
Mining Software Repositories for

Predictive Modelling of Defects in SDN Controller

Petra Vizarreta, Ermin Sakic, Wolfgang Kellerer and Carmen Mas Machuca

Technical University of Munich, Chair of Communication Networks

petra.vizarreta@lkn.ei.tum.de, ermin.sakic@{tum.de,siemens.com}, wolfgang.kellerer@tum.de, cmas@tum.de

Abstract—In Software Defined Networking (SDN) control
plane of forwarding devices is concentrated in the SDN controller,
which assumes the role of a network operating system. Big
share of today’s commercial SDN controllers are based on
OpenDaylight, an open source SDN controller platform, whose
bug repository is publicly available. In this article we provide
a first insight into 8k+ bugs reported in the period over five
years between March 2013 and September 2018. We first present
the functional components in OpenDaylight architecture, localize
the most vulnerable modules and measure their contribution to
the total bug content. We provide high fidelity models that can
accurately reproduce the stochastic behaviour of bug manifesta-
tion and bug removal rates, and discuss how these can be used
to optimize the planning of the test effort, and to improve the
software release management. Finally, we study the correlation
between the code internals, derived from the Git version control
system, and software defect metrics, derived from Jira issue
tracker. To the best of our knowledge, this is the first study
to provide a comprehensive analysis of bug characteristics in a
production grade SDN controller.

I. INTRODUCTION

With Software Defined Networking (SDN), the distributed

control plane logic of forwarding devices is moved to a

software entity called SDN controller, effectively decoupling

the control plane (e.g., path computation) from data plane

functions (i.e., switching). The controller provides an inte-

grated interface towards diverse set of forwarding devices,

and abstracts the network to the users and applications, which

can now program the high level policies without minding the

hardware specific implementation details. Present-day produc-

tion grade SDN controllers additionally provide the support

the legacy network protocols and hybrid devices, advanced

security features, automated bootstrapping and interworking

with virtualization platforms and cloud management systems.

The heterogeneity of supported networks and services resulted

in the controllers becoming rather complex and presumably

buggy software system.

Software bugs1 are the major issue in modern networks, as

shown by the recent studies on Google [1] and Microsoft [2]

operational networks, which indicate that bugs caused more

than 30% of the documented customer impacting incidents.

Moreover, the analysis of post-mortem reports of Google’s B4

SDN-based network [1] shows that issues related to network

1The terms ”software defect” and ”bug” are used interchangeably; as well
as ”software failure” and ”bug manifestation”

control plane elements prevail. Despite the magnitude and

ubiquity of the network control software failures, the state

of the art literature is still missing the realistic dependability

models of SDN controllers [3]–[11].

The goal of this study is to provide high fidelity models,

able to reproduce the stochastic behaviour of bug manifestation

and bug removal processes, for different abstraction levels

of real SDN controller software. Such models are needed in

order to assess and improve the design of a reliable control

plane, which often neglects or oversimplifies the nature of

controller failures. The models provide useful guidelines for

the software developers, helping them optimize the planning

of the test effort expenditures by allocating it to the most

vulnerable modules, as well as to estimate the residual bug

content and expected software failure rates by improving the

timing of the release management. The controller in our study

is OpenDaylight, the biggest open source SDN controller

platform, whose bug repository is publicly available. However,

the implications of our study are not limited to OpenDaylight,

given that the big share of commercial controllers by major

network equipment vendors, such as Cisco2, are also based on

its distributions.

We follow an approach of the related empirical studies on

network incidents [1], [2], [12], [13] and complex systems

sharing the similar vulnerabilities [14]–[17] to systematically

analyze statistical properties of defects in SDN controller

software. Our analysis includes more than 8k bugs reported

in the period over five years, between March 2013 and

September 2018, in development and deployment phases of

OpenDaylight. The repository contains the issues related to

core controller functions, as well as embedded applications,

plug-ins and drivers towards variety of forwarding devices,

enabling us to analyze trends and localize the most problematic

components. We rely on the standard statistical inference

techniques to estimate distributions of times to detect and

resolve bugs from the empirical data.

In our previous work we proposed the stochastic models to

evaluate and predict the reliability of SDN controller, as well

as the interaction between controllers [3]–[6]. In this work

we provide the insight into controller software vulnerabilities,

which enables us to identify platform bottlenecks and show

how the platform dependability evolved over time. We present

the strong empirical evidence that the assumptions of the

2Cisco Open SDN Controller and Ericsson Cloud SDN978-3-903176-15-7 c© 2019 IFIP

80



previous work on dependability of SDN control plane, such as

perfect coordination between replicas and assumed failure rate

distributions are not met in practise. We propose more accurate

stochastic models of the behaviour of bug manifestation and

bug removal processes, and discuss how these can be used by

network management community to improve the dependability

of control plane designs. We correlate the data from issue

tracker and code version system to analyse the relationship

between code internals and software defect metrics.

The remainder of the paper is organized as follows. Sec-

tion II provides an overview of the related work on reliability

of SDN controllers, and relevant empirical studies. The ar-

chitecture of OpenDaylight controller platform is described in

Section III. In Section IV we present the quantitative analysis

and stochastic models of controller software vulnerabilities.

Section V summarize the main results of our analysis and

discusses directions for the future work.

II. RELATED WORK

In this section we present the limitations of the related work

on SDN controller reliability, highlighting the assumptions

possibly contradict the behaviour of the real production grade

controllers.

The first studies on the reliability of SDN control plane con-

sider the controller as perfectly reliable, assuming only control

path link failures [18]. More recent studies made different as-

sumptions about the controller reliability [6]–[11], [19]. Some

assumptions are over-simplifying the nature of failures, as they

were necessary to obtain analytically tractable results, rather

than reflecting controller behaviour from real life deployments

or testbed measurements. The authors in [19] model controller

reliability as deterministic variable. Several other studies [6],

[8], [9] assumed that the controller failure to be a Poisson

process, which was necessary to obtain analytical solutions

of the proposed Markov models. Ros et al. [7] assume that

the operational probabilities of network elements, including

the controllers, follow different i.i.d. Weibull distributions.

Longo et al. [10] discuss the limitations of Markovian models,

and assume the reliability of the controller to follow phase-

type distribution (generalized hypoexponential distribution),

which captures better the changes in operational conditions.

In our previous work [5] instantaneous availability of the con-

troller software is modelled by hyperexponential distribution,

which describes different failure types (i.e., transient, hang

and crash). It also include temporal fluctuations of controller

software failure rates, which change due to maturity and state

of the controller. The software maturity model was further

developed, based on data from ONOS and OpenDaylight [3],

[4] bug repositories, which showed the bug manifestation

rates can be described as Non-Homogeneous Poisson Process

(NHPP).

Another limitation of the previous work is the assumption

about the perfect failover between different controller replicas.

The study by Gonzalez et al. [11] modelled the synchroniza-

tion process between controller replicas, with the focus on

the trade-off between the consistency and performance. Sakic

et al. [6] provide a more realistic model of RAFT consensus

algorithm under different failure rates, complementing it with

the measurements from a OpenDaylight testbed. Our goal in

this work is to provide an empirical evidence to support or

reject the assumptions made in the previous works, focusing

on the assumed distributions of software failure rates.

Previous empirical studies on network incidents by Google

[1], Microsoft [12], IP Backbone [13] and data centers [20]

provide a valuable data to the industry and the researchers,

exposing network vulnerabilities and suggesting preventive

measures. However, a comprehensive study on network control

software in SDN is still missing. To fill this gap, we follow

the approach of the large scale studies on open source soft-

ware [17], operating systems [15], concurrency issues [16] and

on cloud management systems [14] to systematically analyze

the nature of controller software failures.

III. OPENDAYLIGHT CONTROLLER PLATFORM

The OpenDaylight controller platform is a collaborative

”community-led and industry-supported framework”, foreseen

from the beginning to be the Linux of the networks. Majority

of the OpenDaylight key partners are vendors, and the focus

at the beginning was on the the applications in data centers

and coexistence with network virtualization technologies. The

project has grown to have 3,920,556 lines of code, with

1210 developers from industry and research contributing to

its code base. Eight releases, each one with several stability

releases (SR), have been distributed up to date. The complex

code base is organized in 95 projects3 , ranging from core con-

troller project to advanced embedded controller applications.

Due to the space limitations, we include 55 most relevant

projects covering more than 98% of the bug content. In

order to grasp easily the code organization, we group the

projects into 5 categories, and map them to the OpenDaylight

architecture, as illustrated in Fig. 1a. Descriptions of the

projects are adapted from the OpenDaylight documentation.

A. Core controller functions

This category consists in core Controller project, and two

related projects, topology processing (topoproc) and L2-

switch. As the controller project is the largest and the most

important of OpenDaylight platform, we also present its sub-

components. The role of Service Abstraction Layer (SAL) is

to decouple network application interfaces from south-bound

protocol plug-ins, e.g., OpenFlow. Initial solution was API-

Driven (AD-SAL), aiming to provide a collection of direct

application interface adaptations, which evolved to a more

generic Model-Driven SAL (MD-SAL). MD-SAL is providing

the supporting functions for other projects. As the part of

the controller module, the SAL is connecting the protocol

plugins to the Network Function Modules4, such as Flow Rule

Manager (FRM), Topology Manager, Switch Manager, etc.

Controller clustering enables the load sharing between

a group of the controllers, as well as the fault tolerance.

3Adapted from OpenDaylight project list
4Adapted from documentation of Brocade Vyatta Controller

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 81



NETCONF is an XML-based protocol used for configuration

and monitoring devices in the network. OpenDaylight supports

the NETCONF protocol as a northbound server as well as

a southbound plugin. RESTCONF allows access to MD-SAL

data stores in the controller.

B. Embedded Controller Applications

OpenDaylight provides multitude of embedded applications,

related to the original virtualization use case, as well as the

applications related to production environment requirements,

such as security, monitoring and analytics.

1) Virtualization support: NetVirt is a network virtualiza-

tion solution that includes the support for software and hard-

ware switches, L3VPN (BGPVPN), NAT and Floating IPs,

IPv6, Security Groups, MAC and IP learning, etc. Distributed

Overlay Virtual Ethernet (DOVE) and VPN service projects

have been deprecated and split into different projects, mainly

NetVirt. Neutron enables the integration with OpenStack

Neutron networking service; while Service Function Chain-

ing (SFC) provides ability to define and connect (”chain”)

an ordered set of network functions realizing a composite

service. Virtual Tenant Network (VTN) is an application that

provides multi-tenant virtual network on an SDN controller;

while NetIDE provides the virtualization of SDN networks

where users can bring their own controllers.

2) Monitoring and analytics: Cardinal enables monitoring

of OpenDaylight and underlying network as a service; while

Centinel provides a framework to collect, aggregate and

sink streaming data, leverage Time Series Data Repository

(TSDR).

3) Security: The issues related to the security applications,

such as Controller Shield, NAT application and Unified Se-

cure Channel (USCH), are not reported in the OpenDaylight

bug repository.

4) Miscellaneous: Generic Network Interface, Utili-

ties and Services (GENIUS), allows interference-free co-

existence with different applications, while Energy Manage-

ment (EMAN) implements energy measurement and control

features. Other representative embedded applications are Hon-

eycomb Virtual Bridge Domain (VBD) vector packet process-

ing, Bit Indexed Explicit Replication (BIER) architecture for

the forwarding of multicast data packets, Atrium open source

BGP Peering Router and Armoury framework to request

network function from workload managers.

C. Network abstractions (Policy/Intent)

Network abstractions are provided to users and applications,

which can specify high level policies (intents) without minding

the low level hardware-specific implementation details. Group

Based Policy (GBP) projects allows users to express network

configuration in a declarative versus imperative way. Network

Modelling (NEMO) project aims to simplify the usage of

network by providing a new intent northbound interface (NBI),

enabling network users/applications to describe their demands

for network resources, services and logical operations in an

intuitive way. Network Intent Composition (NIC) project

enables the controller to manage and direct network services

and network resources based on describing the intent for

network behaviours and network policies. Fabric as a Service

(FaaS) project aims to create a common abstraction layer on

top of a physical network, so northbound API or services

can be easier to be mapped onto the physical network as

concrete device configuration. Application Layer Traffic

Optimization (ALTO) is an IETF protocol RFC 7285, provide

simplified network views and services, e.g., cost maps, to

applications.

D. South Bound Interface (SBI) plugins

OpenDaylight supports a variety of southbound protocols,

or plugins, adapting to the different types of networks. These

plugins represent the drivers for the controller to communicate

with the network devices, and represent the largest part of

the code base. The SBI plugins are classified into i) native

to SDN OpenFlow, ii) interworking with legacy network

protocols to ensure the support for hybrid networks, iii) and

domain specific, such as support for wireless access points,

remote radio heads, packet cable and IoT data manager and

iv) security related, such as Secure Network Bootstrapping

Infrastructure (SNBI) and Unified Secure Channel (USC).

E. Supporting functions

This category comprises the projects that are implicitly re-

lated to all previous categories, such as network representation

and modelling tools (MD-SAL and YANG tools); deploy-

ment related functions including the standard Authentication,

Authorization and Accounting (AAA), release management

and integration, as well as documentation; and Graphical User

Interface (GUI) DLUX and NEXT. The remaining 40 projects

contribute to approximately to 2% of the bug content, and are

grouped together as other supporting functions.

IV. MEASURING, ANALYZING AND MODELLING OF

DEFECTS IN THE SDN CONTROLLER

A. Mining the bug repository

The OpenDaylight issue tracker relied at the very beginning

on the internal mailing list and excel sheets, then used Bugzilla

issue tracker in the first 6 releases, and finally migrated to Jira

in October, 2017. We have analyzed 8k+ bugs, which were

reported in the period over 5 years, beteween March 2013

until September 20185. We were interested the issues labelled

as ”bugs”, rather than enhancements and new feature requests.

We include the bugs which with status ”done”, ”closed”,

”resolved”, ”verified” or ”confirmed” status, but filter out the

issues with status ”open”, ”in review”, ”in progress”, and

”to do”. Each bug entry contains a label to which project

it belongs, severity, date of creation and, if applicable, the

resolution date and resolution status.

5Data retreived on 3rd of September 2018 from OpenDaylight Jira repo

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)82



EMBEDDED CONTROLLER APPLICATIONS (2015)

SUPPORTING (1615)

SOUTH BOUND INTERFACE PLUG-INS (2852) 

• OpenFlow (882)

• OVSDB* (405)

• OF-Config (8)

• BGP/PCEP (571)

• NETCONF* (439)

• SNMP (10)

• LACP (20)

• LISP (165)

• SXP (128)

Wireless, cable, IoT (104)

• CapWAP (9)

• OCP (11)

• PCMM/COPS(19)

• IoT-DM (65)

Virtualization support (1765)

• NetVirt (1148)

• DOVE (15)

• VPN service (83)

• VTN (156)

• SFC (207)

• Neutron (146)

• NetIDE (10)

Monitoring and analytics (86)

• Cardinal (7)

• Centinel (30)

• TSDR (49)

Security related (N/A)

• Controller Shield 

• NAT Application

• USCH

Miscellaneous (164)

• GENIUS (125)

• EMAN (4)

• Honeycomb (22)

• BIER (5)

• Atrium (3)

• Armoury (5)

Interworking with legacy networks (1333) 

CORE CONTROLLER

(1656)

• Controller prj. (1485)
• MD-SAL (462)

• AD-SAL (218)

• clustering (319)

• config (118)

• NETCONF(160)

• RESTCONF(146)

• other ctrl. (62)

• topoproc (85)

• L2 switch (86)

Network representation 

and modelling tools (828)

• MD-SAL (219)

• YANG Tools (609)

Deployment related (483)

• AAA (152)

• Integration (127)

• OdlParent (105)

• RelEng (55)

• Docs (44)

GUI (123) 

• DLUX (121)

• NEXT (2)

Other supporting (181)

• OpenFlowJava (64)

• OpFlex (1)

• SNMP4SDN (22)

POLICY/INTENT (363)

• FaaS (33)• GBP (275) • NIC (35)

Security related (33) • USC(6)• SNBI (27)

SDN native (1382)

• NEMO (8) • ALTO (12)

(a) Contributions of different functional blocks and individual projects to the total bug content of the OpenDaylight platform. The projects
with more than 200 bugs are highlighted. The projects marked with (*) belong to more than one category.

19.5%

23.7%

4.3%

33.5%
19.0%

May 2013 - Sep 2018

Controller

Embedded apps

Policy/intent

SBI protocols

Supporting

(b) Relative contributions of
different functional blocks.

5.9%

44.6%

0.2%

22.4% 26.9%

2018

(c) Relative contributions to the
bug content reported in 2018.

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

0

100

200

300

400

500

M
o
n

th
ly

 r
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s/

m
o
n

]

H
yd
ro
g
e
n

H
e
liu

m

L
ith

iu
m

B
e
rylliu

m

B
o
ro
n

C
a
rb
o
n

N
itro

g
e
n

O
x
yg
e
n

Controller

Embedded apps

Policy/intent

SBI protocols

Supporting

(d) Changes in the bug reporting rate over time.

co
n

tr
o
ll

e
r

n
e
tv

ir
t

O
p

e
n

F
lo

w

ya
n

g
to

o
ls

b
g

p
ce

p

n
e
tc

o
n

f

o
vs

d
b

g
b

p

m
d

sa
l

sf
c

li
sp vt
n

a
a
a

n
e
u

tr
o
n

sx
p

g
e
n

iu
s

d
lu

x

o
d

lp
a
re

n
t

l2
sw

it
ch

to
p

o
p

ro
c

0

200

400

600

800

1000

1200

1400

1600

R
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s]

55%
73%

82%

Top 20 projects by the number of bugs: ~90%

2014

2015

2016

2017

2018

(e) The most critical projects by the number of bugs. Top 20 projects contributing to 90%
of the total bug content are presented.

m
d

sa
l

cl
u

st
e
ri

n
g

a
d

sa
l

n
e
tc

o
n

f

re
st

co
n

f

co
n

fi
g

l2
sw

it
ch

to
p

o
p

ro
c

0

100

200

300

400

500

R
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s]

Controller

2014

2015

2016

2017

2018

(f) Distribution of the bugs in the core
controller project.

Fig. 1: Quantitative assessment of vulnerabilities in the OpenDaylight SDN controller platform.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 83



B. Quantitative assessment of controller vulnerabilities

The contribution of different functional categories and indi-

vidual projects to the total bug content of OpenDaylight SDN

controller platform is illustrated in Fig. 1.

The categorical split of bug content, illustrated in Fig. 1a,

allows us to localize the most vulnerable components of the

platform. It can be observed that the highest contributions

comes from SBI plug-ins, which only underlines the difficulty

of implementation of the unified network control system for

such a diverse system of networks. However, the comparison

of the change in relative contribution of different functional

blocks in 2018, illustrated in Fig. 1b and Fig. 1c respectively,

shows a clear shift of focus towards embedded applications,

mainly those related to network virtualization. Moreover,

three phases in can be distinguished in the evolution of the

OpenDaylight, as illustrated in Fig. 1d, where average monthly

bug reporting rate is presented. In the first phase, between

Hydrogen and Lithium releases most of the reported issues

were related to the core controller project. In the second phase,

between Lithium and Boron releases, issues related to SBI

plug-ins were predominant, while after Boron release majority

of the issues can be attributed to embedded applications.

Ten projects with more than 200 reported issues, which are

highlighted in Fig. 1a, are evenly spread across all functional

blocks.

The contribution of the top 20 most critical projects is shown

in Fig. 1e. These top 20 projects contribute to more than

90% of the overall number of the reported bugs. We observe

that the number of bugs is unevenly distributed across the

projects, with top five projects contributing to more than 50%

of the overall bug content. The controller project is the most

critical, according to the absolute number of reported issues,

followed by NetVirt and OpenFlow projects. The issues in

these subsystems will have a different impact on the network

services. While a critical issue in core controller project may

incapacitate the network, the issue in network virtualization

subsystem will affect only the users which are deploying this

feature in their production environment. A dynamics between

different controller failure types and user perceived service

reliability needs to be carefully studied, which we leave for

the future work.

Since core controller project is the most critical component,

we also show the distribution of the bugs across its modules

over time in Fig. 1f. We observe that although the transitions

from AD-SAL to MD-SAL primitives contributed to the

majority of the reported issues, most of them were reported in

the first phase of project, before 2016. The most recent issues

are related to the clustering subsystem, which is especially

troubling, given that virtually all real life deployments rely on

distributed control plane implementation, in order to improve

control plane scalability and fault tolerance. This critical issue,

when the fault tolerance mechanism is in itself faulty, goes

against the assumption that the simple replication of the

controllers always improves the controller reliability.

C. Modelling the bug discovery and bug removal rates

In this section, we study whether the assumptions about

controller reliability and failure rates are met in the real life

deployments. We study the differences between the projects, as

well as the impact of bug severity on the bug manifestation and

removal rates. We also analyze how their statistical properties

change in over time, and provide the most suitable stochastic

models to capture these dependencies. Finally, we discuss the

applications of the proposed stochastic models.

Differences between the projects in terms of severity and

resolution success are presented in Fig. 2. The bug sever-

ity indicates how badly it affects the system functionality,

ranging from ”blocker”, i.e., where the functionality becomes

unavailable because of the bug, to ”trivial” issues, which do

not impact significantly the system performance. The share

of severe bugs (”blocker”,”critical”, ”major”), illustrated in

Fig. 2a varies between 20% to over 40% across the projects.

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

controller
netvirt

OpenFlow
yangtools
BGPCEP
netconf
ovsdb
gbp

mdsal
sfc
lisp
vtn
aaa

neutron
sxp

genius
dlux

odlparent
l2switch
topoproc

blocker

critical

major

normal

minor

trivial

(a) Reported bug severity

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

controller
netvirt

OpenFlow
yangtools
BGPCEP
netconf
ovsdb
gbp

mdsal
sfc
lisp
vtn
aaa

neutron
sxp

genius
dlux

odlparent
l2switch
topoproc

DN

DUP

CR

WD

UNR

(b) Resolution status

Fig. 2: Differences in bug severity and bug resolution success.

1
0

0

1
0

1

1
0

2

1
0

3

controller
netvirt

OpenFlow
yangtools
BGPCEP
netconf

ovsdb
gbp

mdsal
sfc

lisp
vtn
aaa

neutron
sxp

genius
dlux

odlparent
l2switch

TTF [h]

6

5

19

29

31

27

25

5

89

27

48

96

99

97

72

91

26

165

97

74

M
e
d

ia
n

 T
T

F
 [h

]

(a) Time to find a bug (TTF)

1
0

1

1
0

2

1
0

3

1
0

4
controller

netvirt
OpenFlow
yangtools
BGPCEP
netconf

ovsdb
gbp

mdsal
sfc

lisp
vtn
aaa

neutron
sxp

genius
dlux

odlparent
l2switch

TTR [h]

505

632

773

433

229

767

458

480

1422

651

159

151

305

1207

179

526

1177

1739

480

331

M
e
d

ia
n

 T
T

R
 [h

]

(b) Time to resolve a bug (TTR)

Fig. 3: Differences in bug detection and bug removal rates.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)84



0 50 100 150 200

t [h]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

(T
T

F
 <

 t
)

ECDF(TTF): controller

minor

normal

major

critical

blocker

(a) TTF = f(severity)

0 2000 4000 6000 8000 10000

t [h]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(T

T
R

 <
 t

)

B

C

A

ECDF(TTR)

minor

normal

major

critical

blocker

(b) TTR = f(severity)

Fig. 4: Impact of bug severity on TTF and TTR distributions.

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

0

200

400

600

800

1000

1200

1400

1600

R
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s]

H
yd
ro
g
e
n

H
e
liu

m

L
ith

iu
m

B
e
rylliu

m

B
o
ro
n

C
a
rb
o
n

N
itro

g
e
n

O
x
yg
e
n

Detected bugs

0

50

100

150

200

250

300

350

D
e
te

ctio
n

 ra
te

 [b
u

g
s/m

o
n

]

Bug reporting over time: controller

Detection rate

(a) TTF−1 = f(t)

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

0

1000

2000

3000

4000

5000

6000

7000

T
T

R
 [

h
] H

e
liu

m

L
ith

iu
m

B
e
rylliu

m

B
o
ro
n

C
a
rb
o
n

N
itro

g
e
n

O
x
yg
e
n

Average TTR over time

Normal, major and critical

µ =1976.0h

(b) TTR = f(t).

Fig. 5: Evolution of bug manifestation and removal rates.

The resolution status of the closed and verified issues can

be ”done”(DN), ”duplicate” (DUP), ”can’t reproduce” (CR),

”won’t do” (WD), and ”unresolved” (UNR). We consider only

the issues with the ”done” status to be successfully resolved.

It can be observed in Fig. 2b that the resolution success varies

between 68% and 75%. Differences in bug detection and bug

removal rates between the projects are illustrated in Fig. 3. We

observe that the median Time to Find (TTF) the next bug, i.e.

the time between successive bug reports, and the median Time

to Resolve (TTR), also show big variations across the projects,

with order of magnitude difference. It can be observed that

these distributions are all long tail distributions, indicating that

the Poisson distribution would not be a good fit.

Fig. 4 shows the impact of bug severity on TTF and TTR

distributions. Since TTF is relevant on the project level, we

illustrate the results for the core controller project in Fig. 4a.

We observe that TTR distribution is affected to a greater

degree, where three clear classes can identified, illustrated in

Fig. 4b.

The changes of TTF and TTR over time, are illustrated in

Fig. 5. It can be observed in Fig.5a that TTF exhibits big

variations over time, showing peaks shortly before official

release dates. For the illustration purpose we show TTF−1(t)
and Nbug(t) only for the core controller project. With exception

of [3], [4], none of the models in the state of the art literature

captured this dynamic feature of TTF distributions. On another

hand TTR showed a lower degree of variation over time, as

illustrated in Fig.5b.

A class of Non-Homogeneous Poisson Process (NHPP)

models can explain TTF dynamics, by assuming that the bug

0 2000 4000 6000 8000 10000 12000

Relative time [h]

0

50

100

150

200

R
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s]

Bug manifestation model

Data(Nitrogen)

ISS (49.57)

(a) Nitrogen release

0 2000 4000 6000 8000 10000 12000

Relative time [h]

0

20

40

60

80

100

120

140

160

R
e
p

o
rt

e
d

 i
ss

u
e
s 

[b
u

g
s]

Bug manifestation model

Data(Oxygen)

ISS (29.59)

(b) Oxygen release

Fig. 6: Modelling TTF with Ohba’s Inflection S-Shaped model.

TTR [h]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
(T

T
R

)

Bug resolution model (Normal, major and critical)

Lognormal: 
µ =8.92
σ =2.83

Data

100 101 102 103 104

(a) Normal, major and critical

TTR [h]

0.00

0.05

0.10

0.15

0.20

P
(T

T
R

)

Bug resolution model (Blocker)

Lognormal: 
µ =7.54
σ =2.73

Data

100 101 102 103 104

(b) Blocker

Fig. 7: Modelling TTR with lognormal distribution.

manifestation rate is proportional to the residual bug content in

the code. Since during testing and early deployment phase (of

the particular software release) the bugs are removed from the

code, the bug manifestation rate changes gradually [21]. From

all NHPP models we found that Ohba’s Inflection S-Shaped

(ISS) model shows a particularly good fit for the last two

OpenDaylight releases, Nitrogen and Oxygen, as illustrated

in Fig. 6, where Mean Square Error (MSE) of the model is

indicated in parenthesis. In short, ISS models assumes that the

expected failure rate over time as a three parameter (a, b, φ)

function of time:

λiss(t) = TTF−1(t) = abe−bt 1 + φ

(1 + φe−bt)2
(1)

where t is a relative time since the beginning of the integration

testing. The corresponding cumulative number of reported

bugs, illustrated in Fig. 6a and Fig. 6b is then:

N
bugs
iss (t) =

∫ t

0

λiss(τ)dτ = a
1− e−bt

1 + φe−bt
(2)

Distributions of TTR do not show high variation over time,

but exhibit a significant impact of the bug severity. Hence we

propose the models for different severity classes. Since the

distributions show symmetry in logarithmic scale in Fig.7, we

propose a log-normal distribution for TTR, which is often used

in related empirical studies:

P[TTR = t] =
1

σ
√
2π

e
−

(ln t−µ)2

2σ2 (3)

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 85



The comparison of the fitted model and the data is presented

in Fig. 7. The models for TTF and TTR in Fig. 6 and Fig. 7

can be used to improve the accuracy of the existing models of

the SDN control plane dependability [3]–[6], and assess the

reliability of different control plane design solutions [7], [18].

The stochastic models can also improve release management

and software development process. For instance, an official

software release TR may be postponed until the expected

failure rate in all the projects has reached a desired level

λ0 [21]:

min TR

s.t. max
p∈Projects

λp(TR) ≤ λ0

The models can be used to optimize the allocation of the

test effort. Given the constrained budget Tbudget for the test

effort expenditures, the developers might choose to improve

the most defective components first [22]:

max
∑

p∈Projects

[N bugs
p (t0)−N bugs

p (t0 + tp)]

s.t.
∑

p∈Projects

tp ≤ Tbudget

where tp represents the effective time effort, e.g., in man-

hours, dedicated to a particular project p. Unfortunately, in

general case, this optimization problem has to be solved

numerically.

D. Correlation between code internals and bug statistics

In this section the relationship between the software defect

metrics and different code characteristics is assessed. The code

characteristics of interest are:

• Project size, expressed as thousand lines of code (kLOC)

• Project activity level, reflected in number of commits

• Community size, i.e., the number of unique contributors

• Age of the project, i.e., the number of internal releases

The software defect metrics related to median TTR (MTTR)

and debugging success rate (DS) were defined in Section IV-C.

The fault density (FD) is a software reliability metrics defined

as the number of bugs per source line of code. Due to the

complexity of TTF models, we compare average failure rate

(AFR) instead defined as average monthly bug reporting rate.

The summary of the code internals6and the relevant bug

statistics derived from the issue tracker is presented in Table I,

and pairwise relationships are illustrated in Fig. 8. We present

the data for the top 20 projects according to the absolute

number of bugs, which contribute to approximately 90% of

total the OpenDaylight code and bug content. The strong

correlations, i.e., R-value > 0.5, are indicated in the figure.

1) The project size: The kLOC shows positive correlation

with the total bug content and average monthly failure rate

(AFR), which is expected. It can be observed that with the

exception of the controller project, this relationship is approx.

quadratic. This is reflected in fault density (FD), defined as

6Data retrieved on 6th of September 2018 from OpenDaylight Git version
control system, available on GitHub.

the number of bugs per line of code, which is between 2 and

5 for most projects. Since, the number of code lines depends

on the programming language, it is worth noting that most of

the OpenDaylight projects are written in Java, the exception

being GUI (JavaScript) and VTN projects (C++).

2) The project activity level: The number of commits

show almost linear relationship with the total bug content,

R-value = 0.93, and a very strong correlation with AFR,

R-value = 0.78. It can be observed that relationship between

the number of reported bugs to the total number of commits

is approx. 1 : 5. It would be interesting to analyze the commit

messages and assess whether this strong correlation stems

from the fact that many commits represent the bug fixes, or

the increased bug content of active projects comes from the

introduction of the new features and frequent code changes.

3) The community size: The number of unique contributors

also shows the strong relationship with the total number of

bugs, with R-value = 0.88, and AFR, R-value = 0.84. We

observe that approximately 15 bugs per unique contributor can

be expected. This strong correlation project activity level and

bug content could potentially be used as a good predictor of

the bug content in the future projects.

4) Others: The number of internal project releases did not

show strong correlation with other software metrics. However,

the calendar age of the project does show a strong correlation

with the total bug content, as expected.

An unexpected relationship can be observed between the

total bug content and fault density (not shown), as it appears

that the larger projects tend to have higher fault density. As

the part of the future work we plan to systematically analyze

the relationship between the project structural and functional

characteristics, including multi-correlation, as well as more

complex non-linear relationships.

V. CONCLUSIONS AND FUTURE WORK

In this work we have analyzed the software repositories of

OpenDaylight, the largest and most widely used production

grade SDN controller platform.

We have compared the contributions of the different plat-

form components, and localized the most vulnerable ones.

We have demonstrated that the existing abstractions SDN

controller do not provide an accurate picture of controller

availability, since different projects and functional units have

different maturity, and hence different failure rates are ex-

pected. Moreover, the failures of different functional units,

e.g., controller core v.s. south bound plugins, will have dif-

ferent impact on the users and network applications. As a part

of the future work, we plan to study the dynamics between

SDN control and data plane, using the controller reliability

metrics provided in this paper.

The stochastic models provided for the bug manifestation

and removal processes can be used to improve the fidelity of

the existing SDN control plane models, such as [5], [6]. The

accuracy of our models can be further improved by automatic

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)86



TABLE I: Summary of code internals and bug related metrics for top 20 projects in OpenDaylight

PROJECT Bugs (all) Bugs (2017) Commits Contributors Releases kLOC FD[
bugs

kLOC
] AFR [

bugs

mon
] MTTR [h] DS [%]

controller 1485 194 8247 95 59 191.693 7.75 22.76 505 70.11
netvirt 1148 588 5105 91 29 301.175 3.81 37.58 632 68.17

OpenFlow 882 123 3182 65 43 278.393 3.17 15.51 773 70.41
yangtools 609 79 4184 44 65 232.515 2.62 9.91 433 72.18

bgpcep 571 94 3101 33 47 179.892 3.17 9.46 229 72.90
netconf 439 123 2882 56 24 215.3 2.04 9.21 767 71.87
ovsdb 405 37 2590 62 38 70.365 5.76 7.53 458 72.25
gbp 275 15 1057 35 26 147.2 1.87 7.84 480 72.61

mdsal 219 60 3468 51 24 210.933 1.04 4.23 1422 72.25
sfc 207 20 1446 48 35 134.602 1.54 4.47 651 72.51
lisp 165 24 1064 26 107 54.160 3.05 3.42 159 73.05
vtn 156 13 1019 19 36 1263.904 0.12 3.15 151 73.51
aaa 152 35 975 35 30 27.99 5.43 2.9 305 73.72

neutron 146 4 921 44 29 33.247 4.39 2.83 1207 73.75
sxp 128 18 443 29 13 42.142 3.04 3.15 179 74.10

genius 125 51 1590 37 20 89.293 1.40 4.32 526 74.14
dlux 121 27 537 21 35 63.992 1.89 3.60 1177 74.18

odlparent 105 58 1039 28 43 12.905 8.14 2.08 1739 74.02
l2switch 86 3 280 27 34 14.817 5.80 2.03 480 73.97
topoproc 85 4 470 17 23 51.069 1.66 3.56 331 74.12

TOTAL 7509 (88%) 3570.792 (92%)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

0

50

100

150

200

250

300

k
L

O
C

Bugs

0 1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

FD [bugs/kLOC]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0

50

100

150

200

250

300

AFR [bugs/mon]

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

0

50

100

150

200

250

300

MTTR [h]

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

0

50

100

150

200

250

300

Debug. success [%]

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

0

2000

4000

6000

8000

C
o
m

m
it

s

0.93

0 1 2 3 4 5 6 7 8

0

2000

4000

6000

8000

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0

2000

4000

6000

8000 0.78

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

0

2000

4000

6000

8000

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

0

2000

4000

6000

8000 -0.82

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

0

20

40

60

80

100

C
o
n

tr
ib

u
to

rs

0.88

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0

20

40

60

80

100
0.84

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

0

20

40

60

80

100

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

0

20

40

60

80

100
-0.9

controller

netvirt

OpenFlow

yangtools

BGPCEP

netconf

ovsdb

gbp

mdsal

sfc

lisp

vtn

aaa

neutron

sxp

genius

dlux

odlparent

l2switch

topoproc

Fig. 8: Pairwise relationships between code internals and bug statistics. Strong correlations (R-value > 0.5), indicated in

subfigures, can be observed between project activity level (commits) and project community size (contributors).

classification of the bugs reported in the issue tracker, e.g., by

using Natural Language Processing (NLP) techniques.

We have analyzed the relationship between the project code

internals and bug statistics, in attempt to explain where the

differences between project come from. Detailed analysis of

the correlation between the structural and functional charac-

teristics of the defective code in SDN platforms is another

interesting research direction, that we plan to pursue.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 87



ACKNOWLEDGMENT

This work has received funding from CELTIC EUREKA

project SENDATE-PLANETS (Project ID C2015/3-1) and the

German BMBF (Project ID 16KIS0473).

REFERENCES

[1] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Google’s network
infrastructure,” in Proceedings of ACM SIGCOMM Conference. ACM,
2016, pp. 58–72.

[2] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in Proceedings of the 26th Symposium on

Operating Systems Principles. ACM, 2017, pp. 599–613.
[3] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, A. Blenk, W. Kellerer,

and C. M. Machuca, “Assessing the maturity of sdn controllers with
software reliability growth models,” IEEE Transactions on Network and

Service Management, 2018.
[4] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, W. Kellerer, and

C. Mas Machuca, “An empirical study of software reliability in SDN
controllers,” in 13th International Conference on Network and Service

Management (CNSM). IEEE, 2017, pp. 1–9.
[5] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. Mas Machuca,

“Characterization of failure dynamics in SDN controllers,” in 9th

International Workshop on Resilient Networks Design and Modeling

(RNDM). IEEE, 2017, pp. 1–7.
[6] E. Sakic and W. Kellerer, “Response time and availability study of

raft consensus in distributed sdn control plane,” IEEE Transactions on

Network and Service Management, vol. 15, no. 1, pp. 304–318, 2018.
[7] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in

software-defined networks,” in Proceedings of the third workshop on

Hot topics in software defined networking. ACM, 2014, pp. 31–36.
[8] T. A. Nguyen, T. Eom, S. An, J. S. Park, J. B. Hong, and D. S. Kim,

“Availability modeling and analysis for software defined networks,” in
Dependable Computing (PRDC), 2015 IEEE 21st Pacific Rim Interna-

tional Symposium on. IEEE, 2015, pp. 159–168.
[9] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and

A. Kamisinski, “Availability modelling of software-defined backbone
networks,” in Dependable Systems and Networks Workshop, 2016 46th

Annual IEEE/IFIP International Conference on. IEEE, 2016, pp. 105–
112.

[10] F. Longo, S. Distefano, D. Bruneo, and M. Scarpa, “Dependability
modeling of software defined networking,” Computer Networks, vol. 83,
pp. 280–296, 2015.

[11] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A
fault-tolerant and consistent sdn controller,” in Global Communications

Conference (GLOBECOM), 2016 IEEE. IEEE, 2016, pp. 1–6.
[12] R. Potharaju and N. Jain, “When the network crumbles: An empirical

study of cloud network failures and their impact on services,” in
Proceedings of the 4th annual Symposium on Cloud Computing. ACM,
2013, p. 15.

[13] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an ip backbone,” in INFOCOM

2004. Twenty-third AnnualJoint Conference of the IEEE Computer and

Communications Societies, vol. 4. IEEE, 2004, pp. 2307–2317.
[14] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,

J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin et al.,
“What bugs live in the cloud? a study of 3000+ issues in cloud systems,”
in Proceedings of the ACM Symposium on Cloud Computing. ACM,
2014, pp. 1–14.

[15] P. Anbalagan and M. Vouk, “An empirical study of security problem
reports in linux distributions,” in Empirical Software Engineering and

Measurement, 2009. ESEM 2009. 3rd International Symposium on.
IEEE, 2009, pp. 481–484.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 2, pp. 329–339,
2008.

[17] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now?: an empirical study of bug characteristics in modern open
source software,” in Proceedings of the 1st workshop on Architectural

and system support for improving software dependability. ACM, 2006,
pp. 25–33.

[18] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software

defined networks. ACM, 2012, pp. 7–12.
[19] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement

strategies for a resilient sdn control plane,” in Resilient Networks Design

and Modeling (RNDM), 2016 8th International Workshop on. IEEE,
2016, pp. 253–259.

[20] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM

SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350–361.

[21] M. R. Lyu et al., Handbook of software reliability engineering. IEEE
computer society press CA, 1996.

[22] S. Osaki, Stochastic models in reliability and maintenance. Springer,
2002.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)88


