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Abstract. The workload loss ratio (WLR) is a key quantity from the
point of Quality of Service (QoS) provisioning in packet-based commu-
nication, hence it’s estimation is an important issue. The existing results
in the area of WLR approximation usually interpret the workload loss
as a product of some well assessable quantities. We call this approach
as the indirect approximation of the WLR. The drawback of this ap-
proach is that each estimation has an error and the product of these
errors could result in a highly inaccurate bound. This work deals with
the upper approximation of the workload loss ratio based on it’s origi-
nal definition and proposes a new direct bound on the WLR applicable
in general service curve network element. Extensive and systematic per-
formance analysis of the formulae have been done, in which we found
that the direct approach gives more accurate bound in several cases. We
illustrate this analysis through some numerical examples.
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1 Introduction

The increasing number of real-time Internet applications induce the preface of
new services in telecommunication networks, besides best effort. These services
have to meet some Quality of Service (QoS) requirements, which usually con-
sist of prescriptions for QoS parameters. Thus the provision of QoS for packet
switched networks generally means keeping the value of some quality related
parameters at a level that fills these prescriptions. Since a significant part of
the Internet applications are sensitive to the loss of the packets, the approxima-
tion of the workload loss ratio (WLR) parameter receives a significant attention.
However the direct approximation of the prospective workload loss within net-
work elements, multiplexing several inputs turns out to be a highly nontrivial
problem. The probability of buffer overflow Pr(Q > q) of an infinite queue is
frequently used for WLR estimation [1] [2], nevertheless it is shown, that the
ratio WLR

Pr(Q>q) can be arbitrary [3]. Since the buffer overflow is closely related to



the packet loss, it can be consumed for approximating the WLR indirectly as
done in [3] [4] [5].

If the system is stationary and ergodic the following definition can be used1:

WLR =
E[number of lost bits]

E[number of bits arriving]
(1)

We show, that estimating the packet loss in a direct manner using the definition
(1) results in closed form bound which performs better than the existing WLR
bounds. For the construction of the new bound only a little information is used
about the input traffic (peak rate, upper estimated mean rate of the aggregate)
so it might directly be applied in traffic management functions like call admis-
sion control (CAC) as well, without any complex measurement or information
propagation.

Most of the existing bounds can be applied for constant rate servers only.
We form our statements for more general queuing systems that can be described
by a service curve property. The service curve property as defined in network
calculus [6], with service curve β means, that at any time t, the observed output
traffic in [0, t] is at least equal to A(s) + β(t − s) for some s in [0, t], where
A(s) is the total input traffic in [0, s]. Using this definition, we derive new WLR
formulae that can be used for a larger set of network elements, rather than for
constant rate servers only.

Another problem of the existing closed form bounds for systems that satisfy
the service curve property, that they assign different formulae for the case when
the system is fed with inputs with the same characteristics (so called homoge-
neous case), and for the case when the properties on the inputs are different
(heterogeneous case). We derive a universal bound that cover both cases.

Two different bounding approaches have been identified in [7] and [8]. The
first one [7] based on the decomposition of the investigated network element, into
virtual mini-nodes, that process one microflow as an input, and has a certain
amount of processing capacity, usually a fraction of the entire server capacity.
The summation of the lost packets in these mini-nodes gives an approximation
of the lost packets within the original system. In the followings this approach is
referenced as VNP (Virtual Node Partitioning). The other way to estimate the
number of lost packets [8] will be named as Busy Period Partitioning (BPP),
since it assigns a union bound for the lost packets on the time partition of the
maximal possible busy period in which the packet loss could occur. Both of these
approaches applied in [9] for buffer overflow and (indirect) workload loss ratio
bounds in service curve network element. Because the BPP approach turned out
to be more powerful in bounding buffer overflow as well as workload loss ratio
[9], hereafter we concentrate on this approach.

In Section 2 we present different methods for the upper estimation of the
probability generating function (PGF) used in bounding the WLR. Then in sec-

1 Without loss of generality we consider fluid-like bit-processing system, since it can
be shown, that the result can be applied for systems with rougher granularity (cells,
packets).



tion 3.2 some existing results are presented in the area of indirect WLR approx-
imation. Section 3.3 introduces a way to approximate the WLR in a definition
based manner along the BPP methods, then we formalize our new bound. We
illustrate through numerical examples that our direct formula performs better
than the corresponding indirect one.

2 Theoretical background

Buffer overflow and WLR approximation in service curve network element with
regulated inputs [9] relies on bounding the tail distribution of sum of random
variables with finite support.

One of the widely used approximation techniques for this tail distribution is
the Chernoff-Hoeffding bounding method, which looks like as

P (X > q) ≤ inf
θ>0

GX(θ)
eθq

≤ inf
θ>0

G̃X(θ)
eθq

, (2)

where GX(θ) = E[exp(θX)] is the probability generating function (PGF) of X
and G̃X(θ) is a kind of reasonable bound of GX(θ) (i. e. GX(θ) ≤ G̃X(θ) ). From
(2) it can be seen, that giving a better bound on the PGF, gives a better bound
on the buffer overflow as well.

The following two lemmas presents Hoeffding’s results (using our notations)
on the PGF approximation [10] for the homogeneous and heterogeneous cases.

Lemma 1 ([10]). Let X1, X2, ..., XI , independent random variables with X =∑I
i=1 Xi, M = E[X] and 0 ≤ Xi ≤ p. Then for θ > 0

GX(θ) ≤
(

1− M

Ip
+

M

Ip
e(θp)

)I

. (3)

Lemma 2 ([10]). Let X1, X2, ..., XI , independent random variables with X =∑I
i=1 Xi, M = E[X] and 0 ≤ Xi ≤ pi. Then for θ > 0

GX(θ) ≤ eθMe
θ2PI

i=1 p2
i

8 . (4)

One can see, that Lemma 2 does not coincide with Lemma 1 for the special
setting of p1 = p2 = ... = pn. The following PGF approximation leads to a
formula that covers both cases.

Lemma 3 ([11],[12]). Let X1, X2, ..., XI be I independent (and not necessarily
identically distributed) random variables with 0 ≤ Xi ≤ pi, X =

∑I
i=1 Xi and

M = E[X]. Then for s > 0

GX(θ) ≤
(

1− M

I∗p
+

M

I∗p
eθp

)I∗

, (5)

where the right side is the PGF of the sum of X∗
1 , X∗

2 , ..., X∗
I∗ , I∗ = d∑n

i=1 pi/pe
independent homogeneous Bernoulli random variables, with the identical peak
value p = max(p1, p2, ..., pI) and identical mean value E[X∗

i ] = M/I∗.



Although this PGF bound is suitable to cover both the homogeneous and
heterogeneous cases in bounding the buffer overflow probability, we need further
results for obtaining uniform WLR bound. For the relation of random variables
X and X∗ a much more general results is valid (with the apparent combination
of Lemma 1 and Theorem 3 in [13] and also found in [14]), namely

E[(X − q)+]
E[X]

≤ E[(X∗ − q)+]
E[X∗]

, ∀q ≥ 0 (6)

where X∗ =
∑I∗

i=1 X∗
i . Note that the random variable X∗ has binomial distrib-

ution, hence,

E[(X∗ − q)+]
E[X∗]

=
p

M

I∗∑

l=dqe
(l − dqe)

(
I∗

l

)(
M

I∗p

)l (
1− M

I∗p

)I∗−l

. (7)

It can be shown by straightforward calculation that the derivative of this function
with respect to M is always non-negative, that is

∂M
E[(X∗ − q)+]

E[X∗]
≥ 0 , ∀q > 0 . (8)

A very practical consequence of this result is that if only an upper bound of M
is known, then the inequality still holds in (6) when this known upper bound of
M is used in the computation or an upper approximation of the right hand side
of (6).

3 Upper Approximations of WLR

3.1 Notation and assumptions

In this paper the following notations of network calculus [6] are used: I =
{1, 2, ..., I} is a set of input flows in a network element. Ai(s, t], i ∈ I denotes the
number of bits arrived in input i in the interval (s,t]. A∗i (s, t], i ∈ I means the
same for the output of the ith flow. Let A(s, t] :=

∑I
i=1 Ai(s, t], and A∗(s, t] :=∑I

i=1 A∗i (s, t]. The notation v(f, g) = supt≥0{f(t)−g(t)} stands for the maximal
vertical, and the notation h(f, g) = supt≥0{inf{u ≥ 0 : f(t) ≤ g(t + u)}} for the
maximal horizontal deviation between f and g. We define ᾱ =

∑I
i=0 ᾱi, where

limu→∞Ai(0, u]/u ≤ limu→∞ αi(u)/u = ᾱi, and α =
∑I

i=0 αi.
The following assumptions are also needed for the derivation.

– (A1) A1, A2, ..., AI -s are independent
– (A2) For all i ∈ I, Ai has αi as an arrival curve, where αi is a non-negative

wide-sense increasing function.
– (A3) For each i ∈ I, and any s, t ∈ R, E[Ai(s, t]] ≤ ᾱi · (t − s), where

ᾱi = limt→∞ αi(t)/t.



– (A4) There exists a sequence of random points: ... < S−2 < S−1 < S0 ≤ 0 <
S1 < S2 < ..., such that limn→−∞ Sn = −∞, and limn→∞ Sn = ∞, and for
all n ∈ Z,A(Sn, Sn+1] = A∗(Sn, Sn+1]

– (A5) If S(t) = {Sn, n ∈ Z : Sn ≤ t}, and β is the aggregate service curve for
the flows, than for all t ∈ R, and any u ∈ S(t), ∃s ∈ [u, t] : A∗(u, t]−A(u, s] ≥
β(t− s), where β is a non-negative wide sense increasing function.

– (A6) There exists2 τ < ∞ such that for all s ≥ τ , β(s) ≥ α(s).
– (A7) Let Ai and A∗i be stationary and ergodic.

3.2 Indirect bounds on the WLR

In our explanation the indirect derivation in the approximation of the WLR
means, that the given method does not estimate quantity that defines the work-
load loss ratio, but interprets it as a product of other quantities, and defines
upper bounds on each of these related quantities. For systems that satisfy the
service curve property such bound is proposed in [4], where the WLR estimator
formula is the product of the bound on the buffer overflow probability and an
additional term, which is a hard deterministic bound on the loss ratio over any
time interval of length t. The following Theorem recalls that result.

Theorem 1 ([9]) Assume (A1) − (A3), and that v(α, β) < ∞, h(α, β) < ∞,
and αi = α1 for all i ∈ I. Then

WLR ≤ l̂(1)α(1)
ᾱ

P (Q∞(0) > q) (9)

where l̂(t) = 1 − infs≤t
β(s)+q

α(s) , and Q∞(t) is the buffer occupancy of a virtual
system identical to the original system, but with a buffer size sufficient to ensure
no losses.

Theorem 1 defines a framework for WLR approximation in an indirect man-
ner. The substitution of the existing buffer overflow bounds for service curve
network elements according to the VNP and the BPP methods results in differ-
ent formulae for the WLR estimation. Since these result need a buffer overflow
estimation, the bound inherits the undesirable property, that the buffer overflow
bounds presented in [4] splits into two different formulae, for the homogeneous
and the heterogeneous cases. The reason for this is the use of two different PGF
approximation ((3), (4)) for these two cases and as a corollary two bounds raise
for each bounding approach (VNP, BPP). The presentation of these formulae is
omitted here, one can easily recover them from [9] and [4]. Among these bounds
in this paper we use the indirect BPP-based WLR bound assuming heteroge-
neous inputs as a reference and for comparison purposes to our direct BPP-based
WLR bound.

2 The maximum possible busy period in such a system is τ .



3.3 WLR estimation with direct formula

According to the definition of the WLR for stationary and ergodic systems
[3],[15]:

WLR =
E[number of lost bits in a unit time interval]

E[number of bits arriving in a unit time interval]
(10)

The expected value of the number of lost bits in a finite buffer system, can be
bounded from above by the number of packets overflown in the infinite buffer
system [3]:

WLR ≤ E[(Q∞ − q)+]
E[A]

where Q∞ represents the stationary buffer occupancy of the system with infinite
buffer, and E[A] = E[A(0, 1)] is the number of bits arriving in a unit time
interval.

3.4 Bounds using he BPP approach

In what follows we derive bound on the WLR according to the BPP approach.
To this end the following two lemmas are needed.

Lemma 4 ([9]). If the assumptions (A2),(A5) hold and furthermore β is super-
additive then

Q(0) ≤ sup
0≤s≤τ

{(A(−s, 0)− β(s))} (11)

where Q(0) represents the buffer occupancy at an arbitrary time instant 0.

According to assumption (A7) Lemma 4 is also valid for the stationary buffer
occupancy Q∞, hence

WLR ≤ E[sup0≤s≤τ{(A(−s, 0)− β(s)} − q)+]
E[A]

. (12)

Before the presentation of our WLR bound based on equation (12), another
lemma has to be considered. For any K ∈ N , and any t ≥ 0, let TK(t) be the set
of partitions of [0, t) in K intervals: TK = {(t0, t1, ..., tK) : 0 = t0 ≤ t1 ≤ ... ≤
tK = t}.
Lemma 5 ([9]). For any K ∈ N , t ∈ TK(τ) and q ≥ 0,

Pr[ sup
0<s≤τ

{(A(−s, 0)− β(s)} > q] ≤
K−1∑

k=0

Pr[(A(0, tk+1) > q + β(tk))] (13)

The next theorem gives a direct approximation of the WLR, based on in-
equality (12):



Theorem 2 Assume (A1)− (A7). Then

WLR ≤ infK∈N,t∈TK(τ)
1
ᾱ

∑K−1
k=0

θ∗k
(

mk

ck

) ck
α̂tk+1

(
I∗k+1α̂tk+1−mk

I∗k+1α̂tk+1−ck

)I∗k+1−
ck

α̂tk+1 (14)

where mk = ᾱtk+1, ck = β(tk)+q, I∗k+1 =
⌈PI

i=1 αi(tk+1)

α̂tk+1

⌉
, α̂tk+1 = maxi∈I(αi(tk+1)),

and θ∗k = 1
α̂tk+1

log ck

mk

I∗k+1α̂tk+1−mk

I∗k+1α̂tk+1−ck
.

Proof. Using a well-known computation of the expected value of non-negative
random variable:

E[sup0≤s≤τ{(A(−s, 0)− β(s)} − q)+]
E[A]

=

=

∫∞
x=0

Pr[sup0≤s≤τ{(A(−s, 0)− β(s)} > q + x]dx

E[A]

In accordance with Lemma 5:
∫∞

x=0
Pr[sup0≤s≤τ{(A(−s, 0)− β(s)} > q + x]dx

E[A]
≤

≤
∫∞

x=0

∑K−1
k=0 Pr[A(0, tk+1) > q + β(tk) + x]dx

E[A]
.

By the commutation of the integration and summation we get:
∫∞

x=0

∑K−1
k=0 Pr[A(0, tk+1) > q + β(tk) + x]dx

E[A]
≤

≤
∑K−1

k=0

∫∞
x=0

Pr[A(0, tk+1) > q + β(tk) + x]dx

E[A]
.

One element in the summation on the right hand side can be written as
∫ ∞

x=0

Pr[A(0, tk+1) > q + β(tk) + x]dx = E[(A(0, tk+1)− q − β(tk))+] (15)

Due to the assumed stationary increment of A(0, t), E[A] can be rewritten as

E[A] =
E[A(0, tk+1)]

tk+1
, k = 0, . . . ,K − 1 . (16)

Using this it follows that

WLR ≤
K−1∑

k=0

E[(A(0, tk+1)− q − β(tk))+]
E[A(0, tk + 1)]

tk+1 (17)



Since A(0, tk+1) =
∑I

i=1 Ai(0, tk+1), Ai(0, tk+1) ≤ αi(tk+1) and E[Ai(0, tk+1] ≤
ᾱitk+1 we can apply the results presented in Section 2. That is let A∗i (0, tk+1),
i = 1, . . . , I∗ independent and identically distributed Bernoulli random variables
with mean E[A∗i (0, tk+1)] = ᾱtk+1/I∗, A∗i (0, tk+1) ≤ α̂tk+1 , where

α̂tk+1 = max
1≤i≤I

(αi(tk+1)) , I∗ =

⌈∑I
i=1 αi(tk+1)

α̂tk+1

⌉
. (18)

According to (6) and (8) one can deduce that

E[(A(0, tk+1)− q − β(tk))+]
E[A(0, tk + 1)]

tk+1 ≤ E[(A∗(0, tk+1)− q − β(tk))+]
ᾱ

(19)

where A∗(0, tk+1) =
∑I∗

i=1 A∗i (0, tk+1) and hence E[A∗(0, tk+1)] = ᾱtk+1. Ap-
plying a well-known Chernoff bound [16] to the right hand side of (19) gives

E[(A∗(0, tk+1)− q − β(tk))+] ≤ 1
θ∗k

E [exp(θ∗kA∗(0, tk+1))]
exp(θ∗k(q + β(tk)))

(20)

where3

θ∗k = arginfθk

(
log E [exp(θkA∗(0, tk+1))]− θk(q + β(tk))

)
. (21)

The generating function of A∗(0, tk+1) is

E[exp(θkA∗(0, tk+1))] =
(

1− ᾱtk+1

I∗α̂tk+1

+
ᾱtk+1

I∗α̂tk+1

exp(θkα̂tk+1)
)I∗

. (22)

Substituting it into the Chernoff bound in (20) and after straightforward calcu-
lations the closed form formula of (14) is obtained. Q.E.D.

4 Evaluation

For illustrating the evaluation and comparison of the bounds presented the fol-
lowing scenario is used. We have 100 input flows, which are token bucket con-
strained with some arrival curve (α(t) = ᾱ+σ), and the packet forwarder satisfies
a rate latency service curve property, with β = c · max(t − e, 0), in a work-
conserving manner. We take parameter values that are close to many practical,
common applications. The service rate of the server will be 150Mbps and let the
packets size be 1500 bytes. This means the node can serve 12500 packets during
a second (pps). The latency time (e) is 8 ·10−5 sec. We set up four configurations
for the evaluation:
3 Note that θ∗k does not provide the optimal Chernoff bound, how-

ever, it guarantees closed form WLR bound as opposed to the optimal
arginfθk

�
log E [exp(θkA∗(0, tk+1))]− θk(q + β(tk)− log θk)

�
.



Configuration 1: α1(t) = 33.3pps + 8p, α2(t) = 16.6pps + 5p. If we have 50
microflows with α1(t) and α2(t) each, it results α(t) = 50 · α1(t) + 50 · α2(t) =
2500pps + 650p as an aggregate arrival curve. This configuration represent a
utilization of 0.2 for the server.

Configuration 2: α1(t) = 133.3pps + 8p, α2(t) = 66.6pps + 5p. If we have 50
microflows with α1(t) and α2(t) each, it results α(t) = 50 · α1(t) + 50 · α2(t) =
10000pps + 650p as an aggregate arrival curve. This configuration represent a
utilization of 0.8 for the server.

Configuration 3: α1(t) = 26pps + 8p, α2(t) = 24pps + 8p. 100 microflows
results in α(t) = 2500pps+800p as an aggregate arrival curve. This configuration
represent a utilization of 0.2 for the server.

Configuration 4: α1(t) = 102pps+8p, α2(t) = 88pps+8p. 100 microflows re-
sults in α(t) = 10000pps+800p as an aggregate arrival curve. This configuration
represent a utilization of 0.8 for the server. A summary of the configurations can
be seen on Table 1.

Conf. α1(t) α2(t) α(t) utilization

Conf. 1. 33.3pps + 8p 16.6pps + 5p 2500pps + 650p 0.2

Conf. 2. 133.3pps + 8p 66.6pps + 5p 10000pps + 650p 0.8

Conf. 3. 26pps + 8p 24pps + 8p 2500pps + 800p 0.2

Conf. 4. 102pps + 8p 88pps + 8p 10000pps + 800p 0.8

Table 1. The summary of configurations

The choice of configuration 3 and 4 is to evaluate the performance of the
bounds, when the inputs have almost same characteristics. Therefore the scenario
is close to the homogeneous case, but since it is heterogeneous the heterogeneous
form of the PGF approximation have to be used.

For each configuration we have two graphs. The one on the left side shows
the logWLR approximation as a function of the buffer size (the continuous line
represents our new bound, while the dotted line represents the old bound) and
the graph to the right indicates the relative buffer requirement gain according to
the two bounds. This latter quantity refers to the amount of bandwidth which
can be saved when our new bound is used to keep the loss ratio under a certain
level. This is defined in the following way. Let Qreq,1 and Qreq,2 be the buffer
requirements formulated as

Qreq,1(−γ) = min(q,WLR1(q) ≤ 10−γ) , Qreq,2(−γ) = min(q,WLR2(q) ≤ 10−γ)
(23)

where WLR1(q) and WLR2(q) are the WLR approximations according to The-
orem 1 and Theorem 2 . The relative gain in buffer requirement drawn in the
graphs is computed as

gain(−γ) =
Qreq,1(−γ)−Qreq,2(−γ)

Qreq,1(−γ)
(24)



All figures well illustrate our experience in extensive comparison that our new
bound significantly outperforms the old WLR approximation, especially in case
of low traffic intensity. For higher traffic loads the relative buffer requirement gain
decreases, but still remains high, around 40-50% in the examples. The relative
gain is usually higher for less stringent QoS constraints on the WLR (smaller
γ). In Fig. 1 for conf. 1 one can observe that to achieve no more than 10−6 loss
ratio the required buffer size is smaller than 50p when WLR2 is used and it is
around 180p when WLR1.
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Fig. 1. The results of Theorem 1 and Theorem 2 for conf. 1 (up) and conf. 2 (down).

5 Conclusions

The scope of this paper was to present our new direct (definition based) formula
for the workload loss ratio applicable in general buffered systems characterized
as service curve network element. Our new bound is significantly better then the
corresponding existing one, and can ensure to save tremendous amount of buffer
space when it is used to guarantee QoS level for the workload loss ratio.
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Fig. 2. The results of Theorem 1 and Theorem 2 for conf. 3 (up) and conf. 4 (down).
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