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Abstract

Subset Difference Revocation (SDR) [7] has been proposed to perform group rekeying in a stateless
manner. However, statelessness comes at a cost in terms of key storage and messaging overhead when
the number of currently active members is much smaller than the number of potential group members
[3]. In this paper, we propose a dynamic SDR scheme to address these two problems. Briefly, rather
than maintaining a large static key tree that can accommodate all potential group members, we use a
smaller dynamic key tree for only currently active members. We dynamically assign current members
to the positions in the key tree rather than using fixed pre-assignment. The smaller key tree requires less
key storage and dynamic assignment achieves a smaller rekeying cost. We also describe enhancements
to dynamic SDR that further improve performance. Our evaluation shows that the dynamic scheme
significantly improves the performance of SDR, reducing by half the rekey communication cost in the
case that the number of the currently active members is much less than the total number of potential
members. Also, compared to the SDR in [7], dynamic SDR does not need to know the maximum
number of potential group members in advance, a value that can be difficult to estimate in practice.
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1 Introduction

Membership-based applications, such as pay-per-view and specialized information services (e.g., stock

price, live news), require that information content be delivered to (and only to) subscribed members. This

is typically accomplished by encrypting data using a common Traffic Encryption Key (TEK) that is shared

by all currently active members. When a member joins the group, the TEK must be changed to ensure that

the newly joining member cannot decrypt previous communications (a requirement known as “backward

confidentiality”). Similarly, the TEK must be changed when a member leaves the group to ensure that future

messages cannot be decrypted by the departing member (a requirement known as “forward confidentiality”).

The algorithms that manage the distribution, updating and revocation of the TEK are collectively known as

group key management protocols. The IETF MSEC framework suggests using a Group Controller and Key

Server (GCKS) for rekeying. Generally, the TEK is encrypted using Key Encryption Keys (KEKs) and then

multicast by the GCKS. Several works have dealt with the group rekeying problem [2, 5, 6, 7, 8, 9, 10].

Subset Difference Revocation (SDR) [7] has been proposed as a “stateless” group rekeying algorithm.

By stateless, it is meant that members do not need to keep track of rekeying messages in order to maintain

their states. A consequence of statelessness is that a member that misses one or more rekeying messages

can still receive and decrypt future rekeying messages correctly, without having to first recover the missing

keys. This very desirable property comes as a price, however [3] - SDR can require high key storage at both

the member and GCKS sides, and can generate a significant amount of messaging traffic during rekeying.

These two problems arise from the fact that SDR maintains a static key tree that is constructed in ad-

vance. This tree must be large enough to hold all potential members. Since key storage cost is determined

by the size of the key tree [7], key storage costs can thus be large. Further, a member joining the group is

attached to a pre-assigned position in the key tree. Assuming that member activity is independent of posi-

tion, when the number of currently active members is much smaller than the number of potential members,

the positions occupied by active members are likely to be sparse, i.e., there are many holes (positions not

occupied by an active member) among the positions occupied by active members. The sparse distribution of

these positions can cause SDR to perform as inefficiently as encrypting the TEK separately for each active

member [3]. We will refer to the SDR proposed in [7] as static SDR in this paper.

In this paper, we propose a dynamic SDR scheme to reduce both the key storage cost and the rekey

communication cost of static SDR. Dynamic SDR uses a key tree that is large enough to hold currently

active members (as opposed to all members, both active and inactive) in order to reduce key storage. This
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is done by dynamically assigning a joining member a new position in the tree. Ideally, our goal will be to

position active members adjacent in the key tree in order to reduce rekeying cost.

This paper has the following contributions. First, we design a new group rekeying algorithm, dynamic

SDR. The algorithm is based on Subset Difference and uses a dynamic key tree to reduce both storage

costs and messaging overhead. The algorithm is “multicast stateless” (i.e., it does not require nodes to

maintain states when receiving the multicast rekeying messages, which distribute only TEKs) and does not

require a priori knowledge of the number of potential members. Secondly, we propose and evaluate several

enhancements on dynamic SDR. Our simulations shows that dynamic SDR significantly reduces both the

key storage cost and rekey communication cost when the number of currently active members is much less

than the number of potential members. Finally, we investigate the tradeoff between the unicast and multicast

costs in dynamic SDR.

The rest of the paper is organized as follows: In Section 2, we briefly overview the static Subset Dif-

ference Revocation algorithm. The dynamic SDR scheme is described in Section 3. Section 4 presents our

evaluation. Section 5 discusses various properties of dynamic SDR. Related work is given in Section 6.

Finally, we conclude the paper in Section 7.

2 Background: Subset Difference Revocation Algorithm

Static SDR [7] is a tree-based group key management protocol. Under static SDR, the GCKS maintains a

binary key tree and assigns a fixed position (a leaf in the key tree) to each distinct member. For a finite set of

potential members N (N = |N |), it needs to maintain a tree with N leaves. For simplicity, we assume that

log2 N is an integer and that the key tree is balanced. Let M ⊆ N be the set of members currently active

in the group and M = |M|. To distribute an updated TEK, the GCKS uses a Subset-Cover framework to

partition M into disjoint subsets such that the union of the resultant subsets is M, i.e., a member belongs

to a resultant subset iff the member is in M. Each subset is assigned a long-lived key during initialization.

The updated TEK is encrypted with the keys of the resultant subsets individually and multicast to M. Thus

the keys of subsets are KEKs of SDR. SDR is a stateless algorithm for the KEKs are unchanged after

initialization such that each member m in M is able to deduce the KEKs at each rekeying instance based

on the secret information received during initialization. The secret information allows m to deduce the keys

of all subsets to which m belongs.

In static SDR, the subsets are defined through the binary key tree. For a node i in the key tree, let Si
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ComputeLabel (i, j, Li) :
//Precondition: j is a descendant of i
(1) u = i, X = Li ;
(2) while (j is a descendant of u) {
(3) if (j is a descendant of u’s left child)
(4) X = GL(X), u = u’s left child;
(5) else X = GR(X), u = u’s right child;
(6) }
(7) return X;

Figure 1: Calculating Li,j on Li [7]

be the set of the potential members which are descendants1 of i. Given two nodes i and j, where j is a

descendant of i, subset Si,j is defined as Si\Sj . Let Ki,j be the key for Si,j . Ki,j can be computed as

follows [7]. Consider the subtree Ti (rooted at node i) in the key tree. The root i is assigned by the GCKS

a label Li. Given that a parent was labeled X , its two children are labeled GL(X) and GR(X) respectively,

where G is a pseudo-random sequence generator that outputs a random sequence whose length is three times

the length of the input (i.e., G : {0, 1}x 7→ {0, 1}3x); GL(X), GM (X) and GR(X) denote the left third,

the middle third and the right third of the output of input X . Let Li,j be the label of node j derived in the

subtree Ti from Li, following such a labeling process (pseudo-coded in Fig. 1). Then Ki,j takes the value

of GM (Li,j).

A member m is able to compute the key of a subset iff m belongs to the subset. During initialization,

each member m in N is delivered some secret information Im to compute relevant KEKs (Ki,j). For a

subtree Ti such that m is a leaf of Ti, m belongs to subset Si,j iff j is not an ancestor of m. Consider the

path from i to m and let i1, i2, . . . , ih be the nodes just “hanging off” the path, i.e., they are adjacent to the

path but not ancestors of m [7] (see Fig. 2(a)). Each node j in Ti that is not an ancestor of m is a descendant

of one of {i1, i2, . . . , ih}. Observe that m is able to compute Li,j for any descendant j of ik if Li,ik is

known to m. Thus in subtree Ti, m needs to know h labels: {Li,i1 , Li,i2 , . . . , Li,ih} ⊂ Im. There are total

log N nodes that are ancestors of m. It follows that the total number of labels in Im is (log2 N + log N)/2,

although the total number of subsets to which m belongs is O(N). For example, in the key tree in Fig. 2(b),

node 10 belongs to 16 subsets, i.e., S0,2, S0,5, S0,6, S0,11, S0,12, S0,13, S0,14, S0,3, S0,7, S0,8, S0,9, S1,3, S1,7,

S1,8,S1,9, S4,9. However, it only needs 6 labels: {L0,2, L0,3, L0,9, L1,3, L1,9, L4,9} to calculate Ki,j for all of

the 16 subsets. In [7], the authors point out that Im also includes an additional key corresponding to the case

1In this paper, a node is a descendant of itself, but not an ancestor of itself.
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when all potential members are in the group (i.e., M = N ). As a result, |Im| = (log2 N + log N)/2 + 1.
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Figure 2: Static SDR key tree

The secure delivery of Im to m can be done through secure unicast or an off-line method. It is important

to note that Im is the only required information for member m to participate in the group communication

for the statelessness of SDR. Also note that Im is determined by the position of m in the key tree. As

a consequence, once a leaf position in the key tree is assigned to a member m, that position cannot be

assigned to any other member even when m is currently not in the group. That is the reason why the GCKS

in static SDR needs to maintain a key tree large enough for N . Typically, in static SDR, a returned member

(a member joining the group again after leaving) is assigned to the position that the member was assigned

last time.

The number of the resultant subsets of M is determined by the positions of members of M in the key

tree of size N . Generally speaking, under the assumption that member activity is independent of position in

the key tree, the larger the difference between N and M , the more likely that active members are sparsely

distributed in the key tree, resulting in O(M) disjoint subsets. On the other hand, the smaller the difference

between N and M , the more adjacent the positions of active members in the key tree, resulting in O(N −

M) disjoint subsets. As pointed out by [3], given M , the expected number of resultant subsets of M is

Θ(min(N − M, M)). When M < N/2, the expected number of resultant subsets is Θ(M). Moreover,

static SDR requires O(N log N) storage overhead at the GCKS [3], and O(log2 N) storage overhead at the

member side.
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3 Dynamic SDR

We have seen that static SDR generally requires a very large key tree, which must accommodate all unique

members. As a consequence, currently active members, usually a small fraction of all of the unique mem-

bers, are likely to be widely dispersed in the key tree space. Both of these factors decrease the performance

of SDR. In this section, we propose a dynamic SDR approach that addresses these two inefficiencies of static

SDR.

First, we describe an observation on static SDR, based on which dynamic SDR is proposed.

In the binary key tree of SDR, a node i has a height of h if the subtree rooted at i has 2h leaves. For

example, all leaves have a height of 1. The height of Ti and Si,j are also defined as the height of node i. The

size of Si,j is |Si,j | = |Si| − |Sj |.

Proposition 1. In the key tree T of static SDR, if there exists a set of disjoint subtrees {Ti} with the same

height H such that

(1) leaves of T=
⋃

i{leaves of Ti};

(2) each Ti has at least one leaf in N\M, i.e., a member currently inactive,

then all resultant subsets of M have height h ≤ H (Fig. 3(a)).

Proof: Since any subtree with a height of H has at least one leaf in N\M, there is no subtree Ts with a

height of h1 ≥ H such that all leaves in Ts are in M. Let Si,j be a resultant subset with height of h2 > H .

Let u be the child of i such that j is not a descendant of u. Now u has a height of h3 ≥ H . Consider the

subtree Tu, all leaves in Tu are now in Si,j , and thus in M. We then get a contradiction.

... ...
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... ...

...

...

... ...

...

...

... ...
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:subtree with

:member currently
 not active

H

:nodes not contributing
 to resultant subsets

(a) Static SDR key tree

... ... ... ...

...... ......

... ...

...

L =2 H

i i1 2

virtual rootr

ik

H

smaller subtree

(b) Dynamic SDR key tree using sub-
trees as allocation units

Figure 3: Constructing dynamic SDR key tree

Proposition 1 implies that, if such set of {Ti} exists in the key tree of static SDR, all nodes with height
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h > H will not contribute to the resultant subsets of M. In other words, the GCKS does not need to

maintain nodes with height h > H in the key tree. Instead, the GCKS only needs to maintain a set of

smaller subtrees satisfying Proposition 1 with an appropriate height H (we will address how to choose H

shortly). The idea of dynamic SDR is to dynamically maintain such set of subtrees.

3.1 Scheme of dynamic SDR

In dynamic SDR, the positions of members are not pre-assigned. Instead, the spaces in the key tree are

dynamically allocated and reclaimed, adapting to the current set of active members. More specifically, the

GCKS dynamically creates leaves when new member joins, or discards a subtree when all positions of the

subtree are inactive. By doing this, the GCKS maintains active members in a dynamic key tree, rather than

a large key tree constructed in advance.

For simplicity, we use set of subtrees {Tik} as allocation units, one can view the subtrees connected

to a virtual root r (Fig. 3(b)). Initially, the GCKS has a single subtree Ti1 connected to the virtual root r.

When a member joins the group, regardless of being a new member or a returned member, the member is

assigned to the next available position in the key tree (from left to right) and is unicast the secret information

associated with the new position. The GCKS thereafter encrypts and multicasts the updated TEK to the

current members in exactly the same way as in static SDR. If new positions are required (step (4) and (5) in

Fig. 4), the GCKS creates a new subtree Tik . When a member, m, leaves the group, the position becomes

empty and will never be used by any member (even m itself). And a new TEK is multicast to the members

that remain in the group. If all positions of the leftmost subtree become empty, the GCKS discards that

subtree. The pseudo code of this process is shown in Fig. 4. Note that step (5) is to maintain the second

condition in Proposition 1.

The advantages of maintaining such a dynamic-membership key tree are two-fold. First, instead of

maintaining a key tree that is sufficiently large to hold all potential members, dynamic SDR may require

a much smaller key tree of a size sufficient to accommodate the maximum number of concurrently active

members. This helps reduce key storage cost, both at the members and at the GCKS. Second, dynamic SDR

is able to utilize the temporal locality of the members’ joining and leaving activity. By assigning members

that arrive close in time to positions that are close in the key tree, the GCKS is likely to find a subset that

can cover many adjacent members. As a result, a small number of subsets will typically be needed to cover

the active members when a new TEK is disseminated. This implies that the messaging overhead associated

with rekeying is also reduced. Dynamic SDR achieves the advantages by introducing additional unicast,
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DynamicSDR(L):
//L = 2H ;
(1) RightmostSubtree=Ti1 ;
(2) while (the group is on) {
(3) case member-join:
(4) if (no available position in RightmostSubtree)
(5) or (RightmostSubtree has L − 1 positions attached by active members)
(6) Create a new subtree Tik ;
(7) RightmostSubtree=Tik ;
(8) Assign the newly joining member to the next available position u in RightmostSubtree;
(9) Unicast Iu to that member;
(10) Multicast updated TEK;
(11) case member-leave:
(12) Multicast updated TEK;
(13) if (all L positions of the leftmost subtree are empty)
(14) Delete the leftmost subtree;
(15) }

Figure 4: Key tree constructing algorithm in dynamic SDR

corresponding to deliver Iu to a joining member (step (9) in Fig. 4). However, the overall communication

cost (in bytes per second), can be reduced by more than 50% in comparison to that of static SDR, as we will

see in Section 4. We will also see the quantitative comparison of the unicast and multicast costs of dynamic

SDR in that section.

Since the key tree of dynamic SDR can be extended arbitrarily, dynamic SDR does not require a priori

knowledge of the size of total member population, N . This avoids the problem, which exists in static SDR,

of estimating N . Overestimating N makes the static SDR key tree unnecessarily large, increasing both

rekey communication cost and key storage cost, whereas, underestimating N may introduce the problem of

having to reject members when all positions have been assigned.

In dynamic SDR, however, the size, L = 2H , of SDR subtree Tik should be chosen properly, as we

describe next.

3.2 Determining L

The choosing of L is a design tradeoff. Based on Proposition 1, one subset covers at most L members.

Therefore, when L is small, more resultant subsets are required to cover M. Consequently, the multicast

cost increases. When L is large, we may still encounter the space inefficiency of static SDR that active
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members disperse in the subtree.

We thus choose L as a reasonable value of 2dlog E[M ]e, where E[M ] is the expected value of the number

of concurrent members. Ideally, we want to put the concurrent members in one subtree.

3.3 Key storage of dynamic SDR

In dynamic SDR, the size of secret information, |Im|, is reduced from (log2 N + log N)/2 + 1 to (log2 L +

log L)/2 + 1 for the following Proposition.

Proposition 2. In dynamic SDR, if a member, m, is assigned a position in subtree Tik , for any resultant

subset Si,j covering m, i is a descendant of ik.

Proof: Let Si,j be a resultant subset covering m. Node i must be a descendant or an ancestor of ik. This

is true since m ∈ Si and m is in Tik . If i is an ancestor of ik, i has a height of h1 > H . Then Si,j has a

height of h2 > H , which contradicts Proposition 1. Thus i must be a descendant of ik.

A consequence of the Proposition is that, in dynamic SDR, a member only needs to store labels associ-

ated with the subtree in which the member is assigned.

Although the key storage size required by a member is fixed when L is chose, this is not the case for the

GCKS. Key storage at the GCKS must be separately analyzed, since it is related to the number of subtrees

Tik . Assuming that the GCKS sequentially assigns the available positions of the key tree from the left to the

right to the joining members, we define S as the distance from the leftmost position occupied by an active

member to the first available position at the right side. These S positions are referred as the concurrent

spaces, which determine the key storage at the GCKS. To hold S concurrent spaces, at most dS/Le + 1

subtrees are required. Since the GCKS has 2L log L + 1 key storage for a subtree Tik of size L [3], it

follows that the key storage at the GCKS is (dS/Le + 1)(2L log L + 1).

When members arrive according to a Poisson process with rate λ and the time that each active member

stays in the group (which is referred as lifetime) is exponentially distributed with mean 1/µ, the expectation

of S can be computed as follows:

E[S] = ρe−ρ
∞∑

m=0

ρm

m!

m+1∑

i=1

1

i
(1)

where ρ = λ/µ.

Proof: A concurrent space is allocated when a new member arrives. Thus, the arrival rate of concurrent

9



spaces is λ, which is the same as the arrival rate of new members. A concurrent space is empty when the

corresponding member departs. A concurrent space is removed when it is empty and all “earlier-allocated”

concurrent spaces are removed. Let X denote the number of members in the group before a concurrent

space is allocated. In M/M/∞, the distribution of X is known as,

Pr(X = x) = e−ρ ρx

x!
(2)

Let T denote the sojourn time of a concurrent space. When X = x, we have

E[T |X = x] =
x+1∑

i=1

1

iµ
(3)

Therefore, we have

E[T ] =
∞∑

x=0

Pr(X = x)E[T |X = x]

= e−ρ
∞∑

x=0

ρx

x!

x+1∑

i=1

1

iµ
(4)

Using Little’s law, we get

E[S] = λE[T ] = ρe−ρ
∞∑

x=0

ρx

x!

x+1∑

i=1

1

i
(5)

Using Little’s law, the average number of the concurrent members E[M ] = ρ = λ/µ, thus E[S] can be

viewed as a function of E[M ], as shown in Fig. 5. The top curve in the figure presents E[S] as a function of

E[M ] according to (1), which shows that E[S] increases super-linearly with E[M ].

E[S] also depends on the distribution of members’ lifetime. If members’ lifetime is deterministic (e.g.,

members are First-In-First-Out), all currently active members will occupy consecutive positions in the key

tree. In this case, E[S] is identical to E[M ]. Generally, the higher variance members’ lifetime has, the larger

E[S] is.

A large value S results in an increased key storage at the GCKS side. Also, currently active members

disperse in the key tree as S increases, incurring more resultant subsets and thus more rekeying messages.

As a result, it is desirable to keep S small, a topic we address next.
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3.4 Reducing S by shifting

In this subsection, we propose a simple operation, namely shifting, that can be used to reduce S.

We define shifting as the operation of detaching the leftmost active member in the key tree and re-

attaching the member to the next available position (for new arrivals) in the key tree. This is based on the

consideration that in a dynamic SDR subtree, a leaf position assigned to a member cannot be assigned again.

When some holes (i.e., positions with departed members) are generated in the key tree, shifting the leftmost

active member may reduce the concurrent spaces, S, and make active members more adjacent, as illustrated

in Fig. 6.

... ...
S

...

:position with departed member :position with active member

... ......
S

:available position

Figure 6: Shifting member from left to right reduces S by 2

When active members are shifted, they are delivered new secret information associated with the new

positions by unicast. From the collusion-proof property of static SDR, we can show that shifting does not

jeopardize the confidentiality of the group communication – we will discuss this in detail in Section 5.

There are many strategies for shifting. Here, we investigate two approaches, namely probabilistic shift-

ing and threshold-based shifting. We start with probabilistic shifting, since it is simpler and also easier to

analyze.

11



3.4.1 Probabilistic shifting

Probabilistic shifting is defined as follows. When a member joins the group, that member is assigned to

the next available position in the key tree. Meanwhile, with a probability p, the GCKS shifts the leftmost

member, i.e., the leftmost active member is detached and re-attached to the position just to the right of the

newly arrived member. Note that the shifting probability p affects the tradeoff between the shifting cost,

associated with unicasting the secret information for the new position to the shifted member, and the value

of S. When p = 0, probabilistic shifting is identical to dynamic SDR without shifting, where the shifting

cost is zero while S is high. When p = 1, whenever a new member joins the group, the leftmost member

is shifted. In this case, S can be small while the shifting cost is relatively high. In practice, the shifting

probability p is a parameter set by the GCKS and can be application specific.

When members join the group according to a Poisson process with rate λ and a member’s lifetime is

exponentially distributed with mean 1/µ, we can compute the expected number of the concurrent spaces,

E(S), as a function of the shifting probability p:

E[S] = ρe−ρ
∞∑

m=0

ρm

m!
(
m+1∑

i=1

1

i + pρ
+ p

m∑

i=1

1

i + pρ
) (6)

where, ρ = λ/µ.

Proof: To make calculation easier, we adopt a slightly different probabilistic shifting algorithm without

changing the value of S. The difference is that, when X is 0 upon the arrival of a new member, the new

member would be treated as existing members and would be shifted with probability p at the same time.

A concurrent space is allocated when a new member arrives or a existing member shifts. Thus, the

arrival rate of concurrent spaces is λ(1 + p), which is the sum of the arrival rate of new members and the

shifting rate of existing members.

Let pN denote the probability that a concurrent space is occupied by a new member, and let pS denote

the probability that a concurrent space is occupied by a shifted member. We have

pN =
1

1 + p
, pS =

p

1 + p
(7)

Let TN denote the sojourn time of a concurrent space occupied by new members, and let TS denote the
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sojourn time of a concurrent space occupied by shifted members. We have

E[TN |X = x] = p
x∑

i=1

1

iµ + pλ
+ (1 − p)

x+1∑

i=1

1

iµ + pλ
(8)

E[TS |X = x] =

x+1∑

i=1

1

iµ + pλ
(9)

E[TN ] =
∞∑

x=0

Pr(X = x)E[TN |X = x] (10)

E[TS ] =
∞∑

x=0

Pr(X = x)E[TN |X = x] (11)

Therefore, we get

E[T ] = pNE[TN ] + pSE[TS ]

=
e−ρ

1 + p

∞∑

x=0

ρx

x!
(
x+1∑

i=1

1

iµ + pλ
+ p

x∑

i=1

1

iµ + pλ
) (12)

Using Little’s law, we get

E[S] = λE[T ] = ρe−ρ
∞∑

x=0

ρx

x!
(
x+1∑

i=1

1

i + pρ
+ p

x∑

i=1

1

i + pρ
) (13)

Fig. 5 presents the result of E[S] for p = 0, 0.1 and 0.5 respectively. We observe that E[S] decreases

as a function of p. In particular, when the expected group size E[M ] = 100K, the space-member-ratio,

E[S]/E[M ] is 12.11 for dynamic SDR without shifting, and reduces to 2.64 when the shifting probability

is 0.1, and further reduces to 1.65 when the shifting probability is 0.5. Thus, by introducing a small shifting

probability p, dynamic SDR can effectively reduce the average concurrent space S, therefore reducing the

key storage cost at the GCKS and potentially the rekey cost as well.

We have also investigated probabilistic shifting upon members’ departure and shifting according to a

fixed-rate Poisson process independent with members’ arrival or departure. The results (not shown due

to space constraint) are qualitatively similar to that of the probabilistic shifting with respect to members’

arrival. We next consider a different kind of shifting strategy – threshold-based shifting.
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3.4.2 Threshold-based shifting

We define the occupancy ratio γ as the number of active group members to the number of concurrent spaces,

i.e., γ = M/S. Informally, the occupancy ratio measures the compactness of the active group members in

the key tree space. The larger the occupancy ratio is, the more likely the members are adjacent to each other

in the key tree, and thus can be covered by fewer subsets. To keep the rekey process efficient, the GCKS

should keep the occupancy ratio high. A natural way to achieve this is to define a threshold Γ < 1; when

a member leaves the group, the GCKS computes the occupancy ratio γ and compares it to the threshold

Γ. If the occupancy ratio falls below the threshold (i.e., γ < Γ), the GCKS will keep shifting the leftmost

member until γ ≥ Γ. We refer to this strategy as threshold-based shifting.

As with the shifting probability p in the probabilistic shifting scheme, the threshold Γ is also an application-

specific parameter, whose value affects the tradeoff between the shifting cost (unicast) and the rekey cost

(multicast). Analyzing the tradeoff is difficult and may vary for different application scenarios. Thus, we

evaluate the choice of different thresholds through simulation, as discussed in Section 4.2.

3.5 Block alignment

So far, we have treated the newly arrived members and the shifted members identically when assigning a

member to an available position. However, a member that has been in the group for a long time and has

become the leftmost member in the key tree may have very different characteristics in terms of the remaining

service time (the duration that a member remains in the group), than that of a member who just joined the

group. For example, if the distribution of lifetime has a decreasing failure rate, the longer a member stays in

the group, the more likely this member will continue to stay in the group. Thus, it is preferable to separate

the shifted members and the newly arrived members so that members with similar remaining service time

can be assigned to positions adjacent to each other.

Given the above considerations, we further propose an enhancement to the dynamic SDR with shifting

scheme by allocating different blocks in the key tree for new members and shifted members. Fig. 7 presents

the pseudo-code for determining member’s position in the key tree. In the enhanced scheme, the positions

in the key tree are divided into blocks, each of which has size B = 2k and boundaries at positions that are

multiples of B. The positions within each block are either for shifted members only or for newly joined

members only. Furthermore, the GCKS always attaches a member to the next available position within the

block that corresponds to the status of the member (shifted or newly arrived). When all positions in one
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block are occupied, the GCKS will assign the member the first position in the next available block.

B is an application-specific parameter similar to p and Γ. We evaluate the effects of such block alignment

through simulation. The result will be presented in Section 4.2.

GetPosition(flag):
(1) static posnew = 1;
(2) static posshift = B + 1;
(3) static posavail = 2B + 1;

(4) switch (flag) {
(5) case join:
(6) retval = posnew;
(7) posnew + +;
(8) if (posnew%B == 1) //block is full
(9) posnew = posavail;
(10) posavial+ = B;
(11) case shift:
(12) retval = posshift;
(13) posshift + +;
(14) if (posshift%B == 1) //block is full
(15) posnew = posavail;
(16) posavial+ = B;
(17) }
(18) return retval;

Figure 7: Computing member’s position with block size B

4 Evaluation

In this section, we evaluate the performance of the dynamic SDR through simulation. We will first describe

the simulation model and the performance metrics, then present the results.

4.1 Simulation model and performance metrics

We assume a fixed total population N = 217 to which a GCKS provides key management, i.e., the number

of potential members is 217. Each member independently decides to join or leave the group. We approxi-

mate the members’ arrival by a fixed-rate Poisson process and assume that the lifetimes are independently

and identically distributed random variables. In the simulation, we evaluate different lifetime distribution
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functions, which include exponential, lognormal and uniform distribution.

In the following, we will present results for immediate-rekey scheme, i.e., the GCKS conducts group

rekey immediately after a member joins/leaves the group. The result for batch-rekey scheme is similar (not

presented due to space limit), since the performance of SDR is insensitive to the rekey period [3].

The performance metrics of interest are the key storage cost (both at the member side and at the GCKS

side) and rekey communication cost. We repeat each simulation with different seed five times and take

the average. The key storage cost is measured as the key storage described in the previous section. More

specifically, we assume to use 3DES for encryption and each label has 128-bits of storage.

The rekey communication cost is measured as the number of unit-size rekey messages (assuming one

message contains one 128-bit key) per unit time, which is further divided into multicast cost and unicast

cost.

The multicast cost includes the messages containing the updates for TEK that are multicast to the active

members. Since the GCKS needs to send one encrypted TEK for each subset, the multicast cost for dis-

tributing one update of TEK can be computed by the minimum number of subsets used to cover the active

members in the key tree. Since multicast rekeying occurs when a member joins or leaves the group, and

when the system is in steady state, the rate at which members depart the group should equal to the rate that

members join the group, we can compute the overall multicast cost CM as follows:

CM = 2λNSD

where λ is the arrival rate and NSD is the average number of subsets that the GCKS uses for one TEK

update.

The unicast cost includes the messages for delivering the secret information to a joining member or a

shifted member. Thus, the unicast cost can be computed by the key storage at the member side.

For static SDR scheme, the secret information is delivered to a user when that user joins the group for

the first time. Since a member’s position in the key tree is fixed, no additional unicast costs are incurred

when the member returns to the group. To favor static SDR, we assume that the system has been running

for long enough so that each member has received the secret information for its position. Thus, we count

the unicast cost for static SDR as zero.
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For dynamic SDR schemes, the unicast cost is computed as follows.

CU = (λ + v)NK

where v is the rate that members are shifted and NK is the key storage at the member side and equals to

(dlog E[M ]e2 + dlog E[M ]e)/2 + 1 based on the analysis result in Section 3.

The overall rekey communication cost of dynamic SDR is the weighted sum of the multicast cost and

the unicast cost. In the rest of the evaluation, we treat the cost of unicasting a message the same as that of

multicasting, even though the unicast cost should be much lower than the multicast cost with respect to the

number of links that the message travels. Some more discussion on the relative weight of the unicast cost

and multicast cost is included in Section 4.2.4.

In summary, the overall rekey communication cost of static SDR is

Cs = 2λN s
SD (14)

where N s
SD is the average number of subsets using static SDR for one TEK update.

The overall rekey communication cost of dynamic SDR is

Cd = 2λNd
SD + (λ + v)NK (15)

where Nd
SD is the average number of subsets using dynamic SDR for one TEK update.

4.2 Simulation results

4.2.1 Effects of group size

We have conjectured that dynamic SDR would have advantages over static SDR when the group size (the

number of concurrently active members) is much smaller than the total population (the number of distinct

potential members). Now we evaluate this conjecture by comparing the performance of static SDR and

dynamic SDR for different group sizes.

With a fixed total population (N = 217 = 131072) and a fixed mean lifetime (1/µ = 100), we use

different value of the arrival rate (λ) to vary the expected group size (E[M ] = λ/µ) from 100 to 1.3 × 105.

For now, we only consider the dynamic SDR scheme without shifting.
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Fig. 8 compares the key storage of static SDR and dynamic SDR for different group size with exponentially-

distributed lifetimes. The top two curves represent the key storage cost at GCKS and the bottom two curves

represent the key storage cost at member side. Since static SDR maintains a fixed key tree whose size is de-

termined by the total member population, its key storage costs, at both GCKS and member side, are invariant

with different group size. For dynamic SDR, however, the key storage increases when the expected group

size increases. Compared to static SDR, the member-side key storage cost of dynamic SDR is consistently

lower, since M is always smaller than N . However the GCKS key storage cost of dynamic SDR begins to

exceed that of static SDR as E[M ] increases. This is because the expected size of concurrent spaces E[S],

which includes both active members in the key tree and departed members in between, becomes larger than

N when E[M ] is significant (> 10%) compared to N .
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Figure 8: Key storage of static SDR and dynamic SDR for different group size

We next compare the rekey communication cost of static SDR, Cs, and dynamic SDR, Cd, as described

in (14) and (15) respectively. Fig. 9(a), 9(b) and 9(c) present the results for scenarios where the lifetime

distribution functions are exponential, uniform and lognormal, respectively. First, one can see that the results

for three scenarios are qualitatively similar. We also observe that the rekey communication cost of static SDR

increases as E[M ] increase, reaching a maximum when E[M ] is about N/2, and then starts to decrease

when E[M ] gets close to N . This behavior matches well the reasoning in Section 2 and is consistent with

the result in [3]. Furthermore, we observe that when E[M ] < 2 × 104, the rekey communication cost Cd

is much lower, nearly half, compared to Cs. This demonstrates the benefit of utilizing the temporal locality

of members’ activities, as in dynamic SDR. Only when E[M ] is greater than N/2, does Cs outperform Cd.

Again, this is because that members in static SDR are spatially constrained in the key tree and are naturally

adjacent to each other, resulting a smaller rekeying cost, while the distribution of members in dynamic SDR
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Table 1: Parameters of the simulation configurations
Config. ID Poisson arrival Distr. of lifetime Mean of lifetime Var. of lifetime

EXP λ = 10 exponential 100 104

UNI λ = 10 uniform 100 3.3 × 103

LOGl λ = 10 lognormal 100 103

LOGm λ = 10 lognormal 100 104

LOGh λ = 10 lognormal 100 105

key tree does not change when E[M ] is close to N .
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101

102

103

104

105

102 103 104 105 106

R
e

ke
y 

co
m

m
u

n
ic

a
tio

n
 c

o
st

E[M]

Cs
Cd

(c) Threshold-based shifting scheme

Figure 9: Rekey communication cost of static SDR and dynamic SDR for different group size

We have seen the benefit of dynamic SDR when M � N . In fact, many practical applications have this

property. For example, the MBone STS-71 session has M ≈ 360 while having N ≈ 4000 [1]. Another

example is in pay-per-view service: the number of people watching a movie at the same time, M , is usually

orders of magnitude smaller than the total number of people having cable TV, N . In such cases, dynamic

SDR will be useful.

In the next, we will focus on the scenario where M � N and evaluate the impact of shifting and block

alignment.

4.2.2 Impact of shifting

In this subsection, we study the performance of dynamic SDR with shifting. We consider the case where

E[M ] = 1000(� N). Table 1 shows the five different configurations that we use to obtain the simulation

results2. We simulate probabilistic shifting and threshold-based shifting strategies for each configuration.

2For other λ and µ that achieve the same E[M ], we have the similar results.
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Figure 10(a) shows the communication cost, Cd, of dynamic SDR with probabilistic shifting for the five

different configurations. We observe that, without shifting (p = 0), the rekey communication cost tends to

be higher when members lifetime is of high variance.
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Figure 10: Rekey communication cost of dynamic SDR combined shifting on configurations with E[M ] =
1000

With shifting (p > 0), we find two different kinds of behaviors among the five configurations. For con-

figurations EXP, LOGm and LOGh, which have high variance lifetime, increasing the shifting probability

generally reduces the rekey communication cost Cd. This is because, with no shifting, S is large; while

introducing shifting, although unicast cost is increased, S can be substantially reduced, which results in a

reduced multicast cost. Since multicast cost (> 200) dominates unicast cost (ranging from 28 to 56), the

overall rekey communication cost is also reduced.

For low variance configurations, UNI and LOGl, when increasing the shifting rate, the communication

cost Cd does not necessarily decrease. In these cases, S is close to M without shifting. Shifting cannot

reduce S much. On the contrary, shifting might affect the distribution of members in the key tree, which

may increase the number of subsets needed to cover the active members. In an extreme example where

member’s lifetime is deterministic (variance is zero), without shifting, active members are always adjacent

to each other in the key tree; adding shifting may break this pattern and may require more subsets to cover

the active members. As a result, the choice of optimal value of p depends on the lifetime distribution.

Fig. 10(b) shows the evaluation of threshold-based shifting scheme applied to the five configurations

in Table 1. In the figure, it appears that, all configurations have a local minimum rekey communication

cost when Γ ≈ 0.9. When Γ goes beyond 0.9, there is a dramatically increase of the rekey cost. This is
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because, for a threshold Γ > 0.9, even though multicast cost may be reduced, unicast cost associated with

frequent shifting becomes so high that the overall rekey cost is dramatically increased. Except for LOGl,

the local minimum rekey cost is also the global minimum. For configuration LOGl, although the global

minimum cost is achieved when Γ = 0, the local minimum rekey cost at Γ ≈ 0.9 is very close to the

global minimum. Thus choosing a proper value of the threshold parameter Γ is not as sensitive to members’

lifetime distribution as in probabilistic shifting.

4.2.3 Enhancement with block alignment

We next evaluate the performance of block alignment as an enhancement to probabilistic shifting and

threshold-based shifting for the five simulation configurations. Here we present the results of configura-

tion EXP and LOGh.

Fig. 11 plots the rekey communication cost when applying block alignment with B = 0, 2, 16 and 32 for

probabilistic shifting and threshold-based shifting. We observe that, for configuration EXP , introducing

block alignment (with various B) does not have much improvement on reducing rekey communication cost

(sometimes is even worse). This is due to the memoryless property of exponential distribution – a new

member has the same distribution of the remaining service time as shifted members. Thus assigning new

members and shifted members to positions in different blocks is of no help. However, for configuration

LOGh, the improvement of block alignment is significant. For example, using probabilistic shifting with

p = 1, rekey communication cost is 440 without alignment (B = 0), and reduces to 390 when B = 2, and

further reduces to 350 when B = 16. Furthermore, for this particular group size, we find that increasing

block size B beyond 16 does not provide much additional improvement. In practice, it is sufficient to use a

small value, 16 or 32, for B, so as to achieve most performance gain.

Compared to threshold-based shifting, improvement of using block alignment is more evident in proba-

bilistic shifting. This is because that, in probabilistic shifting, only one member is shifted at a time; thus it

is more likely that new members and shifted members interleave in the key tree. Block alignment helps in

avoiding this situation. But for threshold-based shifting, many members may be shifted at a time, making

them naturally adjacent to each other after shifting. Thus the effect of block alignment is limited.
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(b) Threshold-based shifting on EXP
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(c) Probabilistic shifting on UNIF
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(d) Threshold-based shifting on UNIF
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(e) Probabilistic shifting on LOGl
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(f) Threshold-based shifting on LOGl
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(g) Probabilistic shifting on LOGm
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(h) Threshold-based shifting on LOGm
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(i) Probabilistic shifting on LOGh
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Figure 11: Cost of dynamic SDR using shifting and alignment on the five configurations with E[M ] = 1000
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Figure 12: Tradeoff between unicast cost and multicast cost for different shifting schemes with E[M ] =
1000

4.2.4 Tradeoff between unicast cost and multicast cost

As described in Section 3, dynamic SDR reduces multicast costs by introducing additional unicast, by which

the secret information is delivered to shifted or returned members. Since the different strategies proposed

in this paper have different parameters (p or Γ) to configure, each of which reflects the tradeoff between

unicast cost and multicast cost. To compare different schemes, we study the tradeoff graph of these proposed

schemes as shown in Fig. 12. In the tradeoff graph, a point on a curve denotes the multicast and unicast cost

for the corresponding strategy with a particular parameter. For example, point A in Fig. 12 is associated with

unicast cost of 853 and multicast cost of 27, denoting the total cost of 880 for the threshold-based shifting

combined alignment of B=16 with parameter Γ = 0.98 (point A in Fig. 11(j)).

From the figure, we observe that reducing multicast cost comes at a cost of increasing unicast cost, and

vice versa. The relative weight of unicast cost and multicast cost affects the choice of the optimal schemes
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and the operating parameters. If we treat unicast cost as expensive as multicast cost, in the tradeoff graph,

all points on a line with a slope -1 are equally preferable. While points on a line close to point (0,0) are

preferred over points on lines far away. In this sense, the threshold-based shifting combined alignment with

block size B=16 offers the best tradeoff among the algorithms considered, achieving an optimal value with

multicast cost of 146 and unicast cost of 114 (point B in Fig. 12(a)). In general, if the relative weight of

unicast cost and multicast cost is w, the equal-preference lines will have slope −w in the tradeoff graph. In

this case, the best approach and the optimal parameters may be different.

Fig. 12(b), Fig. 12(c), Fig. 12(d) and Fig. 12(e) present tradeoff on configurations LOGl, LOGm, EXP

and UNIF respectively. Although the tradeoff graphs of the five configurations in Fig. 12 are slightly

different for probabilistic shifting, they have the similar tradeoff for threshold-based shifting. Except for

configuration LOGl, threshold-based shifting works better than probabilistic shifting and the corresponding

optimal points are associated with threshold-based shifting combined alignement with block size B = 16.

For configuration LOGl, the optimal point is associated with probabilistic shifting combined alignment with

block size B = 16.

5 Discussion

In Section 4, we have focused on the performance aspect of dynamic SDR. In this section, we examine other

important properties of dynamic SDR, in particular, security and multicast stateless property of dynamic

SDR.

5.1 Security

In this paper, we use three criteria to measure security: forward confidentiality, backward confidentiality

and collusion problem. As we know, static SDR maintains forward/backward confidentiality, and has no

collusion problem. We find that those properties hold for dynamic SDR.

Below is the brief of our proof. One key difference between dynamic SDR and static SDR is that a

member might have the secret information for multiple positions in dynamic SDR. We project dynamic

SDR onto static SDR by mapping the member ID space from one dimension into two dimensions, i.e.,

member m at ith position in the dynamic SDR is mapped to member (m, i) in static SDR. Thus, member

m in the dynamic SDR can be viewed as coalition of members (m, i) for all i in static SDR. Further-

more, coalition among member m1,. . .,mj in the dynamic SDR can be viewed as coalition of members
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(m1, 1),. . .,(m1, i1),. . . , . . .,(mj , 1),. . .,(mj , ij) in static SDR. Since in static SDR, forward/backward con-

fidentiality, and collusion-proof are ensured, i.e., any coalition of members cannot acquire any unauthorized

information, we conclude that in the dynamic SDR, forward/backward confidentiality, and collusion-proof

property are preserved.

5.2 Multicast Stateless

Among all group key management algorithms, static SDR belongs to the so-called stateless algorithms. In

static SDR, rekeying messages only contain updated TEKs encrypted with unchanged KEKs. As a result,

members do not need to keep track of history of rekeying. This is not true for stateful key management

algorithms such as LKH, where rekeying messages may contain updated KEKs encrypted using previous

KEKs.

In dynamic SDR, KEKs (keys of resultant subsets) are long-lived and can be computed based on the

secret information securely unicast to members. Multicast messages in dynamic SDR distribute only TEKs.

The multicast messages are not required to be reliably delivered to members so as to maintain their states

correctly. However, in dynamic SDR, the GCKS is required to reliably unicast a member the secret infor-

mation for the new position when the member joins or shifts. In other words, only unicast transport of state

is sufficient. For this reason, we classify dynamic SDR as a multicast stateless algorithm. The multicast

stateless property is useful in practice since providing reliable multicast is still a challenging problem.

Note that static SDR keeps the complete statelessness at the cost of performance due to space ineffi-

ciency.

6 Related Work

Most scalable centralized key-management algorithms make use of a tree structure to manage members.

These algorithms could be broadly divided into stateful algorithms and stateless algorithms depending on

whether members need to track the communication history to participate in the group communication.

In stateful algorithms ([2, 5, 9, 10]), the active members are leaves of the tree. While in stateless

algorithms ([7]), the potential members are leaves of the tree.

LKH is a stateful algorithm. In an LKH tree, there is a leaf node corresponding to each active member.

There is a key associated with each node in the tree, and each member holds a copy of every key on the path
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from its corresponding leaf node to the root of the tree. Hence, the key corresponding to the root node is

shared by all members, and serves as the TEK.

Static SDR is a stateless algorithm. In a static SDR tree, there is a leaf node corresponding to each

potential member. Subsets are defined through the tree, and each member holds subset keys for all subsets

to which it belongs.

The performance of key-management algorithms is mostly determined by the positions of concurrent

members in the tree. [4, 11] propose methods to improve the performance of LKH by adjusting the positions

of members dynamically so as to balance the key tree and reduce the overall height. Our work aims to

improve the performance of SDR using the similar methodology – dynamically adjusting the positions of

members.

A performance comparison between static SDR and LKH is given in [3]. Both the key storage and the

rekey communication cost are compared in different scenarios, e.g. immediate rekeying, periodical batch

rekeying and membership batch rekeying. It was shown that static SDR outperforms LKH in batch rekeying

while LKH outperforms static SDR in immediate rekeying.

7 Conclusion

Static Subset Difference Revocation (SDR) is the current state of the art in stateless group rekeying algo-

rithms. However, it works inefficiently when the number of the active members in the group is much less

than the number of potential members, which is the case in many practical applications.

In this paper, we have proposed a group rekeying algorithm, dynamic SDR, which still keeps multi-

cast stateless without the requirement of estimating the number of all potential members. By dynamically

constructing the key tree, dynamic SDR uses a smaller key tree sufficiently large for the currently active

members rather than the potential members. The smaller key tree reduces both the key storage cost and

rekey communication cost compared to static SDR. We also introduce some enhancements to further im-

prove the performance of dynamic SDR. Our evaluation shows that dynamic SDR significantly improves

the performance of static SDR, reducing by half the rekey communication cost in the case that the number

of the currently active members is much less than the total number of potential members. Also, compared

to static SDR, dynamic SDR does not need to know the maximum number of potential group members in

advance, a value that can be difficult to estimate in practice.
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