel IXP1200 network processor with 8 MB
of SRAM and 256 MB of SDRAM 2© and is plugged into a 1.2 GHz PIII over a PCI
bus 3©. The IXP is built up of a single StrongARM processor running Linux and six
µEngines running no operating system whatsoever.

Fig. 7.Main components of the ENP-2506 board

3.2 The FPL-3 language

The FFPF programming language (FPL) was devised to give the FFPF platform a more
expressive packet processing language than available in existing solutions. The latest
version, FPL-2, conceptually uses a register-based virtual machine, but compiles to
fully optimised object code. However, FPL-2 was designed for single node processing.
We now introduce its direct descendant, FPL-3, which extends FPL-2 with constructs
for distributed processing.

operator-type operator

Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical / ==, !=, >, <, >=, <=,
Relational &&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator

if/then/else IF (expr) THEN stmt1 ELSE stmt2 FI
for() FOR (initialise; test; update)

stmts; BREAK; stmts; ROF
external functionINT EXTERN(filter, input, output)
hash() INT HASH(start byte, len, mask)
return a value RETURN (val)
transmit to TX(table type, tableindex) or

TX(table type, id, tableindex)
split the code SPLIT; stmts; TILPS or

SPLIT(nodeindex); stmts; TILPS

Data type syntax

Registern R[n]
Memory locationn M[n]
Packets access:
-bytef(n) PKT.B[f(n)]
-wordf(n) PKT.W[f(n)]
-double wordf(n) PKT.DW[f(n)]
-bit m in byten PKT.B[n].U1[m]
-nibblem in byten PKT.B[n].U4[m]
-bit m in wordn PKT.W[n].U1[m]
-bytem in wordn PKT.W[n].U8[m]
-bit m in dwordn PKT.DW[n].U1[m]
-bytem in dwordn PKT.DW[n].U8[m]
-wordm in dwordn PKT.DW[n].U16[m]
-macro PKT.macroname
-ip proto PKT.IP PROTO
-ip length PKT.IP LEN
-etc. customised macros

Fig. 8.FPL-3 language constructs

The FPL-3 syntax is summarised in Figure 8. It supports all common integer types
and allows expressions to access any field in the packet header or payload in a friendly
manner. An extensible set of macros implements a shorthand form for well-known
fields, so that instead of asking for bytes nine and ten to obtain the IP header’s pro-
tocol field, a user may abbreviate to ‘IP_PROTO’, for instance. Moreover, offsets in
packets can be variable, i.e. determined by an expression. Execution safety is guaran-
teed by virtue of both compile-time and run-time boundary checks. As illustrated in
Figure 8, most of the operators are designed in a way that resembles well-known im-
perative languages such as C or Pascal. We will briefly explain those constructs that are
not intuitively clear.

EXTERN() construct. External functions allow users to call efficient C or hardware
assisted implementations of computationally expensive functions, such as checksum
calculation, or pattern matching. The concept of an ‘external function’ is another key to
speed and system extensibility.

HASH() construct. Applies a hash function to a sequence of bytes in the packet data.
This function is hardware-accelerated on IXP1200 network processors.

TX() construct. The purpose of this construct is to schedule the current packet for
transmission. Currently, this operation involves overwriting the Ethernet destination ad-
dress (ETH_DEST) of a packet with an entry from the MACtable (TX_MAC). A simple
use of TX() is illustrated in the example below:
TX_MAC[3] = {00:00:E2:8D:6C:F9, 00:02:03:04:05:03, 00:02:B3:50:1D:7A};

// extracted by the compiler from the configuration file
IF (PKT.IP_PROTO == PROTO_TCP) // if pkt is TCP

THEN TX (Mac, 2); // schedule it to be forwarded to the 3rd
ELSE TX (Mac, 1); // or 2nd MAC address from the TX_MAC table

FI

The example shows the first TX parameter to select a table (MAC or another field,
such asIP_DEST, in a future implementation) and the second parameter to be the index
into the table. Note that by inserting multiple TX() calls into the same program we can
easily implement packet replication and load-balancing.

SPLIT() construct. To explainSPLIT we will step through the example in Figure 5.
When trying to match the given FPL-3 filter to a distributed system, the compiler
detects theSPLIT construct.SPLIT tells the compiler that the code following and
bounded by itsTILPS construct can be split off from the main program. The example
script is split into subscripts as follows: one script for the splitter node N0, and three
more for each processing node N1, N2 and N3, as shown in Fig. 9. Then, the scripts are
compiled into object code by the native compilers.

IF (PKT.IP_DEST_PORT==80)
TX(MAC, ID_0, dest_MAC1)

ELSE // rest of tcp traffic
TX(MAC, ID_2, dest_MAC2)

TX(MAC, ID_1, dest_MAC2)

IF (PKT.IP_PROTO==PROTO_TCP)

ELSE IF (PKT.IP_DEST_PORT==25)

TX(MAC, ID_3, dest_MAC3)
ELSE IF (PKT.IP_PROTO==PROTO_UDP)

SWITCH(srcMAC.origin)
case ID_0: // first TX()

FOR(R[0]; ...)
scan (web_attack)

SWITCH(srcMAC.origin)
case ID_1: // second TX()

FOR(R[0]; ...)
scan (spam)

case ID_2: // third TX()
R[2] = Hash(12, 8, 0xFF)
M[R[2]]++

SWITCH(srcMAC.origin)
case ID_3: // fourth TX()

N0

1N

2N

3N

Fig. 9.SPLIT in detail.

The current implementation is based on Ethernet header mangling (driven by TX
constructs). A packet’s Ethernet destination address (ETH_DEST_ADDR) is overwritten
to contain the next hop in the network. Recall that one of the NET-FFPF requirements
is that processing at levelN continues exactly where it had broken off at levelN − 1.
The way we implemented this in the Ethernet implementation is by using the Ethernet
source address to identify the out-node at levelN − 1. However, there is no need to use
all six bytes of the source address for this purpose. For this reason we split the source
address (ETH_SRC_ADDR) into two identifiers:processing state(four bytes) andorigin
indicator (two bytes).

The origin indicator specifies the out-node of the previous level (allowing for 64K
out-points), while the 32 bit state field can be used in an application-specific way. It

allows nodes at levelN − 1 to pass a limited amount of information to the next pro-
cessing node. It is beyond the scope of this paper to discuss the use of the state field in
detail. As shown in Figure 9, we can now efficiently continue the computation at level
N , by using aswitch statement on the origin indicator to jump to the appropriate
point to resume. Observe that aswitch statement is only needed if more than one out-
node is connected to this in-node. Also observe that although we have not implemented
this, it may be possible to generalise NET-FFPF beyond subnets by basing the splitter
functionality on a tunnelled approach or by overwriting IP header fields, instead.

The compiled example program is executed as follows. The code at the root node
(N0) deals only with selective forwarding. Any packet that matches one of the IF
statements has its Ethernet address fields modified and is then forwarded to the next-
level nodes. The other nodes will only have to process these forwarded packets. Node
N2 for instance, receives two classes of packets forwarded from node N0. As illus-
trated in Figure 9, the classes are identified by theorigin indicator embedded in the
ETH_SRC_ADDRfield.

Note that by passing the optional argument ‘nodeindex’ toSPLIT a user can force
packets to be forwarded to a specific node, as in the example shown in Section 4.
This can be useful when a node has special abilities well-suited to a given task, e.g.,
hardware-accelerated hashing.

Memory data addressing The FPL-3 language hides most of the complexities of
the underlying hardware. For instance, users need not worry about reading data into
a µEngine’s registers before accessing it. Similarly, accessing bytes in memory that
is not byte addressable is handled automatically by the compiler. When deemed use-
ful, however, users maychooseto expose some of the complexity: it is, for instance,
wise to declare additional arrays in fast hardware when that is available, like in the
IXP1200’s on-board SRAM. Note that NET-FFPF has no inter-node shared memory.
Synchronising data across nodes is too costly relative to the high-speed packet process-
ing task itself. To guarantee safe execution enough memory is allocated at each node
to support the whole program, not just the subtask at hand. In the Ethernet implemen-
tation, limited data sharing is made possible by overwriting a now unused block in the
ETH_SRC_ADDRfield to communicate a 32 bit wordprocessing stateto the next hop.

3.3 The FPL-3 compiler

The FPL-3 source-to-source compiler generates straight C target code that can be fur-
ther handled by any C compiler. Programs can therefore benefit from the advanced op-
timisers in the IntelµEngine C compiler for IXP devices andgcc for commodity PCs.
As a result, the object code will be heavily optimised even though we did not write an
optimiser ourselves. In the near future FPL-3-compiler support will be extended to the
latest Intel NP generation (e.g., IXP2400, IXP28xx).

4 Evaluation

To evaluate NET-FFPF, we execute the filter shown in Figure 10.a on various packet
sizes and measure throughput (Fig. 10.b). This filter is mapped onto a distributed system

as shown in Figure 2 and the compilation results are the code objects of the three sub-
filters highlighted in same picture.

IF (PKT.IP_DEST==x && PKT.UDP_DEST_PORT==y) THEN

FI;
M[0]++; A

M[R[0]]++; // increment the pkt counter at this position
R[0]=HASH(26, 12, 0x3FF); // hash over TCP flow fields C

FOR (R[1]=7; R[1]<PKT.IP_TOT_SIZE; R[1]++)
IF (PKT.DW[R[1]] == ’sapphire sign’) THEN
M[1]++; // take actions ... (e.g., drop pkt)

FI;
ROF; B

SPLIT;
IF (PKT.IP_PROTO==PROTO_UDP) THEN

TILPS;
IF (PKT.UDP_DEST_PORT==1434) THEN

FI;
TILPS;

SPLIT(1);
IF (PKT.IP_PROTO==TCP) THEN
FI;

SPLIT; // scan for Sapphire worm

TILPS;
FI;

a© Filter b© Benchmark

Fig. 10.Filtering results

We note that onlyA is a traditional per-packet counter. The other two gather per-
flow information. As the hash function used inC utilises dedicated hardware support,
we push (by providing the parameternode_index) theC filter onto the same hard-
ware node asA filter – N1. In B, a loop iterates over the wholeUDPpacket payload.
While the filtersA andC are easily performed on an NP even at high speed (1Gb/s),
the B filter incurs so much processing that even an IXP1200 network processor can-
not handle its stream at such speed. As the processing results show, using this specific
hardware, we can process the full packet data up to only ca. 100Mb/s. Therefore, we let
the filter split to the second node – N2 and we can successfully process all the packets
for a particular UDP port (assuming the packets related to a specific worm are within
100Mb/s bandwidth). If more bandwith needed, then more processing nodes have to be
involved.

As illustrated in Fig. 10, just as for theB filter, throughput also drops for the simple
filters A and C when processing smaller packets. However, these drops occur for a
different reason, namely because thereceivingµEngine simply cannot keep up.

Demonstrating the simplicity a concise special purpose language like FPL-3 brings,
a naive load balancing program for a web-server is shown below. A hash over the flow
fields of each incoming packet determines to which node the packet is forwarded. In a
handful lines of code the web traffic is split into three equal substreams.

IF (PKT.IP_PROTO==TCP && PKT.IP_DEST_PORT==80) THEN
R[0] = hash(flowfields)%3;
SPLIT(R[0]); // thus, the main stream is equally distributed

<scan for web-traffic worms> // across of 3 processing nodes

5 Related work

Using traffic splitters for increased packet processing efficiency on a single host was
previously explored in [3] and [4]. Our architecture differs in that it supports distributed
and heterogeneous multi-level processing. In addition, we provide explicit language
support for this purpose. As shown in [8], it is efficient to use a source-to-source com-
piler from a generic language (Snort Intrusion Detection System) to a back-end lan-
guage supported by the targeted hardware compiler (IntelµEngineC). We propose a
more flexible and easy to use language as front-end for users. Moreover, our FPL-3
language is designed and implemented for heterogeneous targets in a distributed multi-
level system.

Many tools for monitoring are based on BPF in the kernel [5]. Filtering and pro-
cessing in network cards is also promoted by some Juniper routers [9]. However, they
lack features introduced in NET-FFPF such as extended language constructs, in-place
packet handling and a distributed processing environment. BPF+ [10] shows how an
intermediate representation of BPF can be optimised, and how just-in-time-compilation
can be used to produce efficient native filtering code. FPL-3 relies ongcc ’s optimisa-
tion techniques and on external functions for expensive operations.

Like FPL-3 and DPF, Windmill protocol filters also target high-performance by
compiling filters into native code [7]. And like MPF, Windmill explicitly supports mul-
tiple applications with overlapping filters. However, compared to FPL-3, Windmill fil-
ters are fairly simple conjunctions of header field predicates.

Nprobe is aimed at monitoring multiple protocols [11] and is therefore, like Wind-
mill, geared towards spanning protocol stacks. Also, Nprobe focuses on disk bandwidth
limitations and for this reason captures as few bytes of the packets as possible. NET-
FFPF has noa priori notion of protocol stacks and supports payload processing.

The SCAMPI architecture also pushes processing to the NIC [12]. It assumes that
hardware can write packets immediately into host memory (e.g., by using DAG cards [13])
and implements access to packet buffers through a userspace daemon. SCAMPI does
not support user-provided external functions, powerful languages such as FPL-3 or
complex filtergraphs.

Related to the distributed architecture of NET-FFPF are the Lobster EU project
and Netbait Distributed Service [14] that aim at European-scale passive monitoring and
at planetary-scale worm detection, respectively. Netbait, for instance, targets high-level
processing using commodity hardware. Therefore, these initiatives could benefit from
using the FPL-3 language and its NET-FFPF execution environment as low-level layer.

6 Conclusions and future work

This paper presented the NET-FFPF distributed network processing environment and
its FPL-3 programming language, which enable users to process network traffic at high
speeds by distributing tasks over a network of commodity and/or special purpose de-
vices such as PCs and network processors. A task is distributed by constructing a pro-
cessing tree that executes simple tasks such as splitting traffic near the root of the tree
while executing more demanding tasks at the lesser-travelled leaves. Explicit language

support in FPL-3 enables us to efficiently map a program to such a tree. The experimen-
tal results show that NET-FFPF can outperform traditional packet filters by processing
at Gbps linerate even on a small-scale (two node) testbed.

In the future, we plan to extend NET-FFPF with a management environment that
can take care of object code loading and program instantiation. A first version of this
management subsystem will act only when a user issues a recompile request. We envi-
sion a later version to be able to automatically respond to changes in its environment
like the increase of specific traffic (e.g., tcp because of a malicious worm) or availabil-
ity of new hardware in the system (e.g., a system upgrade). We also plan to have the
FPL-3 compiler optimise code placement. As a result, tasks that are known to be CPU
intensive – such as packet inspection, hashing or CRC generation – will be automat-
ically sent to optimal target machines, for instance those with hardware assisted hash
functions (NPs).

Acknowledgements

This work was supported by the EU SCAMPI project IST-2001-32404, and the EU
LOBSTER project, while Intel donated the network cards.

References

1. Bos, H., de Bruijn, W., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly Fast Packet
Filters. In: Proceedings of OSDI’04, San Francisco, CA (2004)

2. Nguyen, T., de Bruijn, W., Cristea, M., Bos, H.: Scalable network monitors for high-speed
links: a bottom-up approach. In: Proceedings of IPOM’04, Beijing, China (2004)

3. Charitakis, Anagnostakis, Markatos: An active traffic splitter architecture for intrusion de-
tection. In: Proceedings of 11th IEEE/ACM MASCOTS, Orlando, Florida (2003)

4. Kruegel, C., Valeur, F., Vigna, G., Kemmerer, R.: Stateful intrusion detection for high-speed
networks. In: Proceedings of the IEEE Symposium on Security and Privacy. (2002)

5. McCanne, S., Jacobson, V.: The BSD Packet Filter: A new architecture for user-level packet
capture. In: Proceedings of the 1993 Winter USENIX conference, San Diego, Ca. (1993)

6. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of the
1999 USENIX LISA Systems Adminstration Conference. (1999)

7. Malan, G.R., Jahanian, F.: An extensible probe architecture for network protocol perfor-
mance measurement. In: Computer Communication Review, ACM SIGCOMM. (1998)

8. Charitakis, I., Pnevmatikatos, D., Markatos, E.: Code generation for packet header intrusion
analysis on the ixp1200 network processor. In: SCOPES 7th International Workshop. (2003)

9. Thomas, T.M.: Juniper Networks Router Architecture. In: Juniper Networks Reference
Guide: JUNOS Routing, Configuration, and Architecture. (2003)

10. Begel, A., McCanne, S., Graham, S.L.: BPF+: Exploiting global data-flow optimization in a
generalized packet filter architecture. In: In Proceedings of ACM SIGCOMM, Boston (1999)

11. Moore, A., Hall, J., Kreibich, C., Harris, E., Pratt, I.: Architecture of a network monitor. in
proc. of PAM’03 (2003)

12. Polychronakis, M., Markatos, E., Anagnostakis, K., Oslebo, A.: Design of an application
programming interface for ip network monitoring. In: IEEE/IFIP NOMS, Seoul (2004)

13. Cleary, J., Donnelly, S., Graham, I., McGregor, A., Pearson, M.: Design principles for accu-
rate passive measurement. In: Proceedings of PAM, Hamilton, New Zealand (2000)

14. Chun, B., Lee, J., Weatherspoon, H.: Netbait: a distributed worm detection service (2003)

