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Abstract. In this work we model the relationship between the capacity
and the Quality of Service (QoS) offered by the firm in a competitive
scenario of two firm’s working to maximize their profits. Using simple
queueing theoretic models we study the sensitivity of a firm’s market
share to price, capacity and market size. Our preliminary studies yield
important properties of the equilibrium solution which may further pro-
vide important “engineering” guidelines for performance planning and
pricing strategies.
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1 Introduction

The pricing of electronic goods, network bandwidth, and the internet itself has re-
ceived considerable attention in the literature in the past decade. In this paper we
are not concerned with pricing the internet, which generally involves discussions
of “best effort” classes versus paying customers, and often of shadow-price-based
schemes which assume marginal cost pricing [4, 1]. Rather, we consider pricing
of, and more generally economic planning for e-commerce services, such as web
hosting, from the perspective of the major players in the market.

Many of the preoccupations are the same in modelling e-commerce markets
as in modelling the internet. Queueing theory and other stochastic relationships
are vital. Customer behavior, for example, is modelled through distributions, and
arrivals of customers may be assumed to be Poisson, exponential, etc. However,
we are not concerned with marginal cost pricing, or in ensuring that a best
effort (free) service remains in place. E-commerce services are by definition paid
services, and the motive of firms in the e-commerce marketplace is quite clearly
towards profit maximization, rather than towards public service, as much of the
internet is and will continue to be.

Nonetheless, pure profit maximization cannot be a representative model, as
the market allows for competition, and even very large providers can face shifts of
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their clientèle depending upon what happens in the marketplace. In this respect,
an equilibrium framework is appropriate for modelling firms’ optimal choices.
Indeed, the equilibrium framework allows us to compute stable price, capacity
and QoS choices for the firm, in the presence of other firm(s) and a universe
of customer demand that can shift across firms, as a function of the prices and
QoS that each one offers. The paradigm that we employ is the Nash equilibrium
concept, in mixed strategies; that is, the number of users is sufficiently large,
that fractional quantities are quite justified, and can just as easily represent
percentages of total demand levels. (Pure strategy equilibria would require each
user to choose either provider 1 or 2, and the number of users choosing one or
the other would be a natural number; this restriction on the strategy set leads
to possible non-existence of a (pure strategy) equilibrium, and does not in our
setting add any better insight into the model).

It is however of interest to develop models of pricing/QoS behavior of more
than one provider in the electronic marketplace. Indeed, in the market for e-
commerce services, other firms can adjust their price schedules rapidly in re-
sponse to that of a competitor. Furthermore, in the On Demand paradigm,
firms can augment their capacity/QoS levels instantaneously as well. Then, the
question for any provider is no longer how to set prices or capacities when other
firms’ price choices are given, but rather whether the joint setting of prices by
all providers will tend towards an equilibrium, and, in the affirmative, what are
the properties of the equilibrium.

The basic formulation of the demand and the market, as well as the choice
mechanisms of the users, is taken from [5]. In that reference, a two-firm market
(which may represent one large firm, and the rest of the market as the second
firm) is considered in a manner similar to that of [3], but with one very important
difference. Namely, the Quality of Service (QoS) was introduced and along with
it, a continuous distribution of price-QoS tradeoff parameters, to describe the
dispersion of users’ choices across the price-QoS frontier.

Indeed, the incorporation of QoS in the model is vital, and well understood: in
the commerce of electronic goods, there is generally some product differentiation
that is naturally present or can easily be introduced. While spatial factors do not
play a role with respect to the Internet, other variations in the quality of service
do exist, such as host server and network speeds or response times, availability,
reliability etc.

However, if we assume that all users react in the same way to price-QoS
tradeoffs, we would obtain seriously biased results in terms of the market share of
each firm. Product differentiation allows firms to increase market share because
the users are inherently different in their willingness to pay for different levels
of quality. To use the internet as an example, some users will pay the higher
price of DSL to have a faster, broadband access to the Web, whereas others
will not be prepared to pay double the price of a telephone dialup carrier, and
will experience usually slower service. The distinction is not necessarily binary;
often DSL providers offer multiple service classes, higher QoS is accompanied
by higher price. Assuming that the service choices are Pareto optimal for some



user, then each price-QoS service offering will attract a different segment of the
population, and each segment can be characterized by its own, unique price-QoS
tradeoff parameter. We model these tradeoff parameters explicitly, as introduced
in [5] and used in the context of strategic outsourcing in [2], by a continuous,
general, random distribution. Depending on the particular distribution chosen,
different results are obtained. It was argued in [5] that forms such as exponential
(or Pareto, log-normal, etc) are most representative of these tradeoffs in practice.

In this paper, we extend the work of [5] by generalizing the notion of quality
of service (QoS) ; that is, we concentrate on a particular characterization of QoS
that is of importance in e-services, namely, response time, or delay, and model
explicitly the dependence of delay on service capacity. The resulting model is
significantly more complex than the capacity-independent versions of [5]. Indeed,
it is a challenge to determine the feasible values of the parameters, price, capacity,
and QoS (delay).

Our contribution in this paper is therefore to formulate this more complex
model, and to derive an auxiliary problem whose solution gives feasible values of
the QoS/market share for each firm. In this context, computing a Nash equilib-
rium becomes a complex numerical exercise that makes use of our derivations.
We leave a study of particular Nash equilibrium, as a function of the input
parameters, to a future research study, by ourselves or others.

In such an equilibrium setting, the paradigm would work as follows: Supplier
1 (for example) determines his capacity vector so as to maximize some objective
(profit) as a function of prices of his own service and that of his competitor(s),
and as a function of his competitor’s capacity (which determines then the compe-
tition’s delay, or QoS). Prices, however, are not fixed: for each value of capacity
that supplier 1 considers, a vector of equilibrium prices (p1, p2) would be deter-
mined, using the Nash paradigm, described above. Depending on whether the
overall profit of supplier 1 increases or decreases, he modifies his capacity, and
so on, until reaching a stationary point (local optimum). This local optimum
would represent a “good” capacity-price offering for supplier 1, given the market
context, and the responsiveness of the competition (in its price(s)) and of the
end user demand (in its patronage of supplier 1 or 2). This paradigm represents
an instance of a Stackelberg, or leader-follower, game. While we do not compute
values of the Stackelberg equilibrium here, we provide the necessary machinery
to formulate and solve that important problem.

The structure of the paper is as follows. In Section 2, we recall the framework
of [5], that is the price and QoS hypotheses, and price-QoS tradeoff parameters,
and how they fit into a Nash equilibrium model. In Section 3 we model the
explicit relationship between the QoS offered by a firm and its capacity and
provide conditions for the existence of non-trivial market share of each firm.
The model is studied for the special case of uniformly distributed price-QoS
tradeoff parameter and an explicit closed form expression for each company’s
share is obtained in Section 4. We then study the sensitivity of the solution
to different parameters which provides further insight. Finally we conclude in
Section 5 and present directions for further research in this area.



2 The price-QoS market model with delay-capacity

relations

Suppose that the e-service offered by firm i = 1, . . . I is characterized by a 2-tuple
(pi, di(ci)) where pi is the price charged for use of the service and di(ci) is some
measure of the quality of service perceived by the customer. Here, as opposed to
in [5, 2], the QoS shall depend upon, among other things, the capacity held by
firm i. Note that pi is independent of the usage level of the customer, referred
to as flat price in literature. (Usage-dependent prices are treated in [5, 2]).

The quality of service will be taken in the remainder of this paper to be
some measure of service performance, namely, the expected delay incurred on a
typical request. Note that it is possible to extend this framework to more than
two (possibly usage-dependent) service characteristics. For simplicity of analysis,
however, we shall continue to refer only to the two QoS characteristics of price
and capacity-dependent delay.

Each user is then characterized by a particular value of the variable α that
models his willingness to pay for a higher quality of service. That is, α gives
the user’s own tradeoff between price and delay. We shall suppose that the
user tradeoff parameter α is described by a random variable, distributed over
the population of potential customers and taking values in [0, 1]. Let F be the
distribution of α. Consider one potential customer n. Given his own value of the
tradeoff parameter, αn, the customer will optimize his choice of provider, among
the I firms, by choosing the one that minimizes his combined cost:

i∗ ∈ argmin
i
{αnpi + (1 − αn)γdi(ci)}, (1)

where γ = 1 and is introduced for dimension compatibility (e.g., if pi is in dollars
and di in minutes then the unit of γ is dollars/minutes). Observe that α is a
dimensionless quantity. Taking α to be a random variable is a critical feature; we
are in effect capturing the universe of users’ behaviors with respect to the cost
vs. quality tradeoff. For example, a user requiring low-priority service, for email
or file transfer operations, would be characterized by a high value of QoS, α,
e.g., close to 1, whereas a job requiring more bandwidth, faster service, etc. and
for which the user is willing to pay for the better quality, would be characterized
by a low value of α (e.g., close to 0). As has been observed in internet traffic as
well as in the population in general, the percentage of low values of QoS is much
higher than the percentage of high values, across users. This observation has an
impact on the form of the distribution of the tradeoff parameters, α, as we shall
discuss later in this paper.

Note that it is possible to have the tradeoff parameter be dimensionfull, call
it w –in units of dollars per time, by defining a generalized cost of p + wd(c). It
is this latter definition that was used in [5, 2]. Here, the use of a parameter that
varies from 0 to 1 facilitates some of our computation and hence the price-QoS
tradeoff parameter was normalized in the above manner.

We analyze the case of I = 2 providers. While [5] considered different price
structures (linear, flat, etc. and the different possible combinations of those across



providers), we simplify that part of the model here by letting all prices be flat,
i.e., usage independent, and instead exploit the explicit dependence of QoS on
the firm’s capacity.

Thus a customer chooses provider 1 if

αp1 + (1 − α)γd1(c1) < αp2 + (1 − α)γd2(c2), (2)

and chooses provider 2 otherwise.
Without loss of generality, we can suppose that p1 > p2. We can then note

that if d1(c1) ≥ d2(c2) then no rational user will join the first firm. In other
words, ∀α ∈ [0, 1], αp1 +(1−α)γd1(c1) ≥ αp2 +(1−α)γd2(c2). Therefore, as we
are interested in the scenario of competitive markets, we suppose that d1 > d2,
that is, the supplier 1 offers a better quality of service (lower delay) but as such
charges a higher subscription price. We will then denote in the following by d
and p the delays and prices differences respectively:

d = d2(c2) − d1(c1) > 0 and p = p1 − p2 > 0.

In the general setting of usage-based pricing there are thresholds for which
one or the other supplier is cost-effective for a user. Since in our model, the
customer pays a one-time subscription fee for both providers the threshold is
only in α and can be written as α ≤ γd

p+γd
for choosing supplier 1. Indeed, since

supplier 1 offers a better QoS (lower delay), users with lower price-QoS tradeoff
parameters prefer supplier 1.

The threshold value of the price-QoS tradeoff parameter, ŵ = γd
p+γd

deter-
mines the split of users between the two providers. We also introduce the notation
F̄ = 1 − F . Thus the profits of providers 1 and 2 can be expressed as follows:

{

Π1(p) = λp1F (ŵ) − ξ1c1,
Π2(p) = λp2F̄ (ŵ) − ξ2c2,

(3)

where ξi are the marginal costs of providing capacity for each of the firms,
i = 1, 2. This can represent e.g., the amount paid by the provider i to the
bandwidth agent if he leases capacity.

3 Modeling Capacity-related QoS metrics

The arrival process of customers is a Poisson process with rate λ. To customer
n we associate a vector (Sn, αn) where Sn is the amount of work brought by
user n and αn is the preference parameter which reflects the customer’s choice.
The amount of work brought by a customer has some general distribution with
mean 1/µ and second moment σ2. Each customer is processed at the server in a
particular discipline, e.g. First-In-First-Out (FIFO), Last-In-First-Out (LIFO),
Processor Sharing (PS), etc. An arriving customer joins the server which min-
imizes its disutility function which we take as a function of the QoS perceived
by the user and the price paid by the user. Let us assume that {αn} are i.i.d.
random variables with distribution F .



We shall assume that both firms make use of the same service discipline. We
then have (see e.g. [6]) the following expressions for average delay depending on
the service disciplines at each firm’s servers:

– Case I – FIFO/LIFO: Then each server can be modeled as an M/G/1 queue
with FIFO/LIFO service. The mean delay at server i (i = 1, 2), di is given
by the classical Pollaczek-Khinchin formula:

D1 =
λF (ŵ)σ2

2c1

(

c1 −
λF (ŵ)

µ

) and D2 =
λF̄ (ŵ)σ2

2c2

(

c2 −
λF̄ (ŵ)

µ

) .

– Case II – PS or LIFO with pre-emption: The mean delay is insensitive to
the service distribution and is same as the delay in an M/M/1 FIFO queue
with mean service rate = 1/µ. Thus:

D1 =
1

µc1 − λF (ŵ)
and D2 =

1

µc2 − λF̄ (ŵ)
. (4)

Observe that (4) is implicit in di, as the right hand side is also a function of di,
since ŵ = γd

p+γd
. We shall next study the sensitivity of delay to capacity for some

specific distributions for α. We restrict the analysis to the case where delays are
given by (4).

3.1 Existence of Solutions

Consider a system in which the two competitors announce prices p1 and p2

and expected delay d1 and d2. The customers arrive and join the queue which
minimizes their disutility function. Thus there is an independent splitting of the
aggregate arrival process λ based on the two portions of the price-QoS tradeoff
distribution, into λ1 = λF (ŵ) and λ2 = λF̄ (ŵ) where λi is the rate of Poisson
arrivals at firm i, i = 1, 2. Di are the true mean delays (given by (4)) and di are
the announced delays. We do not consider here cases when the firms can cheat
the customers by announcing a smaller delay but later not satisfying it, i.e.,
Di > di, for any i = 1, 2 (because the capacity of the firm may not be sufficient
to provide the announced delay to the customers). Also we are not interested in
the case when Di < di, for any i = 1, 2, because this will result in less revenue for
the firm i. Thus our study is restricted to the scenario where Di = di, i = 1, 2;
in other words, we are interested in the study of the fixed point equations (4).

Proposition 1. Let pi and ci be given, for all i. Then, for any CDF F , the
system of fixed point equations (4) admits at most one solution.

Proof. Let us assume there are two sets of solutions to (4), (d1, d2) and (d̃1, d̃2).
Also, let us suppose that d̃1 > d1. From equation (4), we can write that d−1

1 +
d−1
2 = µ(c1 +c2)−λ = d̃1+ d̃2 which is constant for given parameters. Therefore,

we have d2 > d̃2 > d̃1 > d1 Thus d̃ = d̃2 − d̃1 < d = d2 − d1, implying γd
p+γd

>
γd̃

p+γd̃
. Therefore ŵ < ˜̂w and finally, as F is non-decreasing: d1 = 1

µc1−λF (ŵ) ≥
1

µc1−λF (˜̂x)
= d̃1 which is a contradiction. ut



3.2 A general Beta distribution for price-QoS tradeoff α

We shall suppose throughout that α follows a Beta distribution with parameters
a, b. The use of the Beta distribution on a random variable over the interval [0, 1]
is very natural, and flexible. Indeed, depending on how one sets the two param-
eters, a and b, one can obtain a distribution approaching normal, exponential,
uniform, etc. over the given, finite interval.

The probability density f(x) and the cumulative distribution function F (x)
of the Beta distribution are characterized by (with a, b > 0):

f(x) =
Γ (a + b)

Γ (a)Γ (b)
(1 − x)b−1xa−1, (5)

F (x) =
Γ (a + b)

Γ (a)Γ (b)

∫ x

0

ua−1(1 − u)b−1du. (6)

Remark 1. Most types of market scenarions can be captured by working with
different values of a and b in the Beta distribution for α. For example, to char-
acterize the price-QoS-queueing game when the value-of QoS tradeoff param-
eter is not uniform, one can choose parameters a and b so that the form of
the Beta distribution is skewed towards the origin, much like a truncated log-
normal distribution over [0, 1]. This can capture the dynamics of a quality dom-
inant market. Further with a = 3, b = 2, the distribution is skewed towards
1, making the market predominantly price-dominant and with a = 3, b = 3,
the market is sort of an average market ( For price-dominant market one gets

F (ŵ) = 12
∫ ŵ

0
(1 − u)u2du = 12ŵ3

(

1
3 − 1

4 ŵ
)

and for an average market F (ŵ) =

12
∫ ŵ

0 (1 − u)2u2du = 30ŵ3
(

1
3 − ŵ

2 + ŵ2

5

)

.)

3.3 Feasible Solutions

Having characterized the distribution of α we proceed to obtain the solution set
di, i = 1, 2 of (4). From (4) we have

d =
1

µc2 − λF̄ (ŵ)
−

1

µc1 − λF (ŵ)
. (7)

We now introduce a variable X to represent the fraction of users joining the
second operator’s system times λ. Thus X = λF̄ (ŵ). Also define A = µc1 −
λ and B = µc2. Then from (7) we have:

d = d1 − d2

=
1

B − X
−

1

A + X
. (8)

Solving for X , we obtain:

X =
d(B − A) − 2 + ε

√

d2 (A + B)
2

+ 4

2d
, with ε = ±1. (9)



The following Lemma allows to constrain the feasible values of X and assures
that X needs to be greater than (B-A)/2 and hence ε = 1:

Lemma 1 (Existence of a solution to (4)). Any feasible solution X must
satisfy

max(0,−A,
B − A

2
) ≤ X ≤ min(λ, B). (10)

Thus, a necessary condition for the system of fixed point equations (4) to have
at least one solution is max(0,−A, B−A

2 ) ≤ min(λ, B), or equivalently that :

λ

µ
≤ c1 + c2 and c2 − c1 ≤

λ

µ
. (11)

That is, together, the two providers can accommodate all the traffic, and the
capacity of the second provider (with the higher price and lower delay) is not too
much larger than that of the first.

Proof. The constraint 0 ≤ X ≤ λ is given by the definition of X . The constraint
B−A

2 ≤ X results from the fact that d > 0. Finally, the positivity of d1 and d2

implies that −A ≤ X ≤ B. ut

Note that, from Lemma 1 we have B−A
2 ≤ X and therefore ε = +1 in

equation (9). Let us assume that a and b are integers. Then from the definition
of F (.) in (6), we note that for any pair (a, b) ∈ N 2, F is a polynomial of order
a + b − 1. From (9) we conclude that an acceptable X satisfies:

2λŵF̄ (ŵ) = (B − A)ŵ − 2
(1− ŵ)

p
+

√

(A + B)2ŵ2 +

(

2(1 − ŵ)

p

)2

. (12)

Thus ŵ can be solved as the solution of a 2(a + b) order polynomial from (12).
Observe that atmost one solution of (12) is acceptable as the feasible solution ŵ.
Indeed, it is the cut-off value-of-QoS parameter, ŵ, which allows us to compute
the market share of each firm.

In the next section, we explicitly solve this quantity when the Beta distribu-
tion parameters are both equal to 1, thereby defining a uniform distribution of
price-QoS tradeoffs on the interval [0, 1].

4 Application: uniformly distributed price-QoS tradeoff

parameter α

We consider a special case of our model in which we let the distribution of α be
uniform on the interval [0, 1]. Then, a = 1, b = 1 in (6) and F (ŵ) = ŵ, and we
have X = λ(1 − ŵ), which gives d

p
= λ−X

X
. Equation (12) allows us to write X

as a solution of a fourth order polynomial.



However, by substituting d
p

= λ−X
X

in (8), we obtain X as the solution of the
third order polynomial:

P (X) − R(X) = 0, (13)

where P (X) = p(A + X)(B − X)(λ − X) and R(X) = X(A − B + 2X).

Thus, X can be found by examining the intersection of P and R. As P is
a third order polynomial, there is either one or three possible values for X .
However, observe, from Lemma 1 that the solutions of (13) may not all be
acceptable in our system.

Proposition 2. In the case of uniformly-distributed price-QoS tradeoff parame-
ters α, when the conditions (11) are satisfied, (13) has always a feasible solution,
where feasibility means a solution satisfying (10).

Proof. We must distinguish three cases, shown in Figs. 1-3. We can check that
that for any values of c1 and c2, (13) always admits three real roots, that we
denote by X1, X2 and X3 with X1 < X2 < X3. We can also check that the only
acceptable solution to our system is X2.

min(B, λ)

max(B, λ)

0

(A+X)(B−X)(λ−X)

(A−B+2X)

−A

B−A
2

Fig. 1. Case 1: µc1 < λ

max(B,

min(B,
0

A
B−A
2

− λ)

λ)

(A+X)(B−X)(
(A−B+2X)

λ−X)

Fig. 2. Case 2: µc1 > λ and
µc2−µc1+λ

2
< 0

– Case 1: µc1 < λ (i.e., c1 ≥ λ
µ
): the first operator does not have a capacity

large enough to handle all the traffic. In that case, we recall that Lemma 1
imposes that µc2−µc1+λ

2 ≤ min(λ, µc2). Also µc2−µc1+λ
2 ≥ λ− µc1. Then the

system has exactly one feasible solution (see Fig. 1).

– Case 2: µc1 > λ and µc2−µc1+λ
2 < 0. As λ − µc1 ≤ µc2−µc1+λ

2 , the system
has exactly one solution (see Fig. 2).

– Case 3: µc1 > λ and µc2−µc1+λ
2 > 0 (i.e., c1 − c2 ≥ λ

µ
). Then, the result

comes from the fact that µc2−µc1+λ
2 ≤ min(µc2, λ) (see Fig. 3).

ut



−A
0 min(B,

max(B,

(A+X)(B−X)

(A−B+2X)

(

λ)
λ)

λ−X)

B−A
2

Fig. 3. Case 3: µc1 > λ and µc2−µc1+λ

2
> 0

Proposition 3. If the system satisfies the constraints of Lemma 1 then Car-
dan’s formula gives the unique solution X as:

X∗ = −
(µc1 − µc2 − 2λ)p − 2

3p

+
2

3p
Cos

[

1

3
(4π + ArcCos(Y)

]

√

2 + pG2 + 3pH + (µc1 − λ)I , (14)

where, G = (µc2 − µc1 + 2λ)), H = −µc2(1 + pλ), I = (1 + p(µc2 + λ)), and

Y =
−27(µc1−λ)µc2p

3λ + 2(2 + pG)3 − 9p((µc1−λ)p − 1 − I)(H + (µc1−λ)I)

2
√

(2 + pG2 + 3pH + (µc1−λ)I)3
.

Remark 2. Obtaining a closed form equation for X = λF̄ (ŵ) is of interest since
the profit functions of each provider are linear in X (from Equation (3)). Observe
further from (8) that di’s can be directly obtained from X .

In this section, we have studied the case of a uniform distribution of the
price-QoS tradeoff parameter. We have shown that if the providers choose their
capacities so that they can accommodate all the traffic, and the capacity of the
provider with the higher price and lower delay is not too much larger than that
of the other then the the price-delay-capacity system admits a unique solution.
Finally, we gave an analytical formulation of this solution. Additionally, we for-
mulated X as the intersection point of two polynomials. In the next section we
shall exploit this characterization to obtain qualitative results on the properties
of X .



4.1 Sensitivity analysis

We would like to determine the influence of the parameters c1, c2, λ and the
price difference, p, on X , the market share of provider 2. One can show that:

Proposition 4. The market share of the second provider (X ≡ X∗) is increas-
ing in c2, the price difference p and the total arrival rate λ, and decreasing in
c1.

Proof. Let us define hc1,c2,λ,p(X) = P (X) − R(X):

hc1,c2,λ,p(X) = p(µc1 −λ+X)(µc2 −X)(λ−X)−X(µc1 −µc2 −λ+2X). (15)

As seen in the previous section, h is null and locally decreasing at X = X∗.
The local behavior of X with the parameters c1, c2, λ and p is given by the
sign of the quantities hc′

1
,c2,λ,p(X), hc1,c′

2
,λ,p′(X), hc1,c2,λ′,p(X) and hc1,c2,λ,p′(X)

respectively where c′1 > c1, c′2 > c2, λ′ > λ and p′ > p. As each of these h function
is locally decreasing and X is a continuous function of parameters c1, c2, p and λ,
we conclude that if these quantities are positive, then X is an increasing function
with their related parameter and decreasing otherwise.

One can show that: hc1,c2,λ,p′(X) = X(µc1 − λ − µc2 + 2X)p′
−p
p

. Therefore

if p′ > p, then hc1,c2,λ,p′(X) ≥ 0 and X is an increasing function with p.

Similarly:

{

if X 6= µc2, hc1,c′

2
,λ,p(X) = X(µc1 + X)

µc′

2
−µc2

µc2−X
,

else hc1,c′

2
,λ,p(X) = µc2(µc′2 − µc2).

And :

{

if X 6= λ − µc1, hc′

1
,c2,λ,p(X) = X(µc2 − X)

µc1−µc′

1

µc1+X

else hc′

1
,c2,λ,p(X) = −µc2(µc2 + µc′1 − λ).

We finally study the impact of λ. Let us suppose that X 6= λ and X 6= λ−µc1.
We can write hc1,c2,λ′,p(X) =

X

[

(λ′ − X)(µc1 − λ′ + X)

(λ − X)(µc1 − λ + X)
(µc1 − λ − µc2 + 2X) − (µc1 − λ′ − µc2 + 2X)

]

.

hc1,c2,λ′,p(X) = X
(λ−X)(µc1−λ+X)

[(λ′ − X)(µc1 − λ′ + X)(µc1 − λ − µc2 + 2X)
−(λ − X)(µc1 − λ + X)(µc1 − λ′ − µc2 + 2X)]

≥ X
(µc1−λ+X)

[(µc1 − λ′ + X)(µc1 − λ − µc2 + 2X)
−(µc1 − λ + X)(µc1 − λ′ − µc2 + 2X)]

≥ X
(µc1−λ+X) [(λ′ − λ)(µc2 − X)] .

ut

We note that, while the behavior of x as a function of c1, c2 and p is intuitive,
the results obtained for λ is quite interesting. It states that in a competitive
market, an increase in the total load benefits the provider having a higher delay
or “poorer” service.



5 Conclusions and suggestions for further research

We have presented an extension of a line of competitive market models of e-
commerce services, such as web hosting, or the internet. The novelty of these
models is that they employ a randomly-distributed value of tradeoff parameter,
which captures the way different firms, or individuals, react to a palette of price-
QoS tradeoffs. In this work, we included the explicit dependence of QoS on
a system’s capacity, through queueing models. This allows a good number of
further generalizations to follow: capacity planning, hierarchical, or Stackelberg,
equilibrium, Nash equilibrium models in terms of capacity, etc.

The underlying framework is, however, significantly more complex than with-
out the explicit QoS-capacity relationships. Our contribution is to present the
derivations needed to make use of this framework, since obtaining a single feasi-
ble point requires the solution of a complex fixed point equation. We provided a
general representation of the price-QoS tradeoffs that uses the flexible Beta dis-
tribution, as well as an application to uniformly-distributed tradeoff parameters,
which is a special case of the beta distribution.

It is clear that it would be of great value to make use of this framework
and study the resulting Nash equilibrium, under various hypotheses. Indeed,
several questions are of interest: does the resulting Nash system have a nontrivial
solution, that is, one in which pi 6= 0, i = 1, 2 for different assumptions on the
forms of the distribution function F , and, if so, what are the properties of that
equilibrium? For capacity planning, we must go one step further; supplier 1 is
interested in optimally setting its capacity, given the capacity of its competitor(s)
and the equilibrium prices. Therefore supplier 1 formulates a bilevel program, over
c1 and (p1, p2), where (p1, p2) are given by the Nash equilibrium problem across
both suppliers. This formulation is also known as a Stackelberg equilibrium, in
which supplier 1 represents the “leader” since he can set his capacity and predict
the price responses of the competition. Preliminary studies that we have done
indicate that, contrary to the constant-delay cases (see e.g., [5]), once capacity-
delay relationships are explicitly taken into account, price wars may ensue in a
Nash equilibrium. This very preliminary observation requires further study.
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