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Abstract—Currently, virtualization technology that enables a
data center to efficiently use server resources is promising as
cloud services are being prevalent with increasing traffic volumes
and requirements for service quality. vTAP (Virtual Test Access
Port), we propose in this work, can overcome the problem that
existing hardware TAP devices cannot be used in duplicating
inter-VM (Virtual Machine) packets being transmitted over
virtual links. vTAP can be implemented using a virtual switch
that provides network connectivity to VMs by switching packets
over the virtual links. Port mirroring, or SPAN (Switched Port
Analyzer), that is available in some software switches can be
a naive solution but using it in a system that needs to treat a
large volume of network traffic implies performance degradation
in packet switching and error-prone manual configuration. In
this work, we describe the design and detailed considerations on
our OpenFlow-based vTAP implementation. It is based on Open
vSwitch and ONOS (Open Network Operating System) SDN
(Software-Defined Networking) controller to enable packet-level
traffic monitoring in OpenStack environment. We also present
the performance evaluation on our vTAP used in some network
monitoring cases, with packet processing acceleration by DPDK
(Data Plane Development Kit).

Index Terms—SDN, OpenStack, Network Monitoring, Packet
Mirroring

I. INTRODUCTION

As software implementation of traditional hardware TAP
devices, the major purpose of vTAP (Virtual Test Access
Port) is to provide visibility on traffic between VMs (Virtual
Machines) especially in server virtualization environment.
Usually, a hardware TAP device is deployed on a physical link
between a server and a switch or between a switch and a router
to duplicate packets and send them to a separate entity such
as NPB (Network Packet Broker), where the copied packets
are aggregated and then distributed to several network tools
[1]. Those tools encompass IDS (Intrusion Detection System),
traffic analyzer, threat management system and so on. This
type of dedicated TAP devices on each link requires additional
CAPEX but it provides fast packet duplication for network
monitoring. However, as the trend moves toward cloud data
center with server and network virtualization, hardware TAPs
are losing their position because it cannot be used to monitor
traffic between VMs in a host. Those packets usually pass
through virtual links via a virtual switch, which is largely dif-

ferent from traditional physical networks. The absence of TAP
functionality may result in difficulty in traffic monitoring and
analysis to satisfy service quality and security requirements.
So, the necessity of vTAP which can replace traditional TAP
devices in virtualization environment comes to the fore.

In discussing the virtualization technologies, OpenStack
is one of favorites where large pools of compute, storage,
and networking resources throughout a data center can be
managed [2]. Hundreds of the world’s largest companies rely
on OpenStack to run their business everyday. There would be
millions of service requests involving massive internal VM-
to-VM traffic, so monitoring OpenStack network is closely
related with their revenue. In addition, a new type of EDoS
(Economic Denial of Sustainability) attacks which induces
purveyors to pay their cloud-based service bills beyond their
economic means by abusing the elastic scaling features of the
target cloud become a large threat besides DDoS attacks [3].
So, traffic (packet) monitoring in OpenStack which work as
underlying platform of cloud services is attracting interest.

As a networking service component in OpenStack, Neu-
tron maps the underlying physical networks to instances of
provider networks and tenant networks [4] to realize east-
west and north-south communication. However, with the evo-
lution of SDN (Software-Defined Networing), there have been
some voices that the traditional Neutron-based OpenStack
networking is insufficient to virtualize networking resources,
compared to other resource types. So, using SDN controllers
such as ONOS (Open Network Operating System) and ODL
(OpenDaylight) with Neutron together to complement each
other in OpenStack networking have become a promising
solution. For example, an SDN controller can be actively
used to realize network slicing in OpenStack through various
SBI (Southbound Interface) for different types of data plane
entities.

In the view of telcos who want to reduce CAPEX and OPEX
by replacing existing network functions that are vertically
integrated in dedicated middleboxes with VNFs (Virtualized
Network Functions) dynamically operating in VMs of their
data centers [5], OpenStack can be a desirable underlying
platform for their NFV (Network Function Virtualization)
system. vIMS (Virtual IP Multimedia Subsystem) and vEPC
(Virtual Evolved Packet Core) [6] are major use cases of978-3-903176-15-7 © 2019 IFIP
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Fig. 1: A traditional EPC compositon in a core network

Fig. 2: A virtual EPC (vEPC) composition in a data center
network

OpenStack (networking) with SDN/NFV. Coming back to the
vTAP concept, we can note that most of traditional EPC
systems monitor their networks by deploying TAP devices
in each physical link between EPC components (Fig. 1). So,
some vEPC implementation based on OpenStack (Fig. 2) can
use our vTAP for the inter-VM packet monitoring, because
our approach targets OpenStack working with Open vSwitch
(OVS) virtual switch and ONOS SDN controller.

In this work, we cover an OpenStack system where the
vTAP functionality can be performed to monitor (capture)
packets between OpenStack VM instances, regardless of
their physical (host) locations, using ONOS which provides
some SDN features to Neutron-driven OpenStack networking
through the OpenFlow protocol. Our contributions are as
follows.

• Propose a novel vTAP method using OpenFlow Group
Table. This approach follows the SDN concept where
control plane and data plane is separated.

• Provide design details about the system where ONOS and
Open vSwitch with DPDK (Data Plane Development Kit)
[7] is compatible with existing OpenStack services (e.g.
Neutron and Nova) for the vTAP functionality. To do
this, we use ONOS SONA (Simplified Overlay Network
Architecture) [8] as a base platform.

• Based on the design, we implemented the monitoring
system where the proposed vTAP collects inter-VM traffic
through the centralized TAP policy management. We also
evaluate its performance in some network monitoring use
cases.

The remainder of this paper is organized as follows. Section
II presents related work and Section III describes design

considerations of our proposal. We provide implementation
details in Section IV and evaluation of some test cases in
Section V. Finally, we conclude our work in Section VI
including future work.

II. RELATED WORK

IXIA and Gigamon are two representative vendors providing
each commercial vTAP product that is a part of their data
center network monitoring solutions. The purpose of these
vTAP solutions is to provide visibility on traffic between VMs
especially in a server virtualization environment. IXIA vTAP
is known to realize the vTAP functionality in somewhere
between the OS kernel and the hypervisor. An individual
monitor located in the host server aggregates copied packets
and offers analysis reports on the in-flight traffic between VMs
[9]. On the other hand, Gigamon’s approach is known to install
per-VM vTAP agents which copy inbound/outbound packets
of the VMs and then sends them to a central monitoring
system through tunnel networks [10]. Based on the high-
performance proprietary implementation (so not easy to find
the details), they have proven their usefulness in the industry
field. However, in terms of customers, there are difficulties
of vendor dependency, maintenance and expandability due
to the exclusiveness of the commercial products. So, our
vTAP approach tries to focus on providing compatibility and
programmability by utilizing solid open (source) projects such
as Open vSwitch, DPDK, ONOS and OpenStack.

Overall, research on SDN network monitoring in data center
networks has been much more active compared to research on
vTAP itself. Planck [11] accelerates traffic collection speed
using the port mirroring function of a hardware OpenFlow
switch. This work intentionally oversubscribes switch ports
in order to gain “sampling” information of certain traffic
flows, and analyzes it for network monitoring. EverFlow [12]
leverages commodity switch’s “match and action” capability
to trace specific packets and help administrators troubleshoot
network faults. Inspired from those above, NetAlytics [13]
reduces overload of real-time monitoring on data center servers
by dynamically placing instances of Monitor, Aggregator and
Processor in those servers so that it can balance network
bandwidth and load. NetAlytics uses OpenFlow flow rules
with DPDK for fast packet processing in order to copy traffic
flows in SDN-based data center networks. These approaches
mainly use OpenFlow or vendor-specific port/flow mirroring as
the common foundation method to grasp network states from
a set of packets, but they focus on monitoring traffic between
host servers through hardware (OpenFlow) switches. On the
other hand, our vTAP is more focusing on monitoring traffic
between VMs through accelerated virtual switches and flexible
management on TAP polices in SDN-integrated OpenStack
environment.

NFVPerf [14] can detect bottleneck points of an NFV
system through online performance monitoring especially in
OpenStack testbeds. Collecting traffic between VMs in the
same host or different hosts is realized using the port mirroring
feature of Open vSwitch, and collected data is sent to a
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Fig. 3: Overall design architecture of the proposed system

performance analyzer that detects bottleneck indications from
throughput and delay measurement. Despite its novel detection
algorithm, the use of port mirroring limits the performance
of collecting packet data. T-NOVA [15], an open source
MANO stack for NFV infrastructures, includes OpenFlow-
based network (switch) monitoring as a part of its OpenStack
monitoring framework because it is critical to measure network
statistics for NFV orchestration. It has limitation on analyzing
packet payload for further analysis because it only utilizes
OpenFlow port and flow statistics.

III. SYSTEM DESIGN

Fig. 3 illustrates the overall architecture of the proposed
system. In this section, we provide functional requirements of
major components in the system and their integration.

A. vTAP Application
As the previous work of this proposal, the vTAP application

running on ONOS has two main functions; central manage-
ment on TAP policies for network administrators (control
plane) and flow rule setup for Open vSwitch (OVS) instances
to reflect requested TAP polices (data plane) [16]. The vTAP
application provides an user interface for TAP policy man-
agement (addition, removal and modification). Fig. 4 depicts
probable TAP policies specified by network administrators.

The Identifier fields should not be omitted because they
define target flows to be duplicated from the specifications of

the Sender, Receiver and Monitor MAC or IP address fields.
Consequently, Monitor (VM) receives the duplication of the
target flow that is being transmitted from Sender (VM) to
Receiver (VM). The Filtering fields whose specification is
optional restrict the range of target flows depending on their
packet header values in each protocol layer. For example, TAP
policy 1 in Fig. 4 enables its Monitor to only receive the
duplication of the HTTP traffic from 10.1.1.1 to 10.1.1.2, by
specifying the IPv4 protocol value as 6 (TCP) and the (TCP)
destination port number as 80. Because a TAP policy is applied
to the data plane in the form of OpenFlow flow rules, we can
extend the Filtering fields depending on the OpenFlow version
the target network use in order to offer more granularity on
TAP policy specification. OpenFlow 1.5.1 allows 44 match
fields from OXM (OpenFlow eXtended Match) support [17].
A TAP policy also should support wildcard matching for target
flows by specifying asterisk (*) in the Filtering fields. We
assume that network administrators use a global network view
offered by the central SDN controller for this management.

Then, the vTAP application converts the high-level policy
into specific OpenFlow flow rules to be installed into related
switches. To reflect the TAP policy in the actual data plane,
we define two types of flow rules which are the rewriting
rule and the recovery rule. The rewriting rule is installed into
the OVS bridge where Sender (VM) is directly connected to
(sender edge OVS). This type of flow rule consists of one
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Fig. 4: An examples of TAP policy specifications in the vTAP application

match-action entry and one group table with two buckets.
The match-action entry in the flow table of the sender edge
OVS can match the target flows of the corresponding TAP
policy and delegate their treatment to the following group
table. The first bucket of the group table is used to forward the
original packets to their destination (Receiver), but the second
bucket is used to duplicate the original packets and forward
the duplications to Monitor. This packet copy process based
on OpenFlow group table features is useful for not only its
simple implementation without any modification to OVS but
also flexibility in handling the duplicated packets. Actually,
packet duplication itself can be simply realized by OpenFlow
“multicast” action within a single match-action entry, but
structurally it cannot apply different actions on the duplicated
packets, which means they cannot be reached to Monitor. On
the other hand, the group table (bucket) approach is able to
change the destination MAC or IP address of the duplications
to that of Monitor’s (rewriting) and apply additional treatments
(e.g. VLAN tagging). This approach needs only one flow rule
in a sender edge switch to reflect a TAP policy.

The final job to revert the MAC or IP address modified
by the rewriting rule is performed by the recovery rule
for consistency of the packet contents. The recovery rule is
installed into the flow table of the OVS bridge where Monitor
(VM) is directly connected to. The vTAP application can easily
provide this stateful information of the original MAC or IP
address to be recovered in the monitor edge switch. The overall
process of the vTAP application is illustrated in Fig. 5.

This vTAP approach improves central management on TAP
polices in control plane using a global network view, and
provides granularity in handling packet flows (both original
and duplication) in data plane using OpenFlow. However,
compared to hardware TAP, one critical weakness of our
vTAP based on virtual (software) switch is performance
degradation on production traffic because OVS should handle
both general packet forwarding and packet duplication at the
same time using the restricted computing power of a server.
The performance problem become even worse if the host
server start to increase the number of VM instances or to
process a CPU-intensive jobs, because OVS should compete
host resources then. So, we decided to run OVS instances
with DPDK to accelerate packet processing performance by

Fig. 5: Operation flow chart in the vTAP application

allocating dedicated CPU cores and memory on them. Related
implementation details are described in Section IV.

B. OpenStack and SONA

To integrate OpenStack with ONOS so that the roles of
Neutron for OpenStack networking are distributed to the
SDN controller, there have been several initiatives [8] [18]
[19]. Although Neutron supports somewhat SDN-based L2/L3
networking for OpenStack by configuring Open vSwitch or
Linux bridge agents on each OpenStack node [20], we need
a dedicated SDN controller to fully utilize SDN features of
the target network especially in traffic engineering and QoS
management. The need becomes more important in developing
an NFV system with SFC (Service Function Chaining) and
auto-scaling functions. Another application of the OpenStack-
ONOS integration can be our vTAP application running on
ONOS for east-west traffic (from tenant networking) and
north-south traffic (from external networking) monitoring in
OpenStack.

We choose to use SONA as the fundamental integration
bridge because SONA has been mature as an initial ONOS
killer application and is being actively developed by ONOS
contributors. SONA is composed of a set of ONOS applica-
tions, OpenstackNode and OpenstackSwitching, and now it
extends to OpenstackTelemetry.
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In Fig. 3, OpenStackNode abstracts underlying OpenStack
nodes (Controller, Compute, Gateway) in terms of their inter-
nal networking attributes such as network interface types, OVS
bridges and IP addresses along with a few of metadata such
as hostname and SONA-specific host states. OpenStackNode
stores those modeling instances in the ONOS shared store
system for management on the networking side of each node
and information access by OpenStackNetworking.

OpenStackNetworking has two major responsibilities of
OpenStack switching and OpenStack routing. OpenStack
switching mainly configures L2 forwarding rules in each OVS
bridge (br-int) for OpenStack VM instances which belong
to the same tenant to communicate with each other through
overlay networks. Currently, SONA supports network types of
FLAT (no tenant isolation), VLAN (L2 isolation) and VXLAN
(L2 over L3) to realize tenant networking across different
OpenStack setups. Whereas OpenStack routing configures
flow rules, in each OVS bridge of Compute and Gateway
nodes, for any OpenStack VM instances retaining floating IPs
to communicate with OpenStack external. Besides, ARP and
DHCP proxies can work based on related flow rules defined
by OpenStackNetworking.

While SONA is handling OpenFlow-based OpenStack net-
working, existing Neutron components in Controller nodes still
need to be active to respond requests or events from other
OpenStack components (e.g. Nova). After SONA is deployed,
Neutron just calls REST APIs of SONA to handle network-
ing requests, instead of using OVS, DHCP, L3 and other
agents/plugins/mechanisms by itself. Then, SONA performs
required operations in a way that using OpenFlow flow rules
in each “br-int” OVS bridge of OpenStack nodes and their
abstractions stored in the ONOS. vTAP policies mentioned in
Section III-A are also managed in the form of OpenFlow flow
rules inside OVS and several metadata in ONOS. At this end,
network administrators can focus on using the master ONOS
controller where both the vTAP and the SONA application are
running on.

IV. IMPLEMENTATION

To implement the proposed system in Section III, we con-
structed the OpenStack testbed with several basic OpenStack
service components (e.g. Nova, Neutron, Keystone) in our lab
server. We installed OpenStack Pike release through the corre-
sponding version of devstack [21] to simplify the installation
process and to have a deployment profile of OpenStack for
further use of our PoC in different environments.

A. Integration of OpenStack, SONA and OVS-DPDK

Integrating OpenStack with ONOS can be done by
networking-onos [22] which is an OpenStack sub-project to
help the integration process between Neutron and ONOS. To
make it work, the Neutron configuration should be changed
to use networking-onos as a plugin for the OpenStack L2/L3
netwkroing, instead of the default L2 mechanism drivers (e.g.
Open vSwitch or Linux bridge) and L3 agents. In summary,
when Neutron receives events or service requests for L2/L3

networking services, it relays them to SONA (NBI) through
networking-onos. SONA can be activated as a set of related
ONOS applications in an ONOS node where the ONOS in-
stance is deployed and reachable to all Compute and Gateway
nodes through an OpenStack management network.

After the deployment of networking-onos, which means
ONOS become a centralized control plane for the target Open-
Stack, SONA takes a network configuration file (network-
cfg.json) that specifies details of the target OpenStack nodes
with their management/data network IPs, network interface
names, and datapath IDs of OVS bridges (br-int) where flow
rules are being installed. To synchronize SONA (ONOS) with
current OpenStack configuration which may be requested by
the outside of SONA (e.g. OpenStack dashboard and CLI),
developers can use several SONA CLIs so that SONA fetches
the current settings from OpenStack services (DBs) and then
stores them in the ONOS store.

As we mentioned in Section III-A, we chose to use Open
vSwitch with DPDK, or OVS running in DPDK mode (OVS-
DPDK), as data plane switches. So, we built Open vSwitch
2.9.2 with DPDK 17.11.2 in every Compute node to run the
OVS “br-int” bridges in DPDK mode (user space). An OVS-
DPDK bridge requires the datapath type of netdev and one of
two types of DPDK-backed vHost User Ports (dpdkvhostuser
and dpdkvhostuserclient) [23] to establish network connection
with a VM through an user-space virtual network interface.
However, in general OpenStack-SONA environment, a newly
created OpenStack VM instance is connected to the host’s
“br-int” OVS bridge using the TAP [24] type kernel-space
virtual network interface by default. As of the commit version
of SONA we used, OpenStack fails to create a VM instance
with a DPDK-backed virtual interface because SONA is not
yet data-plane-agnostic, which means SONA assumes only the
use of TAP type connection regardless of the actual use of
DPDK vHost User Ports. So, in this work, we tried to construct
an OpenStack testbed where its networking is managed by
ONOS SONA in control plane and realized by OVS-DPDK in
data plane to verify the feasibility of TAP policy management
through our vTAP application.

To integrate all of them above, first we need to make
OpenStack-SONA allow the use of data plane variant in
spawning a new VM instance. Because our primary goal
was constructing a testbed for verification, not developing a
general solution such as SONA transparent to data plane, we
made patches for the default source codes of networking-onos,
OpenStack Nova and SONA. After the application of these
patches, OpenStack-SONA assumes the use of OVS-DPDK as
a default data plane switch. The major changes are as follows.

1) networking-onos: Originally, it forces SONA to use the
TAP type network interface for OpenStack VM instances when
the ONOS driver is used for L2 networking. Because the
Neutron library in the Pike release already have defined the
general vHost-user type interface supported by QEMU, we
changed related codes of networking-onos to use the vHost-
user type interface by default.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 237



2) OpenStack Nova: Creating a new OpenStack VM in-
stance is followed by creation of the corresponding Neutron
Port for the VM. A Neutron Port request contains details of the
required virtual interface including the interface type and the
path name of the socket file which is created by OVS for the
new connection. This request enables for Nova to configure the
VM’s profile for QEMU to deploy the required VM instance
on the target host server. So, in this process, we made code
changes for the use of the vHost-user type interface instead of
the default OVS type (TAP) and specific socket path names
to enable server-client model connection between OVS-DPDK
(client) and VM (server).

3) SONA: SONA is a collection of ONOS applications
such as OpenstackNetworking, OpenstackNode and Open-
stackTelemetry. Creating a new OpenStack VM with a DPDK-
backed network port requires modification on some L2 switch-
ing parts of OpenstackNetworking (files with prefix of Open-
stackSwitching). In OpenStack-SONA, each OpenStack node
(Controller, Compute, Gateway) has own states specific for
SONA (INIT, DEVICE CREATED, COMPLETE, INCOM-
PLETE). For any Compute nodes in the COMPLETE state,
OpenstackSwitchingHostProvider scans hosts (VMs) which
are connected to the “br-int” OVS bridge using the TAP
type interface. Because the default code can detect a host
from the existence of the corresponding OVS port with the
specific name prefix (“tap”) allocated only to the TAP type
interface, we modified it to detect the (DPDK) vhost-user type
interface with the different name prefix (“vhost”). Then, we
manually created OVS ports named with the new prefix in
order for them to be detected by OpenstackSwitchingHost-
Provider. According to the ONOS architectural model [25],
hosts found events in OpesStackSwitchingHostProvider are
handled by OpenstackNetworkManager where overall opera-
tions for OpenStack networking are implemented with ONOS
core APIs. OpenstackNetworkManager also treats TAP type
interfaces only, we needed to change it to embrace the (DPDK)
vhost-user type in order to successful creation of Neutron Ports
without related OpenStack errors.

The overall process aforementioned is described in Fig. 6.

B. vTAP Application

In the proposed system of this work, TAP policy manage-
ment and its provisioning on data plane through OpenFlow are
implemented in the ONOS vTAP application. After getting the
information of Identifier fields and Optional fields specified in
vTAP GUI from network administrators (Fig. 4), it creates a
rewriting rule and a recovery rule for the TAP policy. As we
mentioned in Section III-A, a rewriting rule which is installed
in a Sender edge switch (one of “br-int”s) has a Group Table
instance of type ”ALL”, which performs each flow treatment in
all buckets belong to the group, with two buckets. We relate
each Group Table instance with own key of the order that
the TAP policy is added for the purpose of management (e.g.
policy modification or removal).

The second bucket which handles copied packets forwards
them to Monitor by changing their destination MAC or IP

Fig. 6: Internal operations in the system during the creation
of a new OpenStack VM

Fig. 7: Base OpenStack Testbed; OVS mode and VM resources
change according to test scenario

addresses to that of Monitor and using the same egress port
for the next hop delivery. We can easily extract an egress
port toward Monitor from a routing path abstraction defined
by the ONOS Topology service. Next, a recovery rule is
installed in a Monitor edge switch (one of “br-int”s). This rule
allows the Monitor edge switch to receive the copied packets
originated from the corresponding Sender edge switch, and to
recover each of them back to the original one. Thanks to the
centralized control plane, ONOS SDN controller, this type of
stateful flow handling is easy to realize.

V. EVALUATION

In this section, we evaluate the performance of the proposed
vTAP, according to the use of OVS-DPDK or not in the
simple OpenStack testbed (Fig. 7). The first test scenario
applies a TAP policy on flows from Sender to Receiver in
order for Monitor to receive copied packets. The second test
scenario also applies a TAP policy on a bunch of attack packets
from Sender to Receiver, which are generated by pytbull
[26] IDS/IPS testing tool and replayed on each trial through
Tcpreplay [27], in order for Monitor running suricata [28] IDS
to receive copied packets and analyze them.

We used one bare metal server with the hardware speci-
fication of 2.67 GHz Intel Xeon CPU (12 cores) and 24 GB
RAM to construct the OpenStack testbed composing of a each
single Controller/Compute/Gateway node (VM), which is the
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minimal requirement for SONA-based multi-node setup. It is
note that because each OpenStack node is VM, we applied
nested virtualization [29] to allow Compute node to use KVM
acceleration in spawning OpenStack VM instances. Summary
of platforms and tools we used in the following evaluations is
in Table I.

TABLE I: Summary of platforms and tools used

Name Version Purpose

OpenStack Pike Base Virtual Infrastructure Manager (VIM)
ONOS 1.14.0 SDN controller for OpenStack networking

in combination with SONA embedded
OpenFlow 1.4 Data and control plane comm. protocol

Open vSwitch 2.9.2 Base virtual switch
DPDK 17.11.2 Packet processing acceleration for OVS
pktgen 4.4.0 IPv4 packet generation

(Kernel)
Iperf 2.0.12 Background traffic generation

pytbull 2.1 Network attack traffic generation
Tcpreplay 4.2.5 Replay of packet traces on the testbed
Suricata 4.0.5 Network intrusion detection system

A. RX Throughput Measurement on Original and Duplicated
Packets

In this test scenario, we applied the TAP policy that requires
the “br-int” OVS switch to copy all Ethernet frames from
Sender to Receiver. Then, we generated IPv4 packets in Sender
so that the switch sent the original packet flow to Receiver
and the duplicated packet flow to Monitor. In our previous
work [16], we performed these trials with different packet
sizes on both the OVS switch in normal (kernel) mode and the
OVS switch in DPDK (user) mode. In the evaluation, OVS-
DPDK outperformed normal OVS, by showing 8∼25 times
improvement on RX throughput measurement at both Receiver
(original pakcet flows) and Monitor (duplicated packet flows)
according to the packet size.

Additionally, we performed RX throughput measurement
when OVS-DPDK uses a single PMD or two PMDs (Fig.
8). PMD threads are the threads that do the heavy lifting
for the DPDK datapath and perform tasks such as continuous
polling of input ports for packets, classifying packets once
received, and executing actions on the packets once they are
classified [30]. So, if there are multiple DPDK-backed ports
producing traffic, performance can be improved by creating
multiple PMD threads running on separate cores. Allocating
one additional PMD thread to OVS-DPDK needs one more
CPU core which will be dedicated for those functions.

In this test, we made two Sender VMs transmit each of
their packet flows to the single Receiver VM, while the OVS-
DPDK switch duplicated them using the corresponding TAP
policy in order to send them to the single Montior VM. Then
we affected the performance of the OVS-DPDK switch by
generating loopback traffic inside the Compute node. This
background traffic enabled us to more clearly distinguish the
performance gap between a single PMD and double PMDs,
since this placed major performance bottleneck on the switch,
not the destination VMs. We used pktgen [31] at Sender to

Fig. 8: Measurement on RX throughput with different packet
sizes in case of single PMD and two PMDs in OVS-DPDK

generate and send different sizes of IPv4 packets to Receiver
and Monitor.

In Fig. 8, we observed that using one additional PMD
threads took effect on the performance in the case of relatively
large size of packets. In the two PMD case, there was
around 16% improvement on RX throughput measurement
of 256-byte packets but around 52% and 79% improvement
on 1024-byte packets and 1500-byte (Ethernet v2 MTU)
packets respectively. Under the same RX rate during each
trial, processing smaller packets involves more CPU interrupts
which result in more packet drops with drastic CPU saturation.
We also observed that Monitor showed better results than
Receiver. This is because original packet flows are more
aggressively transmitted, resulting in larger packet drops at
its destination (Receiver), while copied packet flows have
some processing delays in the switch due to the additional
duplication. This phenomenon can be resolved not only by
allocating more resources to the destinations but also imposing
the performance bottleneck on the switch with a proper amount
of background (loopback) traffic, which is our future work.

B. Suricata NIDS Reports

In this scenario with the same testbed (Fig. 7), we consid-
ered Sender as a malicious attacker, Receiver as a server, and
Monitor as an NIDS (Network Intrusion Detection System)
which receives copied packets from a switch and analyzes
them to report anomalies. We used pytbull to generate a
sequence of various attack packets (Brute force, DoS, Shell-
code, etc.), and captured them using tcpdump to create a
packet trace at Sender. We enlarged the trace with sending
loop and bandwidth adjustment features of Tcpreplay in order
to overload the OVS-DPDK switch (single PMD thread),
Receiver or Monitor VMs. The switch where the TAP policy,
“copy all Ethernet frames from Sender to Receiver”, was
applied by ONOS sent the replayed attack packets to Receiver,
and also sent duplications of them to Monitor at the same
time. Then Suricata instances, running on both the Receiver
and Monitor VMs, generated reports including attack details
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and RX statistics such as packet drop rate. Those reports at
Receiver can be used as the ground truth at the end of each
trial, to compare with Monitor’s reports generated by copied
packets based on our vTAP implementation.

Figure 9a and Figure 9b show the mean number of alerts and
the mean packet drop rate respectively. Each trial with a dif-
ferent transmission rate (by Tcpreplay) was repeated 10 times.
Note that Receiver and Monitor VMs were with two vCPUs
for performance improvement from multi-threaded Suricata,
but Sender was with only one vCPU because Tcpreplay is
single-treaded so cannot benefit from multi-processors. All the
vCPUs were pinned to dedicated physical cores on the host
machine.

Figure 9 shows Suricata reports on the mean number of
alerts and the mean packet drop rate at different transmission
rates. Tcpreplay can replay packet transmission at a highest
speed the target testbed can afford which was around 210
Mbps in our case. We can observe few things that lower
transmission rates involve lower packet drop rates with more
numbers of alerts obviously, and that significant reduces in
the number of alerts start at the 100 Mbps rate with around
5% of packet drop rate. We also noted that Monitor Suricata
generated more alerts with lower drop rates in the 100, 150
and 200 Mbps cases. This is because original packet flows are
more aggressively transmitted, resulting in larger packet drops
at its destination (Receiver), while copied packet flows have
some processing delays in the switch due to the additional
duplication.

However, we cannot assert that larger drop rates linearly
reduce the number of alerts, because drops of certain packets
that account for small amount and determine attack alerts
could not be reproducible on each trial due to time-dynamics
of the testbed (cache, packet sequence, etc.). Note that packet
drops would be slightly reduced from the use of more RAMs
on VM sides, but not from the use of multiple PMD threads
on the OVS-DPDK switch side because now the performance
bottleneck is single thread implementation of Tcpreplay.

VI. CONCLUSION

In this work, we have presented the design and implemen-
tation details of vTAP applicable to SDN-based OpenStack
networking. Particularly, several open (source) projects such
as ONOS, SONA, Open vSwitch and DPDK, and OpenFlow
protocol are integrated with OpenStack to enable the proposed
vTAP system to provide users with the centralized TAP policy
management and improve performance in monitoring inter-
VM traffic at a packet level.

The major component of the vTAP control plane is the SDN
controller (ONOS) application that enables users to define a
TAP policy consisting of identifier (source, destination and
monitor VMs) and optional specifications of various header
match fields to filter out interested traffic flows. Then the
TAP definition is transformed into OpenFlow flow rules being
installed in edge switches (mainly virtual switches) of an
OpenStack environment, in order to reflect required data plane
functions such as forwarding and reproducing of packets.

(a) Measurements on the mean number of alerts with different
transmission rates

(b) Measurements on the mean packet drop rate with different
transmission rates

Fig. 9: Suricata NIDS Reports on Attack Packet Traces

In Section V, we performed RX throughput measurement on
original and duplicated packet flows when we use OVS-DPDK
as a virtual switch. Using two PMD threads with the cost of
one additional CPU core results in around 80% improvement
in RX throughput of the duplicated packet flow. We also tested
applicability of our vTAP in providing packets to be analyzed
by an IDS such as Suricata.

As future work, we plan to evaluate the scalability of our
vTAP in more realistic OpenStack environment with a large
amount and various types of traffic. It includes mounting
abundant physical resources, and finding use cases of our
vTAP such as fast packet monitoring for NFV orchestration
or intelligent packet collection (sampling) according to a state
of a network.
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