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Abstract 

Global vision consensus on the next generation of wireless mobile communications, broadly termed 4G, 
sketches a hybrid infrastructure, comprising different wireless access systems in a complementary 
manner and vested with reconfiguration capabilities that facilitate a flexible and dynamic adaptation of 
the wireless infrastructure to meet the ever-changing service requirements. We identify essential 
metadata classes to support the reconfiguration of communication systems, introducing a respective 
object-oriented UML model. We elaborate on the design rationale that underpins the UML model, 
describing its classes and associations and discussing the possible metadata representation technologies 
and encoding formats. We proceed to identify existing metadata standards that are candidate for the 
representation of reconfiguration metadata, discussing and evaluating their suitability. Ultimately, we 
present a developed reconfiguration metadata description vocabulary and illustrate its application with 
an example. 

Introduction 

Over the last decade, the mobile industry has developed into a breeding ground for innovative wireless 
access technologies. In addition to second (2G) and third (3G) generation mobile communication systems, 
broadband WLAN type systems such as HIPERLAN/2, IEEE 802.11 and broadcast systems like DAB and 
DVB-T are becoming available and short range connectivity systems like Bluetooth are being developed 
rapidly. Considering that the observed proliferation of wireless access technologies is likely to persist and 
that future mobile devices will need to support multiple dissimilar wireless access standards, the mobile 
communication industry has been focusing on the reconfigurability concept as a technological enabler of 
future (multi-standard) mobile systems and radio resource management across different wireless standards. 
The now widely accepted vision for reconfigurable systems and networks sketches a seamless ubiquitous 
computing and communication infrastructure where mobile and immobile devices may proactively and/or 
reactively adapt their own communication capabilities by dynamically discovering, selecting, downloading 
and activating software implementations for the communication personalities they wish to assume in any 
given time instance. 

 
The rest of the paper proceeds as follows: The next section highlights the fundamental concepts of 

reconfiguration, introducing key definitions and providing an overview of current approaches as well as the 
related standardization status. Next we focus in the realm of each individual reconfigurable system and 
introduce a generic object-oriented UML model that facilitates discovery of reconfiguration options (i.e., 
the reconfiguration space) to support the application of reconfiguration within and across communication 
standards. We go on to elaborate on the design rationale of the UML model, followed by a discussion and 
brief evaluation of instrumentation options. Finally, we conclude the paper and highlight directions for 
future work. 



Reconfiguration – Basic definitions and standardization issues 

In general, the term reconfiguration refers to the (dynamic) instantiation, parameterization and inter-
connection of protocols (i.e., communication-related functional entities) within the user, control and 
management planes of a collection of operating communication systems in a manageable, consistency-
preserving and – preferably – transparent fashion. For the rest of the paper, the term reconfiguration will 
refer to the dynamic adaptation of implementation mappings of internal (communication) equipment 
components [1] that does not compromise their consistency or their ability to provide their services. 
Leveraging the work of from early software radio projects in the military domain [2], SDR Forum has 
pioneered in exploring reconfiguration in the domain of wireless communications. However, being the 
vanguard of reconfiguration developments and the first to define a software radio architecture [3], seems to 
have come at the expense of a rather restricted view on reconfiguration that focuses primarily on the radio 
domain (e.g., RF processing, down-conversion, IF processing, A/D conversion, etc) [4]. Soon it was 
realized that, restricting the concept of reconfiguration solely to radio-dependent communication 
functionality under control of mobile network operators or equipment manufacturers only, would severely 
limit its application domain and undercut its beneficial impact on the long run. Support grew on the 
viewpoint that the full potential of reconfiguration would best be served by opening up reconfigurable 
device capabilities to the wider service provision process and leveraging technical expertise in third-parties 
(e.g., software developers) [5], creating an open market for (software) implementations of reconfigurable 
equipment components that will propel the development of universally reconfigurable mobile systems.  

 
The (now joint) Parlay/OSA standardization initiative has been a major step forward towards the 

openness of the mobile value chain and the participation of multiple players in mobile service provision. 
However, it did not anticipate the case of reconfigurable systems; Parlay/OSA consider the network 
infrastructure as immutable and specify logical interfaces for invoking the particular functionality it 
supports. Although not precluded by their logical architecture, the case of reconfigurable wireless networks 
and mobile systems capable of dynamically adapting their internal instrumentation is beyond the scope of 
the current standard which does not include reconfiguration-supporting interfaces. This shortcoming has 
been identified in [6] along with the need for appropriate Parlay/OSA extensions to support third-party 
driven reconfiguration actions upon the mobile network infrastructure.  

 
Another paramount issue not yet identified in the literature that should be addressed by standardization, 

and which is explicitly identified here, concerns the specification of an appropriate object model for 
reconfigurable communication systems. Architectures supporting reconfiguration will require a suitable 
object-oriented information model to capture and express the internal organization and structure of 
reconfigurable equipment in an abstract, implementation neutral way that effectively provides the unified 
view necessary to start specifying a generic reconfiguration capability.  Through object orientation and 
inheritance, common parts can be factored out and reused as an abstract foundation model from which 
wholly different instrumentation inherit, thereby allowing a fine-grain mix of standardized behavior with 
innovative, performance-focused, proprietary instrumentations. Object orientation does not necessarily 
restrict the granularity of structural analysis to individual classes and objects; use of more coarse-grain 
analysis modules (i.e., components) is also possible (and to a large extent desirable). 

Designing for a generic reconfiguration capability 

Reconfigurable systems must be adaptable at two different levels: the base level that includes the 
(software-based) instrumentations of communication-related functionality and the so-called meta-level 
comprising the (abstract) specifications of that functionality. That will allow development of architectures 
supporting adaptation between different (software-based) instrumentations of communication personality 
and across disparate communication personalities (e.g., ad-hoc, cellular, broadcast, etc) in a uniform way. 
From that viewpoint, generic support structures like architectural frameworks for flexibly expressing and 
circulating reconfiguration-related metadata become of paramount importance. The next section introduces 
a UML model designed to provide suitable metadata abstractions for the development of manageable 
reconfigurable communication systems in beyond 3G mobile networks. 



Modeling reconfiguration metadata 
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Fig. 1. The object-oriented information model for reconfiguration metadata. 

Product, the root abstract class in our model, specifies a ‘marketable’ item (i.e., a resource that may 
constitute the subject of an exchange in an economic system), which can be identified through a textually 
represented name. It includes a single (URI-convertible) URL attribute that provides a unique identifier of 
each individual product instance as a Web-identifiable resource, thereby streamlining it to the Semantic 
Web model and its Resource Description Framework (RDF) [7]. 

 
Service is a subclass of Product that refers to some precisely defined functionality and has a textual 

description property. It is meant to provide an abstract yet unambiguous placeholder for a service’s 
definition accompanied by a textual descriptor that might be associated with arbitrary formal semantics, 
provided those semantics support a textual representation. It is not particularly important whether a unique 
formal format is employed for the service descriptor, since generic adaptation mechanisms may be used to 
identify the appropriate handler for each available format. However, it is of paramount importance that the 
service descriptor identifies the service unambiguously, an overlooked issue that is further elaborated on in 
the subsection entitled “Metadata encoding”. 

 
Specification is a subclass of Product with additional (textual) attributes, namely author, version, release, 

description and summary. Specification provides an abstract class for commonly representing behavioral 
and/or functional specifications (e.g., the specification of a authentication protocol). It is meant to provide a 
first-class abstraction for standards developed and published by authoritative bodies, such as the Universal 
Mobile Telecommunication System (UMTS) specifications developed and published by the 3rd Generation 
Partnership Project (3GPP). Currently, such specifications are recorded in a documentation system in 
various human-readable formats, such as the IETF Request For Comments (RFC) textual system. The lack 
of a common (machine-interpretable) format for specifications published by different authoritative bodies 



rules out the possibility of having those specifications parsed, understood and exploited by an intelligent 
agent in control of reconfigurable communication capabilities.  

 
Standard is a subclass of specification designed to provide a generic container for related specification 

instances, in order to facilitate modeling of specifications that reference (as opposed to specialize) other 
specifications, possibly published by a different authoritative body (to the one that publishes the standard). 
The 3GPP specification of the IP Multimedia Subsystem (IMS) in UMTS is an example of a standard that 
leverages specifications developed by a different authoritative body (i.e., the IETF SIP specification). We 
stress that, through the Specification and Standard classes, inheritance-based as well as composition-based 
modeling of actual communication standards is supported, thereby rendering the full spectrum of modeling 
options available to the designer [8]. 

 
Implementation is a subclass of Product that refers to a real-life (software) artifact, which may realize 

multiple specifications. It is meant to model the real-life software instrumentation of a specification but 
may also be used to represent software-based functionality that is not associated to a particular specification 
(e.g., utility functionality). Given that an implementation may be developed in different programming 
languages and supporting technologies (e.g., C, C++, Java, .NET) and packaged in various deployment 
formats (e.g., Microsoft CAB, RedHat Linux RPM), modeling of implementations should provide unified 
support for different deployment artifacts through a common base class, such as the DeploymentArtifact 
abstract class included in Fig. 1. 

Metadata associations 

A particular specification may depend on the availability of multiple services much as it may render 
multiple services. Similarly, a particular implementation, in addition to the set of services that its associated 
specifications collectively require and realize, may depend on the availability of additional services to 
function properly and may realize additional services during operation. Because they apply to Specification 
and Implementation instances alike, these concerns are expressed through a pair of associations between 
the Product and Service classes named requirement and realization, respectively. 

  
Access to the aforementioned associations is supported based on an application of the Iterator design 

pattern [8] that abstracts the implementation details of the association from client entities. An agent may 
navigate these associations through an Iterator instance returned by any of the (getRequiredServiceIterator, 
getProvidedServiceIterator) and (getRequiringProductIterator, getProvidingProductIterator) method pairs 
of the Product and Service classes, respectively, rendering client implementations dependent solely on the 
Iterator interface, while the supporting implementation of the navigation facility may vary arbitrarily from a 
local database row set to an hyperlinked knowledgebase distributed over the Internet or any suitable 
combination. Finally, an implementation may de dependent upon the availability of other implementations 
to function properly (e.g., object libraries), a concern expressed through the requirementImplementation 
association. 

 
Regarding the relation between Specification and Implementation instances, we should note that it is not 

mandatory that an Implementation instance be associated to a Specification instance; it might as well be an 
implementation of utility functionality not subject to standardization yet required by other implementations. 
Thus, the case of an Implementation unassociated to a Specification instance is considered valid. In the 
typical case, however, the association between a Specification and an Implementation is expressed via the 
realizationCertificate and requirementCertificate named (multilateral) associations. The former signifies 
that the Implementation instance realizes the behavior of the set of Specification instances, while the latter 
marks the dependence of the Implementation instance upon a set of Specification instances. Agents may 
navigate the realizationCertificate and requirementCertificate associations through an Iterator instance 
returned by any of the (getRequiredSpecificationIterator, getRequiringImplementationIterator) and 
(getProvidedSpecificationIterator, getProvidingImplementationIterator) method of the Implementation and 
Specification classes, respectively. 



Metadata encoding 

The aforementioned UML model provides a common information model for expressing reconfiguration 
metadata that may be exploited by a reconfiguration management process. Considering that reconfiguration 
metadata may be subject to processing and exchange in different administrative domains, it should be 
represented in an instrumentation-independent format that ensures interoperability. Two recommendations 
of the World-Wide-Web Consortium, XML [9] and RDF [10] are considered as prime candidates for this 
task. In general, XML is easier to use and manipulate, while RDF has greater capabilities for expressing 
semantically rich information. However, only RDF is capable of unambiguous semantic representation, 
since there is an explicit unique interpretation of any RDF data, based on the RDF Model Theory [11]. 
Consequently, a certain piece of information can be represented in RDF in exactly one unique way, while 
in XML many different representations with the same meaning are possible [12]. This advantage of RDF 
comes at the cost of being more verbose and significantly more complex, making it less attractive for the 
vast majority of users and developers [13]. 

 
In our approach, all reconfiguration metadata are represented in RDF, while the vocabulary employed by 

the RDF representation is a combination of W3C-standard RDF vocabulary, industry-used vocabularies and 
an extension vocabulary defined in an RDF Schema document, all using XML as a serialization format. An 
extension vocabulary named RCM that is derived from an isomorphic mapping [14] of the aforementioned 
UML model to an RDF Schema document has been developed and used to describe the UML model classes 
and associations. To ease prototype implementation, we chose the widely used the Red Hat Package 
Manager (RPM) vocabulary [15], a superset of the Linux Standard Base Specification [16], for representing 
the metadata of the DeploymentArtifact class. Reconfiguration metadata are represented using the RCM 
extension vocabulary, which, thanks to the namespace extensibility mechanism of RDF, provides also for 
integration to the standard RDF and RPM vocabularies. The text below serves as an illustrative example of 
our RDF Schema applied for the case of the 3GPP GTP specification, which is dependent upon an ITU 
service identified via its RDF URI.  

 
<?xml version="1.0"?> 
<rdf:RDF xmlns:RDF="http://www.w3.org/TR/WD-rdf-syntax#" 
         xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:RPM="http://www.rpm.org/" 
         xmlns:rcm="http://cnl.di.uoa.gr/People/Gazis/RCM/1.0/" 
  <rcm:Specification rdf:about="GTP610"> 
   <rcm:Name>GTP</rcm:Name> 
 <rcm:URL> 
http://www.3gpp.org/ftp/Specs/archive/29_series/29.060/29060-610.zip" 
 </rcm:URL> 
 <rcm:Author>3GPP</rcm:Author> 
   <rcm:Version>6.1.0</rcm:Version> 
   <rcm:Release>6</rcm:Release> 
   <rcm:Description> 
GTP provides user data tunnelling within and across GPRS domains 
 </rcm:Description> 
   <rcm:Summary> 
 GPRS Tunnelling Protocol (GTP) across the Gn & Gp interfaces specification 
 </rcm:Summary> 
   <rcm:Provides rdf:parseType="Collection"> 
    <rdf:Description 
rdf:about="http://www.itu.ch/specifications/services/transport/reliable.rdf"/> 
    <rdf:Description 
rdf:about="http://www.itu.ch/specifications/services/general/tunnelling.rdf"/> 
   </rcm:Provides> 
   <rcm:Requires rdf:parseType="Collection"> 
    <rdf:Description 
rdf:about="http://www.itu.ch/specifications/services/transport/unreliable.rdf"/> 
   </rcm:Requires> 
  </rcm:Specification> 
</rdf:RDF> 
 
The primary reason for preferring RDF over XML for metadata representation is that RDF has been 

specifically designed for unambiguous representation. Considering that RDF models can be serialized in 



XML, RDF provides an ideal instrument for unambiguously representing reconfiguration metadata whilst 
supporting their serialization into an interoperable, machine-interpretable textual format that can be widely 
circulated across different administrative domains without alteration of semantics. Naturally, the higher 
complexity associated with RDF is the price to pay for semantic univocality – although we feel that other 
significant benefits, such as seamless plug-in to the Semantic Web infrastructure and laying the foundation 
for a reconfiguration knowledge base upon which to build self-aware, cognitive communication systems, 
offset the cost in the long run. 

Conclusions 

In the forthcoming future, mobile communication devices will be vested with a cognitive introspective 
intelligence that monitors its operational context as well as its own instrumentation, adapting it whenever 
and wherever it deems necessary and in any way it sees fit through the dynamic download and assembly of 
software components into standard-compliant operating instrumentations. Availability of appropriate 
reconfiguration metadata is a prerequisite to the advent of introspective cognition capabilities and a 
facilitator of efficient reconfigurations, an issue that has not been at the focus of mobile communication 
research. Similarly, efficiency concerns dealing with the optimality of different metadata representation 
standards for the representation of reconfiguration metadata have met little attention in the literature. On 
the Parlay/OSA initiative front, reconfiguration is yet to be included in the standardization agenda and the 
issue of object-oriented models as reconfiguration enabling frameworks remains in research twilight. We 
address these issues by introducing a generic object-oriented model to express reconfiguration metadata 
that will enable future systems to evolve not just the instrumentation of their behavior but the behavior 
itself, thus facilitating reconfigurations across disparate network architectures (e.g., ad-hoc, cellular) and 
deployment topologies. In addition to design issues, we have discussed and evaluated the potential of 
existing technologies and related standards for representing and encoding reconfiguration metadata in a 
machine-interpretable format that can be circulated across different administrative domains without 
semantic losses. Future extensions of our work will focus on the development of appropriate algorithms to 
support service-driven reconfiguration of mobile communication devices, both for inter- and intra- standard 
scenarios in order to assess algorithm complexity and to conduct comparative performance evaluations. 
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