
Metadata Design for Introspection-Capable Reconfigurable Systems

Vangelis Gazis, Nancy Alonistioti, Lazaros Merakos

Communication Networks Laboratory, Department of Informatics & Telecommunications,
University of Athens, 157 84, Athens, Greece,

email:{gazis, nancy, merakos}@di.uoa.gr

Abstract

Global vision consensus on the next generation of wireless mobile communications, broadly termed 4G,
sketches a hybrid infrastructure, comprising different wireless access systems in a complementary
manner and vested with reconfiguration capabilities that facilitate a flexible and dynamic adaptation of
the wireless infrastructure to meet the ever-changing service requirements. We identify essential
metadata classes to support the reconfiguration of communication systems, introducing a respective
object-oriented UML model. We elaborate on the design rationale that underpins the UML model,
describing its classes and associations and discussing the possible metadata representation technologies
and encoding formats. We proceed to identify existing metadata standards that are candidate for the
representation of reconfiguration metadata, discussing and evaluating their suitability. Ultimately, we
present a developed reconfiguration metadata description vocabulary and illustrate its application with
an example.

Introduction

Over the last decade, the mobile industry has developed into a breeding ground for innovative wireless
access technologies. In addition to second (2G) and third (3G) generation mobile communication systems,
broadband WLAN type systems such as HIPERLAN/2, IEEE 802.11 and broadcast systems like DAB and
DVB-T are becoming available and short range connectivity systems like Bluetooth are being developed
rapidly. Considering that the observed proliferation of wireless access technologies is likely to persist and
that future mobile devices will need to support multiple dissimilar wireless access standards, the mobile
communication industry has been focusing on the reconfigurability concept as a technological enabler of
future (multi-standard) mobile systems and radio resource management across different wireless standards.
The now widely accepted vision for reconfigurable systems and networks sketches a seamless ubiquitous
computing and communication infrastructure where mobile and immobile devices may proactively and/or
reactively adapt their own communication capabilities by dynamically discovering, selecting, downloading
and activating software implementations for the communication personalities they wish to assume in any
given time instance.

The rest of the paper proceeds as follows: The next section highlights the fundamental concepts of

reconfiguration, introducing key definitions and providing an overview of current approaches as well as the
related standardization status. Next we focus in the realm of each individual reconfigurable system and
introduce a generic object-oriented UML model that facilitates discovery of reconfiguration options (i.e.,
the reconfiguration space) to support the application of reconfiguration within and across communication
standards. We go on to elaborate on the design rationale of the UML model, followed by a discussion and
brief evaluation of instrumentation options. Finally, we conclude the paper and highlight directions for
future work.

Reconfiguration – Basic definitions and standardization issues

In general, the term reconfiguration refers to the (dynamic) instantiation, parameterization and inter-
connection of protocols (i.e., communication-related functional entities) within the user, control and
management planes of a collection of operating communication systems in a manageable, consistency-
preserving and – preferably – transparent fashion. For the rest of the paper, the term reconfiguration will
refer to the dynamic adaptation of implementation mappings of internal (communication) equipment
components [1] that does not compromise their consistency or their ability to provide their services.
Leveraging the work of from early software radio projects in the military domain [2], SDR Forum has
pioneered in exploring reconfiguration in the domain of wireless communications. However, being the
vanguard of reconfiguration developments and the first to define a software radio architecture [3], seems to
have come at the expense of a rather restricted view on reconfiguration that focuses primarily on the radio
domain (e.g., RF processing, down-conversion, IF processing, A/D conversion, etc) [4]. Soon it was
realized that, restricting the concept of reconfiguration solely to radio-dependent communication
functionality under control of mobile network operators or equipment manufacturers only, would severely
limit its application domain and undercut its beneficial impact on the long run. Support grew on the
viewpoint that the full potential of reconfiguration would best be served by opening up reconfigurable
device capabilities to the wider service provision process and leveraging technical expertise in third-parties
(e.g., software developers) [5], creating an open market for (software) implementations of reconfigurable
equipment components that will propel the development of universally reconfigurable mobile systems.

The (now joint) Parlay/OSA standardization initiative has been a major step forward towards the

openness of the mobile value chain and the participation of multiple players in mobile service provision.
However, it did not anticipate the case of reconfigurable systems; Parlay/OSA consider the network
infrastructure as immutable and specify logical interfaces for invoking the particular functionality it
supports. Although not precluded by their logical architecture, the case of reconfigurable wireless networks
and mobile systems capable of dynamically adapting their internal instrumentation is beyond the scope of
the current standard which does not include reconfiguration-supporting interfaces. This shortcoming has
been identified in [6] along with the need for appropriate Parlay/OSA extensions to support third-party
driven reconfiguration actions upon the mobile network infrastructure.

Another paramount issue not yet identified in the literature that should be addressed by standardization,

and which is explicitly identified here, concerns the specification of an appropriate object model for
reconfigurable communication systems. Architectures supporting reconfiguration will require a suitable
object-oriented information model to capture and express the internal organization and structure of
reconfigurable equipment in an abstract, implementation neutral way that effectively provides the unified
view necessary to start specifying a generic reconfiguration capability. Through object orientation and
inheritance, common parts can be factored out and reused as an abstract foundation model from which
wholly different instrumentation inherit, thereby allowing a fine-grain mix of standardized behavior with
innovative, performance-focused, proprietary instrumentations. Object orientation does not necessarily
restrict the granularity of structural analysis to individual classes and objects; use of more coarse-grain
analysis modules (i.e., components) is also possible (and to a large extent desirable).

Designing for a generic reconfiguration capability

Reconfigurable systems must be adaptable at two different levels: the base level that includes the
(software-based) instrumentations of communication-related functionality and the so-called meta-level
comprising the (abstract) specifications of that functionality. That will allow development of architectures
supporting adaptation between different (software-based) instrumentations of communication personality
and across disparate communication personalities (e.g., ad-hoc, cellular, broadcast, etc) in a uniform way.
From that viewpoint, generic support structures like architectural frameworks for flexibly expressing and
circulating reconfiguration-related metadata become of paramount importance. The next section introduces
a UML model designed to provide suitable metadata abstractions for the development of manageable
reconfigurable communication systems in beyond 3G mobile networks.

Modeling reconfiguration metadata

Metadata classes

RPM CABDEB JAR

Iterator

hasNext()
next()

<<Interface>>

Product
name : String
url : String

getRequiredServiceIterator() : Iterator
getProvidedServiceIterator() : Iterator

Service
descriptor : String

getDescriptorClass() : String
getDescriptor() : String
getRequiringProductIterator() : Iterator
getProvidingProductIterator() : Iterator

0..n

0..n

+requiredByProduct

0..n

+requiredService

0..n

requirement

0.. n

1..n

+providedByProduct

0.. n

+providedService

1..n

real ization

Standard

getSpecificationIterator() : Iterator

DeploymentArtifact

download() : void
install() : void
uninstall() : void

Specification
author : String
version : String
release : String
descript ion : String
summary : S tring

getRequiringImplementationIterat or() : It erator
getProvidingIm plementat ionIt erator() : Iterator

0..n

0..n

+referencedSpecifications

0..n

+referencedByStandards 0..n

Implementation

getRequiredSpecificat ionIterator() : Iterator
getProvidedSpecificationIterator() : Iterator
getRequiredImplementationIterator() : Iterator
getDeploy mentArtifactIterator() : Iterator

1..n -deploy mentArtifact1..n

0..n0..n

+providedByImplementation

0..n

+providedSpecification

0..n realizationCertificate

0..n
0..n

+requiredByImplementation 0..n
+requiredSpecification

0..n

requirementCert if icate

0..n

0..n

+requiredOtherImplementation

0..n

+requiredByOtherImplementation
0..n

Thing

getClassName() : St ring

requirementImplementation

Fig. 1. The object-oriented information model for reconfiguration metadata.

Product, the root abstract class in our model, specifies a ‘marketable’ item (i.e., a resource that may
constitute the subject of an exchange in an economic system), which can be identified through a textually
represented name. It includes a single (URI-convertible) URL attribute that provides a unique identifier of
each individual product instance as a Web-identifiable resource, thereby streamlining it to the Semantic
Web model and its Resource Description Framework (RDF) [7].

Service is a subclass of Product that refers to some precisely defined functionality and has a textual

description property. It is meant to provide an abstract yet unambiguous placeholder for a service’s
definition accompanied by a textual descriptor that might be associated with arbitrary formal semantics,
provided those semantics support a textual representation. It is not particularly important whether a unique
formal format is employed for the service descriptor, since generic adaptation mechanisms may be used to
identify the appropriate handler for each available format. However, it is of paramount importance that the
service descriptor identifies the service unambiguously, an overlooked issue that is further elaborated on in
the subsection entitled “Metadata encoding”.

Specification is a subclass of Product with additional (textual) attributes, namely author, version, release,

description and summary. Specification provides an abstract class for commonly representing behavioral
and/or functional specifications (e.g., the specification of a authentication protocol). It is meant to provide a
first-class abstraction for standards developed and published by authoritative bodies, such as the Universal
Mobile Telecommunication System (UMTS) specifications developed and published by the 3rd Generation
Partnership Project (3GPP). Currently, such specifications are recorded in a documentation system in
various human-readable formats, such as the IETF Request For Comments (RFC) textual system. The lack
of a common (machine-interpretable) format for specifications published by different authoritative bodies

rules out the possibility of having those specifications parsed, understood and exploited by an intelligent
agent in control of reconfigurable communication capabilities.

Standard is a subclass of specification designed to provide a generic container for related specification

instances, in order to facilitate modeling of specifications that reference (as opposed to specialize) other
specifications, possibly published by a different authoritative body (to the one that publishes the standard).
The 3GPP specification of the IP Multimedia Subsystem (IMS) in UMTS is an example of a standard that
leverages specifications developed by a different authoritative body (i.e., the IETF SIP specification). We
stress that, through the Specification and Standard classes, inheritance-based as well as composition-based
modeling of actual communication standards is supported, thereby rendering the full spectrum of modeling
options available to the designer [8].

Implementation is a subclass of Product that refers to a real-life (software) artifact, which may realize

multiple specifications. It is meant to model the real-life software instrumentation of a specification but
may also be used to represent software-based functionality that is not associated to a particular specification
(e.g., utility functionality). Given that an implementation may be developed in different programming
languages and supporting technologies (e.g., C, C++, Java, .NET) and packaged in various deployment
formats (e.g., Microsoft CAB, RedHat Linux RPM), modeling of implementations should provide unified
support for different deployment artifacts through a common base class, such as the DeploymentArtifact
abstract class included in Fig. 1.

Metadata associations

A particular specification may depend on the availability of multiple services much as it may render
multiple services. Similarly, a particular implementation, in addition to the set of services that its associated
specifications collectively require and realize, may depend on the availability of additional services to
function properly and may realize additional services during operation. Because they apply to Specification
and Implementation instances alike, these concerns are expressed through a pair of associations between
the Product and Service classes named requirement and realization, respectively.

Access to the aforementioned associations is supported based on an application of the Iterator design

pattern [8] that abstracts the implementation details of the association from client entities. An agent may
navigate these associations through an Iterator instance returned by any of the (getRequiredServiceIterator,
getProvidedServiceIterator) and (getRequiringProductIterator, getProvidingProductIterator) method pairs
of the Product and Service classes, respectively, rendering client implementations dependent solely on the
Iterator interface, while the supporting implementation of the navigation facility may vary arbitrarily from a
local database row set to an hyperlinked knowledgebase distributed over the Internet or any suitable
combination. Finally, an implementation may de dependent upon the availability of other implementations
to function properly (e.g., object libraries), a concern expressed through the requirementImplementation
association.

Regarding the relation between Specification and Implementation instances, we should note that it is not

mandatory that an Implementation instance be associated to a Specification instance; it might as well be an
implementation of utility functionality not subject to standardization yet required by other implementations.
Thus, the case of an Implementation unassociated to a Specification instance is considered valid. In the
typical case, however, the association between a Specification and an Implementation is expressed via the
realizationCertificate and requirementCertificate named (multilateral) associations. The former signifies
that the Implementation instance realizes the behavior of the set of Specification instances, while the latter
marks the dependence of the Implementation instance upon a set of Specification instances. Agents may
navigate the realizationCertificate and requirementCertificate associations through an Iterator instance
returned by any of the (getRequiredSpecificationIterator, getRequiringImplementationIterator) and
(getProvidedSpecificationIterator, getProvidingImplementationIterator) method of the Implementation and
Specification classes, respectively.

Metadata encoding

The aforementioned UML model provides a common information model for expressing reconfiguration
metadata that may be exploited by a reconfiguration management process. Considering that reconfiguration
metadata may be subject to processing and exchange in different administrative domains, it should be
represented in an instrumentation-independent format that ensures interoperability. Two recommendations
of the World-Wide-Web Consortium, XML [9] and RDF [10] are considered as prime candidates for this
task. In general, XML is easier to use and manipulate, while RDF has greater capabilities for expressing
semantically rich information. However, only RDF is capable of unambiguous semantic representation,
since there is an explicit unique interpretation of any RDF data, based on the RDF Model Theory [11].
Consequently, a certain piece of information can be represented in RDF in exactly one unique way, while
in XML many different representations with the same meaning are possible [12]. This advantage of RDF
comes at the cost of being more verbose and significantly more complex, making it less attractive for the
vast majority of users and developers [13].

In our approach, all reconfiguration metadata are represented in RDF, while the vocabulary employed by

the RDF representation is a combination of W3C-standard RDF vocabulary, industry-used vocabularies and
an extension vocabulary defined in an RDF Schema document, all using XML as a serialization format. An
extension vocabulary named RCM that is derived from an isomorphic mapping [14] of the aforementioned
UML model to an RDF Schema document has been developed and used to describe the UML model classes
and associations. To ease prototype implementation, we chose the widely used the Red Hat Package
Manager (RPM) vocabulary [15], a superset of the Linux Standard Base Specification [16], for representing
the metadata of the DeploymentArtifact class. Reconfiguration metadata are represented using the RCM
extension vocabulary, which, thanks to the namespace extensibility mechanism of RDF, provides also for
integration to the standard RDF and RPM vocabularies. The text below serves as an illustrative example of
our RDF Schema applied for the case of the 3GPP GTP specification, which is dependent upon an ITU
service identified via its RDF URI.

<?xml version="1.0"?>
<rdf:RDF xmlns:RDF="http://www.w3.org/TR/WD-rdf-syntax#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:RPM="http://www.rpm.org/"
 xmlns:rcm="http://cnl.di.uoa.gr/People/Gazis/RCM/1.0/"
 <rcm:Specification rdf:about="GTP610">
 <rcm:Name>GTP</rcm:Name>
 <rcm:URL>
http://www.3gpp.org/ftp/Specs/archive/29_series/29.060/29060-610.zip"
 </rcm:URL>
 <rcm:Author>3GPP</rcm:Author>
 <rcm:Version>6.1.0</rcm:Version>
 <rcm:Release>6</rcm:Release>
 <rcm:Description>
GTP provides user data tunnelling within and across GPRS domains
 </rcm:Description>
 <rcm:Summary>
 GPRS Tunnelling Protocol (GTP) across the Gn & Gp interfaces specification
 </rcm:Summary>
 <rcm:Provides rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.itu.ch/specifications/services/transport/reliable.rdf"/>
 <rdf:Description
rdf:about="http://www.itu.ch/specifications/services/general/tunnelling.rdf"/>
 </rcm:Provides>
 <rcm:Requires rdf:parseType="Collection">
 <rdf:Description
rdf:about="http://www.itu.ch/specifications/services/transport/unreliable.rdf"/>
 </rcm:Requires>
 </rcm:Specification>
</rdf:RDF>

The primary reason for preferring RDF over XML for metadata representation is that RDF has been

specifically designed for unambiguous representation. Considering that RDF models can be serialized in

XML, RDF provides an ideal instrument for unambiguously representing reconfiguration metadata whilst
supporting their serialization into an interoperable, machine-interpretable textual format that can be widely
circulated across different administrative domains without alteration of semantics. Naturally, the higher
complexity associated with RDF is the price to pay for semantic univocality – although we feel that other
significant benefits, such as seamless plug-in to the Semantic Web infrastructure and laying the foundation
for a reconfiguration knowledge base upon which to build self-aware, cognitive communication systems,
offset the cost in the long run.

Conclusions

In the forthcoming future, mobile communication devices will be vested with a cognitive introspective
intelligence that monitors its operational context as well as its own instrumentation, adapting it whenever
and wherever it deems necessary and in any way it sees fit through the dynamic download and assembly of
software components into standard-compliant operating instrumentations. Availability of appropriate
reconfiguration metadata is a prerequisite to the advent of introspective cognition capabilities and a
facilitator of efficient reconfigurations, an issue that has not been at the focus of mobile communication
research. Similarly, efficiency concerns dealing with the optimality of different metadata representation
standards for the representation of reconfiguration metadata have met little attention in the literature. On
the Parlay/OSA initiative front, reconfiguration is yet to be included in the standardization agenda and the
issue of object-oriented models as reconfiguration enabling frameworks remains in research twilight. We
address these issues by introducing a generic object-oriented model to express reconfiguration metadata
that will enable future systems to evolve not just the instrumentation of their behavior but the behavior
itself, thus facilitating reconfigurations across disparate network architectures (e.g., ad-hoc, cellular) and
deployment topologies. In addition to design issues, we have discussed and evaluated the potential of
existing technologies and related standards for representing and encoding reconfiguration metadata in a
machine-interpretable format that can be circulated across different administrative domains without
semantic losses. Future extensions of our work will focus on the development of appropriate algorithms to
support service-driven reconfiguration of mobile communication devices, both for inter- and intra- standard
scenarios in order to assess algorithm complexity and to conduct comparative performance evaluations.

References

1. Tang, Z.: Dynamic reconfiguration of component-based applications in Java, M.Sc. thesis, MIT, September
2000.

2. Cox, M. C.: Joint tactical radio system (JTRS), presentation available from http://www.jtrs.sarda.army.mil/.
3. Bickle, J.: Software radio architecture (SRA) 2.0 overview, OMG TC, December 11, 2000, Orlando, Florida.
4. Blust, S. M.: SDR definitions, SDR Forum Plenary & Technical Committee, September 1, 2000.
5. Pereira, J.: Beyond software radio, VTC Fall 1999, Amsterdam, Netherlands, September 22, 1999.
6. Alonistioti, A., Houssos, N., Panagiotakis, S.: A framework for reconfigurable provisioning of services in

mobile networks, International Symposium on Communications Theory & Applications (ISCTA), Ambleside
Cumbria UK (2001).

7. Manola, F., Miller, E.: RDF Primer, see http://www.w3.org/TR/rdf-primer/.
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object Oriented

Software, Addison Wesley Longman (1995).
9. XML: Extensible Markup Language home page, see http://www.w3.org/XML/.
10. RDF: Resource Description Framework home page, see http://www.w3.org/RDF/.
11. Hayes, P.: RDF Semantics, see http://www.w3.org/TR/rdf-mt/.
12. Berners Lee, T.: Why RDF model is different from the XML model, W3C discussion note, see

http://www.w3.org/DesignIssues/RDF-XML.html.
13. Butler, M.: Barriers to the real world adoption of Semantic Web technologies, HP Labs Technical Report,

HPL-2002-333, see http://www.hp.com/.
14. Chang, W.: A discussion of the relationship between RDF-Schema and UML, W3C discussion note, see

http://www.w3.org/TR/1998/NOTE-rdf-uml-19980804.
15. Red Hat Package Management format, see http://www.rpm.org/.
16. Linux Standard Base Specification, see http://www.linuxbase.org/.

