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Abstract—In the Internet of Things and smart environments
data, collected from distributed sensors, is typically stored and
processed by a central middleware. This allows applications
to query the data they need for providing further services.
However, centralization of data causes several privacy threats:
The middleware becomes a third party which has to be trusted,
linkage and correlation of data from different context becomes
possible and data subject lose control over their data.

Hence, other approaches than centralized processing should be
considered. Here, Secure Multiparty Computation is a promising
candidate for secure and privacy-preserving computation hap-
pening close to the sources of the data.

In order to make SMC fit for application in these contexts,
we extend SMC to act as a service: We provide elements which
allow third parties to query computed data from a group of
peers performing SMC. Furthermore, we establish fine-granular
access control on the level of individual data queries, yielding
data protection of the computed results. By adding measures to
inform data sources about requests and the usage of their data,
we show how a fully privacy-preserving service can be built on
the foundation of SMC.

Index Terms—Transparency, Intervenability, Access Control,
Internet of Things, Secure Multiparty Computation

I. INTRODUCTION

In the last years, the Internet of Things (IoT) has become an
emerging trend, including the rise of smart environments. In
these contexts, a certain structure of applications is prevalent:
Data points are collected at different (spatial or logical)
locations; for their utilization, they are horizontally aggregated
over a set of collectors; the outcomes are statistics or higher-
level information which are then used by other services. The
corresponding architecture normally features sensors for data
collection, a middleware for data storage and processing and
services which receive the processed data for further usage.
Examples for services are public displays providing statistics
and controllers or actuators triggered by data change events.

However, the data which is initially collected by sensors
is privacy-sensitive since it typically reflects user presence
and interaction: Presence influences the temperature in single
rooms, the CO2 concentration and device utilization (e.g.,
lighting). Certain sensors, e.g., for power consumption track-
ing provide even more specific insights into user behavior (In-
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trusive Load Monitoring, cf. [1]). This raises a huge need for
information security and privacy, which is not well addressed
by centralized storage and processing solutions.

Secure Multiparty Computation is an emerging and highly
promising approach for providing privacy-preserving systems.
It encompasses a class of protocols which allows a group of
parties to compute arbitrary functions based on confidential
inputs without sharing these values with any other party.
With the advent of edge computing [2] [3] it also becomes
a promising alternative in the context of smart environments:
Data can remain on local sensor platforms in the proximity
of the sensors where it was collected. Execution of SMC
protocols between these nodes then enables secure processing
without sharing or centralizing raw sensor data.

However, SMC is not directly applicable in the depicted
context due to an architectural mismatch: SMC uses a peer-
to-peer like communication (cf. [4], [5]) while smart environ-
ments are service-oriented: Nodes provide services for other
clients; in particular, clients should be able to request specific
data processing and receive the result afterwards. Our goal in
this paper is to extend SMC to be applicable in the architecture
of smart environments. Using a state of the art notion of
privacy, we yield a fully privacy-preserving service for the
processing of sensor data.

The remainder of this paper is structured as follows: In
Section II, we provide our notion of privacy and a background
on SMC. In Section III, we elaborate the related work on
practical application of SMC. Section IV provides a goal
statement of our work. We present our approach in Section V.
Its evaluation, with regard to security and privacy as well
as performance is carried out in Section VI. Section VII
concludes the paper.

II. BACKGROUND

In this section, we provide the background to our notion of
privacy, SMC in general and the Security and Privacy Model
of SMC applied to our domain of smart environments.

A. Privacy

Initially, privacy and data protection are high-level concepts.
In order to realize these properties in an information techno-
logical system, it is necessary to further refine them and break
them down into more specific parts.978-3-903176-15-7 © 2019 IFIP

171



Like security decades before, privacy and data protec-
tion also underwent the process of refinement by defining
protection goals some years ago, which make the concepts
more graspable. Following [6]–[9], these protection goals
mainly are data minimization, unlinkability, transparency and
intervenability. For the standard definition we refer to the
mentioned literature, especially [6]. An interpretation in our
specific context is provided in Section II-C.

We utilize this notion of privacy and data protection, since
it is state of the art and has found widespread adaptation, be
it on the level of individual states [10], [11] or the European
Union [12].

B. Secure Multiparty Computation (SMC)

SMC formalizes a problem of controlled leakage. Assume
multiple cooperating parties, each holding a confidential value.
They agree on some function which takes these values as
inputs. Using SMC, the function is correctly evaluated while
its result is the only new information released. The input of
each peer is not shared with any third party including the other
cooperating peers. [13]

The seminal work of Yao [14], [15] laid the foundation
of SMC; from there, several different methods for realization
emerged (e.g., [4], [16], [17]). The most promising founda-
tions for SMC currently are garbled circuits, homomorphic
encryption and secret sharing schemes. These approaches
enable different usage models [18], i.e., outsourced processing,
outsourced services and joint processing. For a comprehensive
overview see [18]. Today, research mainly focuses on the
performance of general purpose computation suites, strength-
ening their security, identifying new fields of application and
designing efficient specific purpose protocols. [5], [19]–[21]

With regard to privacy protection, SMC naturally fulfills
data minimization and unlinkability. Data minimization is
provided since raw data can remain where it is created. Desired
results can be computed by SMC directly without creating
privacy-critical intermediary data. Two types of unlinkability
are given: By aggregation of multiple parties’ input data,
linkability between the individual input data and the result is
prevented. Tracing back unique parties’ inputs from a result is
impossible in the general case. Furthermore, linkability among
different parties, i.e., correlation of their data, is prevented,
since this data is never available at the same logical location.

Currently, a small amount of actively developed SMC
frameworks [22]–[24] exists. These provide an implementa-
tion of the basic operations and enable creation of arbitrary
composed algorithms. Their application is initially restricted
to the distributed execution of the created protocols, which
does not encompass management and orchestration of peers,
coordination of computations and infrastructural requirements
enabling application of SMC in data processing scenarios.

C. Security and Privacy Model

a) Assets: The main asset to be protected is the individ-
ual raw data of sensor platforms. We assume them to be owned
each by the respective data subject, i.e., the person(s) about

which the platform gathers information. This is given in use
cases where a single smart building is inhabited by different
parties, e.g., smart hotels, smart houses with individual rental
apartments and can also be given in smart office buildings,
if employees have dedicated offices. The necessity for data
protection is based on the possibility that sensor data gives
insights about the presence and behavior of individuals [25].

b) Protection Goals: With respect to the mentioned
assets we understand security to be confidentiality of this
very raw data. However, confidentiality may not hinder all
processing of the data. Instead, a privacy-preserving access
must be designed, meaning data access which is controllable
by and accountable for the data owners. Following our privacy
background in Section II-A, privacy-preservation encompasses
the protection goals of 1) data minimization, 2) unlinkability,
3) transparency, and 4) intervenability. They have the
following meaning in our context: 1) Information is only
derived from raw data if it is actually needed by any client
service. The purpose is known before information is created.
2) Information made available to clients does not allow
restoring contributions of individual single peers. Correlations
between individual peers should not be possible by client
accessible data. 3) Peers should know, what information is
derived from their data and for which purpose this information
is used. 4) Based on this preliminary knowledge, they should
remain in control of their data by deciding which computations
may be carried out.

c) Attacks: In classical architectures previously men-
tioned protection goals are not or only partially fulfilled.
Central storage creates a high value target and a single point
of attack. Furthermore, it allows arbitrary processing, using
data for other purposes and correlation of available data; all
this being completely intransparent for individuals and without
any ability to intervene.

In our architecture, these attacks are mitigated, since raw
data stays on the peers, clients only obtain the post-processed
information they have been granted access beforehand. That
information is generated by SMC in a privacy-preserving
manner and the gateway only orchestrates data processing
while not having access to raw data.

The main goal of our approach is that only permitted
requests of clients are answered and only the requesting clients
obtain the corresponding result. This implies the following
set of premises, from which we derive each attacker by the
attempt to circumvent one of them. Access requires permission
(A.1). Given permissions are legitimate (A.2). If a permission
is valid, it was given by an accepted authority (A.3). Only the
authorized client can use a given permission (A.4). Validity of
permissions is correctly checked (A.5). Data contribution by
peers only happens if the validity check was positive (A.6).
Results of valid requests do not leak to third parties while
being transmitted to the authorized clients (A.7). The results
have not been modified on the way to the clients (A.8).

Further attacks are possible but out of scope of this work:
Malicious peers can try to obtain information from other peers
or provide wrong results. We exclude the former since it has
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to be addressed on the level of the SMC protocols and the
latter since the correctness of input values provided by peers
is out of scope of realizing secure computation (cf. [13, p. 11]).
Lastly, clients can try to correlate information they were able
to obtain. This is excluded since it depends on the exact choice
of available computation queries.

d) Trust: An ultimate design goal is to reduce the amount
of components which have to be trusted to handle private
raw data faithfully. Our architecture has been designed to
avoid single points of attack and high value targets holding
private raw data from several parties. The remaining trust is
diversified: We associate each sensor platform with individual
users. These users trust their respective platform to faithfully
collect and store their data. This assumption does not strongly
differ from assumptions in classical architectures: In any case,
by generating it, sensors have access to privacy-critical data.
Furthermore, all trust requirements for the used SMC protocol
realization apply.

III. RELATED WORK

Several results were achieved in the last years. However,
they show mere feasibility without aiming for an automated
system providing SMC as a service. In [26] SMC was used
to perform an auction between buyers and sellers of a specific
product. Providing data and receiving results was executed
manually. Another auction was performed in [27] among
different airlines for implementing the EU Emission Trading
Scheme. Data input and output are performed using CSV
files. In [28] a comparison of key performance indicators
among a group of competitive companies was performed.
They provided a Javascript library enabling data collection
via the browser; computation results were made available via
a spreadsheet. Burkhart et at. [29] applied SMC to generate
network traffic statistics and anomaly detection. Similarly,
[30] reused the same framework to perform collaborative
outage detection. Both do not address deployment and data
access challenges. Recently, Bonawitz et al. [31] used SMC
to collect private user data from smartphones in order to train a
central machine learning model. For this specific use case, they
provide a solution which is intended to serve as an automated
service collecting the desired data.

All of these solutions fall short for the application in the
IoT. In most cases, data is provided manually by user inter-
action. Similarly, the SMC setup is created ad-hoc for single
computations. Correspondingly, computations are invoked by
manual intervention. Also, the architecture does not match:
Data providers and result consumers are the same entities.
They cooperate in a peer-to-peer fashion processing data for
themselves instead of providing a service for third parties.

A notable difference is the last mentioned work. They
actually provide an automated SMC service. However, while
optimizing for a certain use case, they sacrifice the ability
to compute arbitrary functions and specialize on secure ag-
gregation. Following [32], our solution is agnostic regarding
the specific SMC implementation as long as it supports an
arbitrary number of computing parties.

A. Previous work for SMC in the Internet of Things

In [33] von Maltitz et al. provide a vision how SMC
can be applied in smart environments: The starting point are
distributed sensor platforms, understood as edge devices. They
represent an intermediary to low-end sensors; they collect the
data created by the connected sensors, store it locally and
have sufficient resources to perform local, small-sized data
processing. SMC computations among these devices allow to
derive processed and aggregated information from this local
data, which is then made available so that services (public
displays, actuators, etc.) can act on them.

As middleware, an SMC gateway is deployed. It realizes
the link between the sensor platforms and the data consuming
services but without having access to or storing the sensor data.
Regarding the sensor platforms – called peers –, it coordinates
SMC sessions for data processing. Towards the services –
called clients –, the SMC gateway acts as a middleware which
allows querying of data in the standard client server paradigm
while abstracting from application of SMC.

In [32] von Maltitz et al. focused on the interaction between
the peers and the SMC gateway of the aforementioned vision.
This work addressed natural technical mismatches between
the premises of secret sharing based SMC [4], [34] and
the characteristics of dynamic environments. The result is
a management and orchestration framework for SMC which
enables stable and automated execution of SMC sessions in
dynamic environments.

However, since it only provides the first purpose of the SMC
gateway, the remaining challenges for extending SMC, i.e.,
enabling data querying and access control on data processed
by SMC, are addressed in this work.

IV. OPEN PROBLEMS AND GOAL STATEMENT

The first goal of this work is to allow clients to query data
from a coordinated SMC group. While doing so, the fact that
SMC is used for data processing should be abstracted away for
the requesting clients. For this, we need queries which describe
the results to be obtained in a non-SMC specific manner (R.1).
Protection of original sensor data is achieved by SMC. They
never leave the sensor platforms and are not shared with any
third party. However, access control has to be carried out on
the derived results, ensuring that no client obtains more or
other data than intended (R.2).

The second goal is a provide a fully privacy-preserving
service based on SMC. This means in addition to fulfilling
unlinkability using SMC, transparency (R.3), including ac-
countability (R.4), and intervenability (R.5) should be achieved
according to their definitions in Section II-C.

V. APPROACH

We extend the gateway solution of [32]. First, we define
a format for queries. A query is a declarative data structure
which stands for a computation the gateway offers and clients
can ask for. Corresponding authorization grants are specified
that state the permission which queries a client is allowed
to post. Lastly, three types of requests are defined: Metadata
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Sensor platforms

Clients
1) metadata request

2) available queries

3) grant request

4) authorization grant

5) computation request

6) secure computation
8) computation result

7) computation result

Computation
Secure Multiparty 

Fig. 1. Interactions between the clients, the SMC gateway and the SMC
peers.

requests request the set of available queries from the gateway.
Grant requests are sent from the client to the gateway in order
to obtain an authorization grant, permitting a certain query.
Computation requests are actual requests, specifying the data
to be obtained using a query and providing a corresponding
grant authorizing them to obtain this very data.

The subsequent protocols enable the following interaction
(cf. Figure 1): Clients perform a metadata request to the
gateway (1), obtaining meta information about all available
queries via this gateway (2). From this set clients select
desirable queries and ask for permission to issue them by
performing a corresponding grant request (3). On success,
they obtain the respective authorization grant (4). Data is
demanded by a computation request (5). When the gateway
obtains this type of request, permission is checked using the
authorization grant which is sent along with the request. On
success, the affected peers are informed, enabling them to also
check and verify the request using the provided authorization
grant. Additionally, they can perform arbitrary further privacy
checks. If all peers agree, the SMC session is setup and
carried out (6). When the gateway receives the result (7), it is
forwarded to the client (8).

A. Requests and Authorization

a) Cryptographic identity for clients: Given the previous
work of [32] we can already assume the availability of a
public key infrastructure. Clients have to be equipped with a
cryptographic identity, e.g., X.509 certificates, for providing a
secure reference point for communication and authorizations
to be bound. In order to support transparency later on, the
identity is enhanced with metadata about the clients, especially
a short description which states the usage purpose of data
obtained by this client.

b) Query format: For performing a secure computation
the following properties of the computation must be known:
1) The group of peers to participate in the computation 2) the
input data to use and 3) the protocol to execute.

Regarding 1) we refrain from letting clients specifically
select single peers to form a group. In our use case, the
knowledge which is of interest for clients is on a higher
abstraction level like a department, a floor, a specific room type
etc. Hence, this abstraction is made on the side of the gateway:

Newly added peers provide metadata about themselves, includ-
ing labels describing peers in a domain-specific way. We hence
define labels(p) to be the set of key-value pairs (k, v) of peer
p. As an example, a peer can have the label set {roomtype:
kitchen, level:3, buildingpart:A,...}.

When a set Pg of multiple peers is connected to a gateway
g, it can build the superset LPg

≡
⋃

p∈Pg
labels(p) of all

provided attributes. This information can then be used to
create predefined logical predicates forming groups, which
can then be queried by clients. A predicate ‘‘roomtype
= kitchen’’ would hence select all peers which com-
municated this label upon pairing with the gateway. Clients
can then choose from the finite set of predicates for each
of their requests. In order to guarantees privacy towards the
peers, clients should not be allowed to craft queries themselves
instead of selecting from a predefined set: Making more
general queries than provided could enable them to gain
information about peers which they are not allowed to obtain.
Making them more specific could allow derivation of input
data of single or a small group of peers.

Similar to the labels, for 2) each peer provides metadata
about the inputs it can provide. We denote this as inputs(p)
for peer p. It corresponds with the sensors the peer has
available. Besides the type of input data, clients are given the
ability to select not only the latest data point but also a list of
the points of a given time window reaching into the past. I.e.,
as preselector the gateway allows to choose from window
sizes like last value, last hour, last 6 hours, . . .

When selecting a window of values, they have to be
merged into a single value as input for the SMC session.
For this, we define a preprocessor function that can be
selected by the client and request a corresponding aggre-
gation of the values before performing the actual compu-
tation. These encompass typical aggregation functions like
min,max, sum, average, . . . but can also be extended.

Regarding 3) we depend on the protocols being available
on the peers. These can be provided as labels and clients can
again select from a finite set of options.

In summary, the three requirements for SMC sessions are
transformed into five attributes a request has to provide.
An example is given in Listing 1. Request translation then
conceptually consists of two steps: 1) The selected group
label is evaluated and the corresponding peers are chosen. All
further request attributes are evaluated at the peers, selecting
the right (preprocessed) input and the protocol to execute. The
session is then carried out according to [32].

1 {
predicate: type = heater ∧

3 roomtype ∈ [kitchen, meetingroom]
preselector: last 6 hours

5 preprocessor: avg
protocol: sum

7 input: power_consumption
}

Listing 1. Computation request query
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grant request

certificate

fpr
. . .

queries

query

predicate
preselector
preprocessor

protocol
input

. . . query

sigclient

Fig. 2. Structure of a grant request

c) Authorization grants: In a dynamic environment, it is
imaginable that multiple gateways are deployed for different
purposes. These gateways should be able to verify access
requests without time or communication overhead. I.e., no
contact to other entities should be necessary nor should exten-
sive state on the gateway itself be necessary for verification.
Due to these reasons, we decide for a serialized representation
of permission which is transferable and verifiable with a
low amount of state information. The purpose of such an
authorization grant is to state whether a given request is
legitimate or not. The client can obtain these grants from
an access authority (e.g., the gateway or an external entity).
These grants encode the requests allowed for this client. Upon
request, the clients also send the grant along in order to prove
legitimacy of the request. Forwarding the grant to the peers
enables individual revalidation by the data sources themselves.

Technically, the grant mirrors the attributes of the request.
I.e., it also contains a predicate which can be matched against
the request predicate. Furthermore, preselector, preprocessor
and the input type must be of permitted value. Besides that, it
is bound to the identity of the corresponding client by adding
a cryptographic identifier bound to the client’s certificate. To
avoid complications regarding revocation, we suggest a short
lifetime of the grants and renewal on demand.

d) Request formats: There are two request types: The
purpose of the grant request from the client is to obtain
an authorization grant stating access permission. A request
rc,grant of client c consists of the following components (cf.
Figure 2): The certificate states the identity of the client.
Queries contains all queries the clients demands access to,
characterized by its attributes. sigclient serves authentication
and integrity-protection of the request. The purpose of the
second request, the computation request, is to actually obtain
computed data. A request rc,comp of client c consists of
the following components (cf. Figure 3): The query contains
the predicate and the other characterizing attributes (cf. Sec-
tion V-A0b). The certificate is as described in the previous
request type. The grant is the authorization grant which states
permission to obtain the data in question. It is the answer of the
gateway answer to the previous request type. The holder is the
owner identifier of the grant. not before and not after specify

computation request

query

predicate
preselector
preprocessor
protocol
input

certificate

fpr
. . .

grant

queries

query
...
query

holder
purpose
not before
not after
sigissuer

timestamp
sigclient

Fig. 3. Structure of a computation request

the time frame of validity. The queries of the grant mirror the
queries to be allowed for the holder. Timestamp reflects the
time when the computation request has been created. sigissuer
states the permission given by the issuing entity.

e) Accountability of requests: Based on the transparency
of computation requests which are forwarded to peers, ac-
countability is achieved by persisting the request data struc-
ture. This is extended by a signature of the accepting gateway
and optionally the result of the computation.

B. Protocols

We dissect the client/gateway interaction into three inde-
pendent protocols: 1) Metadata request, 2) grant request,
3) computation request.

Here, we model the state of the gateway to be (Q,Φ)
where Q is the finite set of queries made available by the
gateway. Each query has the structure as shown in Figure 3.
Φ : (query, client, context) → {true, false} is an access
control structure; it takes a tuple of a query, a requesting client
and a context and returns whether or not access is permitted.

a) Metadata request: This is the first interaction between
the client and the gateway that requests meta information about
the data being available via the gateway. The gateway answers
with a list of all q ∈ Q.

b) Grant request: Afterwards, clients can demand access
to certain information by requesting a corresponding grant (cf.
Figure 4): They send a grant request rc,grant to the gateway
where the checks described below are performed. If they are
successful, the gateway creates and signs a corresponding
authorization grant. This is sent back to the client.

Verification Given a request rc,grant of client c, the validity
of the client certificate (Equation 1) is checked and whether
the requesting client possesses the corresponding private key.1

Similarly, validity of the request signature (Equation 2) is
verified. Then the semantics of the queries are checked (Equa-
tion 3) using Φ. The parameters are set as follows: The query
reflects the demanded data in a form as described above. The
client is represented by its certificate. The context is the current

1When using TLS, this is already handled during TLS session establish-
ment.
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Client Gateway
Prepare grant request

1 : Send grant request

2 : Check Equation 1 – 3

. . . . . . . . . . . . . . . . . . . . . Check: Success . . . . . . . . . . . . . . . . . . . . .

3 : Create and sign grant

4 : Grant

. . . . . . . . . . . . . . . . . . . . . . . Check: Fail . . . . . . . . . . . . . . . . . . . . . . .

5 : Failure notice

Fig. 4. Grant Request Protocol. In a grant request clients demand an
authorization to execute a specified set of queries. The gateway checks,
whether or not the requesting client is allowed to access the corresponding
data. If yes, an authorization grant is created and handed over to the client.

state of the gateway, this encompasses the information about
currently connected peers and environment information like
the current time.

verify(rc,grant.cert) (1)
verify(rc,grant.sigclient , rc,grant.cert) (2)

∀q ∈ rc,grant.queries : Φ(q, rc,grant.cert , context) (3)

c) Computation request: These requests are performed
repeatedly during productive use in order to obtain aggregated
data from the peers. The protocol is shown in Figure 5.
The client sends a computation request (cf. Figure 3) to the
gateway. If the checks as described below are successful, the
request is accepted and transformed into an SMC session. The
result of this session is the requested information. It is signed
by the peers and, since the certificate of the client is available
to the peers, encrypted for the client. The encrypted result can
then be forwarded by the gateway to the requesting client.

Verification The gateway and the peers play different
roles regarding access control and intervenability; hence they
validate different aspects of the request.

Given a request rc,comp of client c, the gateway first checks
whether the holder matches the requesting client and the client
certificate is valid (Equation 4), it checks the authenticity of the
request (Equation 5), then it verifies whether the authorization
grant itself is valid (Equation 6 – 8).

rc,comp .grant .holder = c.cert .fpr ∧ verify(c.cert) (4)
verify(sigclient , c.cert) (5)

verify(issuer .cert) ∧ verify(sigissuer , issuer .cert) (6)
rc,comp .grant .not before ≤ now (7)
now ≤ rc,comp .grant .not after (8)

After checking formal validity, the validity of the request itself
is verified, i.e., whether the grant supports the stated query.

Client Gateway
Prepare computation request

1 : Send computation request

2 : Check Equation 4–9

. . . . . . . . . . . . . . . . . . . . . . . Check: Success . . . . . . . . . . . . . . . . . . . . . . .

3 : Accept notice

4 : Store and process request
5 : Inform peers
6 : Perform computation
7 :

8 : Obtain result

9 : Result

. . . . . . . . . . . . . . . . . . . . . . . . . Check: Fail . . . . . . . . . . . . . . . . . . . . . . . . .

10 : Failure notice

Fig. 5. Computation Request Protocol. A client demands for the results of
a computation specified in its request. If the request is valid, the client is
notified about acceptance and processing of the request is performed in lines
4 – 6 as described in [32]. The result, coming back in line 8 is then forwarded
to the client in line 9.

This is realized by checking for the inclusion of the query in
the permitted set (Equation 9).

∃q ∈ rc,comp .grant .queries : q = rc,comp.query (9)

Verification by the peers happens when the session is com-
municated to them (Step 5 in Figure 5). Besides rechecking
abovementioned checks, each peer p ∈ P can have a set
Φp of local policies which defines how their data may be
used and the corresponding privacy constraints. Satisfaction
of these policies can also be checked (Equation 10). This e.g.,
can include a check for recency of the computation request in
order to prevent replay attacks.

Φp ` (c, rc,comp.query) (10)

VI. EVALUATION

A. Security and Privacy

In the previous sections we presented an approach to fulfill
the security and privacy requirements stated in Section IV. We
leave data processing of the underlying SMC intact without
modification. I.e., the corresponding security properties still
apply without constraints: The state of the art [5], [19]–
[21] is already secure against n − 1 maliciously colluding
peers. Since the data owners’ device always participates in
the computation when using their data, security of the own
raw data is already achieved by guaranteeing that the own
device is not compromized. The computation request and the
corresponding protocol allow third parties to query for data
computed by SMC (R.1). By doing so, securely computed
information becomes accessible to outside clients. Access
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on the computed results can be controlled by authorization
grants required for computation requests (R.2). This enables
controlled data flow when serving a heterogeneous set of
deployed services. Making the request verification independent
from the access control structure Φ and its context parameter,
i.e., not relying on complex state of the gateway for access
control but on transferable documents, allows to use the same
data structures to fulfill desired privacy-protection goals: Peers
are informed about upcoming computations and their context
if they are involved, since the requests include the query and
the corresponding authorization grant of the requesting client
(R.3). An authenticated history of data access and usage can be
built (R.4), since authenticated requests can also be persisted
by each peer. The signatures of the client, the gateway and the
peer ensure that integrity of request and corresponding grant is
protected. Giving peers the ability to verify this request using
their own local policies Φp and allowing them to veto against
requested computations enables intervenability (R.5). As a
consequence, data minimization is supported: Data sources can
make sure that there are not more or different computations
performed than they expect to happen.

Regarding possible attacks from Section II-C, our solution
performs as follows: The grant represents given permission.
Consequently, A.1 is mitigated since the gateway checks for
the presence of a grant, and the peers are also able to perform
this check. Without a grant, a request is not accepted. A.2 is
addressed by having the access authority as trust anchor. It is
assumed to only issue legitimate grants. This is complemented
by enabling the peers to perform semantic checks on the
requests. Forging permissions (A.3) is prevented by requiring
a valid signature of the issuer on the grant (cf. Figure 3).
Similarly, an interval of validity is included in the grants to
ensure their currency. Furthermore, the possessor of the grant
is included in the grant itself, ensuring that only this very
client can use the given permission, mitigating A.4. Permission
checks performed by the gateway and the peers include all
necessary steps to ensure abovementioned assumptions. Addi-
tionally, they verify whether the query of the current request is
permitted by the attached grant. This renders A.5 infeasible.
The request is only forwarded to the peers, if the grant is
found valid in the abovementioned sense by the gateway. To
avoid requiring trust of the peers in the gateway regarding
these checks, all information are also forwarded to the peers.
They are able to recheck them themselves. This ensures that
data is only made available if the peers had sufficient proof of
the validity of the request, mitigating A.6. A.7 is prevented,
since the obtained result (cf. Figure 5, step 8) is encrypted for
the receiving client. Similarly, the result cannot be changed by
the gateway (A.8), since the result is signed by the peers.

B. Performance

For performance evaluation of our approach we imple-
mented a prototype in python and performed measurements
of the protocols presented (cf. Figure 4 and 5).

1) Setup:

a) Scenario: We consider a single floor in a smart
building with around 10 to 30 peers being connected to a single
gateway. The gateway is assumed to be decent commodity
hardware. The network is an intranet with low latency, a
typical throughput and no packet loss.

b) Hardware and System: We used 4 hosts in our setup.
These are equipped with eight cores at 2.50 GHz and a
main memory of 15.780 MB. They have 1 Gbit networking
interfaces and are arranged in a star topology. The default
link latency is around 0.18 ms. As operating system we use
Debian Stretch (9.4) based on a 4.9.0 Linux kernel.

The roles of the gateway, the client and the peers have to be
reflected in the setup. We deployed the gateway and the client
on individual hosts. Furthermore, a single peer was deployed
on a dedicated host; all other peers were started as processes
on a single further machine.

c) Implementation: The prototype is implemented in
python as a flask 1.0.2 application and executed using
python 3.5.3. Data is stored in a mongodb version 3.2.11 and
as authorization backend authzforce 8.0.1 [35] is used which is
located on the gateway host. The flask application is served by
uwsgi 2.0.17.1. Uwsgi is executed with a single process and
eight threads, if not told otherwise. The queue for unanswered
requests has a limit of 100 entries. When contacting the peers,
the gateway spawns a thread for each peer in order to allow
simultaneous waiting for all responses.

For testing purposes no actual SMC component was con-
nected to our querying framework. This allows to measure the
overhead of our components without depending on the perfor-
mance characteristics of a chosen SMC implementation. We
decided for this omission, since we assessed the performance
of a state of the art SMC implementation elsewhere [36].

d) Method: We measured the duration of client requests
handled by the gateway (latency). The measured time begins
when the request is handed to our custom code; it ends when
the final response is handed back to uwsgi. In the results, we
show the median, the 0.25 and the 0.75 quantile. For each
frequency, we captured the amount of requests the gateway
was able to handle successfully per second (throughput).
Lastly, we recorded the state of the request queue.

2) Results:
a) Grant Request Protocol: The grant request protocol is

carried out when a client aims to obtain further access rights
to data queries offered by the gateway. This only happens
when new clients are deployed or permissions change over
time. We assume that a small number of requests per second
is only exceeded during peak times. This amount of requests
is well supported: Even under a load of ≥ 100 requests per
second, answer time stays below 20 ms (Figure 6). The queue
of the gateway becomes saturated only after 170 requests/s.
Correspondingly, the throughput stagnates at the same point
(Figure 7). Since no peer interaction happens, performance is
independent of their number.

b) Computation Request Protocol: The computation re-
quest protocol is always carried out when a computation on
actual sensor data is queried. With polling every second per
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Fig. 6. Grant Request Protocol: The duration of handling a single request
inside the gateway component depending on the amount of requests performed
by the client.
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Fig. 7. Grant Request Protocol: The amount of successfully answered requests
depending on the amount of requests performed by the client. Up to a load
of 170 requests/s, throughput increases proportionally and no drops occur.
Afterwards, the queue is filled and throughput stagnates on this level.

client, and multiple clients being connected, multiple requests
per second can be expected. With 30 peers connected, a single
request per second yields a latency of ~250ms. With increasing
load this converges to ~1.7 seconds per request (Figure 8).
Each added peer approximately contributes further 50 ms. The
reason is computational overhead per connection – mainly
signing outgoing messages and verifying the signatures of
incoming messages – which cannot be handled in parallel
due to the global interpreter lock in python. A programming
language with real parallelization would not exhibit a delay
in such a fashion. Concomitant with the increase in latency,
the request queue is exhausted between 5 – 20 requests/s and
a high throughput is inhibited (Figure 9). Providing 4 uwsgi
processes shows that parallelization doubles the throughput.
Due to these limitations, we understand our approach to be a
feasibility result with further potential for optimizations.

VII. SUMMARY

In the Internet of Things and smart environments, ser-
vices need data about the environment and its inhabitants for
performing informed action. This data is personal data and,
hence, privacy critical. Current systems mostly handle this
data using a middleware for storage and processing. Gained
results are forwarded to services and applications. However,
this centralization enables several privacy threats.
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Fig. 8. Computation Request Protocol: The duration of handling a single
request inside the gateway component depending on the amount of requests
performed by the client. This includes forwarding the request to all concerned
peers and waiting for their request acceptance.
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Fig. 9. Computation Request Protocol: The amount of successfully answered
requests depending on the amount of requests performed by the client. Latency
of single requests restricts the amount of successful requests, since the request
queue is already filled between 5 – 10 requests/s.

A promising alternative is Secure Multiparty Computation
(SMC). Data can remain on individual distributed sensor
platforms. Desired results can be derived on-the-fly by secure
computation without intermediate storage. Here, we provide
an approach which enables third party clients to execute
queries on privacy-sensitive data built on SMC without taking
part in the computations themselves. On this foundation, we
build fully privacy-preserving service: Protection of results is
achieved by access control on the level of individual queries.
Requests and processing becomes fully transparent for the
cooperating sensor platforms. This supports intervenability,
i.e., enabling them to stay in control of their data and allowing
them to reject processing if their privacy requirements are not
fulfilled by an incoming data requests.

Future Work: In combination with [32], we realized the
full architecture of a privacy-preserving service for smart envi-
ronments. However, several further challenges are open: 1) We
enabled checking of requests by peers using local policies
Φp. The design of these semantic checks could be further
investigated. 2) Clients are only allowed to select predefined
predicates. If arbitrary predicates could be checked against
privacy rules, clients could be allowed to define predicates
themselves. 3) The gateway could create its access control
structure Φ by collecting and merging the distributed set of
Φp, directly guaranteeing compatibility between them.
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