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Abstract—Network traffic monitoring is primordial for net-
work operations and management including Quality-of-Service
or security. One major difficulty when dealing with network
traffic data (packets, flows, etc) is the poor semantic of individual
attributes (number of bytes, packets, IP addresses, protocol,
TCP/UDP port numbers, etc). Many of them can be represented
as numerical values but cannot be mapped to a meaningful metric
space. Most notably are application port numbers. They are
numerical but comparing them as integers is meaningless. In
this paper, we propose a fine grained attacker behavior-based
similarity metric allowing traffic analysis to take into account
semantic relations between port numbers. The behavior of attack-
ers is derived from passive observation of a darknet or telescope,
aggregated in a graph model, from which a dissimilarity function
is defined. We demonstrate the veracity of this function with real
world network data in order to pro-actively block 99% of TCP
scans.

I. INTRODUCTION

TCP and UDP are major transport protocols in Internet.
Port numbers allow the end-hosts to de-multiplex flows and
forward them to the right sockets and so services. Being
encoded in 16 bits, there are 65,536 possible ports for each
TCP and UDP. There are different segments: system or well-
known ports (0-1023), reserved ports for specific applications
or vendors (1024-49151) and dynamic ports (49152-65535).
Although the dynamic ports are mainly used as ephemeral
ports, such as source ports when establishing a connection,
other ports are associated to a special use, i.e. service. Their
numbering is managed by the Internet Assigned Numbers
Authority (IANA). Even if users are free to use any port
numbers, using assigned port numbers eases access to the
service.

They are a valuable source of information for managing
and operating a network as for instance to perform traffic
engineering for QoS purposes or to detect anomalies [1].
In many cases, packets or flows need to be compared for
supporting machine learning or data-mining algorithms. For
example, Netflow records can be analyzed to detect anomalies
[2] but all flow attributes cannot be represented in a metric
space to be easily compared. While using longest common
prefixes can partially solve the problem with IP addresses [3],
it remains valid for port numbers.

In this paper, we propose an automated fine-grained ap-
proach to catch simultaneously two types of similarities be-
tween port numbers:
• Service-semantic similarity: this represents port numbers

supporting services of the same type. For instance, TCP
ports 80 and 443 are semantically close to each other
(Web). However, TCP ports 443 and 22 are also close
semantically because they provide a secure connection.

• Context-semantic similarity: this abstracts the relations
between ports which are often present together (on the
same machine or in a close vicinity, e.g. same sub-
network). As an example, an medium-scale enterprise
network often provides a web and email server.

It is worth to mention that two ports can be similar on both
perspective, e.g. 443 and 80, both for web services and usually
co-located on the same server. In a preamble of an attack,
port scanning is often performed to find open ports. In order
to remain undetected, attackers may prefer to target particular
ports rather than using massive scans. Actually, the selection of
these ports follows a logic that can be guided by a motivation
equivalent to the service- or context-semantic. As a result,
observing the port scan strategies performed by the attackers
is helpful to derive the semantic between port numbers. Three
contributions are presented in this paper. Firstly, major trends
on port scanning are highlighted from a 40 weeks long darknet
dataset. A darknet refers here to an unused IP subnetwork
passively collecting incoming unsolicited traffic. It results in
the clear observations of relationships among targeted ports.
Secondly, this motivates and guides the definition of a metric
that is defined in order to catch simultaneously both types
of similarities (service- and context- semantic), based on a
previous work [4]. Finally, our third contribution leverages
our metric to proactively block scanned ports.

The remainder of the paper is structured as follows: Section
II presents related works. Section III introduces our attacker-
based semantic port similarity. Section IV details observations
from our darknet. Our proposed metric is then evaluated in
Section V and applied to real world internet traffic use case
in Section VI. Section VII finally gives the conclusion with
possible future work.

II. RELATED WORK

TCP/UDP ports used by applications is helpful for traffic
monitoring purposes. However, some researchers like in [5]978-3-903176-15-7 © 2019 IFIP
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question the use of the latter in machine learning methods
because of the versatility of this information. In 2005, the
authors already show that 70% of the network traffic can
be properly classified based on official port numbering [6].
Nowadays, traffic classification is even facing new challenges
with encrypted traffic [7]. However, in many cases, port
numbers bring valuable information about the type of services
in use or targeted by the attackers. We have shown that there
are particular relationships between the sequences of scanned
ports [4]. Actually, the weakness of using port numbers in
data analysis is the lack of a proper metric to apprehend the
similarity or dissimilarity between them since they are not
embedded in a metric space. Many traffic analysis techniques
rely thus on other features [8] or simply consider if port
numbers are equal or not [9], [10]. In [11], the aim is to group
TCP flows in order to identify a dominant port per group if it
exists. In [12], port numbers are compared accordingly to the
ranges they belong to (registered, well-known or dynamic).
We propose to go further by deriving a single inter-TCP ports
similarity metric.

Our similarity relies on knowledge indirectly embedded
in the attacker activities, especially the TCP scans. Some
surveys like [13], [14] show that large scanning campaigns
become more frequent. Collecting scanning activities is thus
a rich source information but necessitates a mining approach
to extract synthetic knowledge. Darknets have been proved
to be efficient to monitor large scale attacker activities such
as scans or DDoS (Distributed Denial-of-Service) attacks
[?], [15]. Many of existing works focus on analyzing and
describing observations made through the darknet [16], [17].
This paper proposes to build a similarity function based on
those observations to be then applied for real time security
monitoring in another environment. In particular, we show the
viability of our technique to pro-actively block future TCP
scans. It is complementary to many existing techniques dealing
with reactive detection of scans [18]–[20].

III. ATTACKER BEHAVIOR-BASED INTER-PORT MEASURE

A. Rationale

The first stage of an attack usually consists in identifying the
potential targets. Discovering accessible machines and services
often relies on IP sweeping and/or scanning TCP and UDP
ports [21]. Naive approach testing all ports numbers and all
IP addresses of a targeted subnetwork is time-consuming and
has a large footprint, which can be easily detected. However,
the smart attackers would search for particular services with
potential vulnerabilities. For example, if she looks for web
servers, then TCP/443, TCP/80, TCP/8080 are targeted in
priority and can reveal a service-semantic similarity. Similarly,
an attacker may target a particular type of environment with
various services close from a context-semantic point of view.
For example, a web service relies usually on a web server
and on database. So both of them are regularly co-located in
a close network vicinity, even in the same host. In a previous
work [4], this intuition has been confirmed.

Fig. 1: Methodology overview

In this paper, we propose to aggregate, from the massive
observation of a darknet, such a knowledge into a single
similarity metric designed to catch both behaviors: the attack-
ers looking for a particular type of service (service-semantic)
and the attackers looking for services which are usually co-
located together (context-semantic). This aggregation of the
two semantics provides a smarter comparison for two given
ports. We confirm the co-existence of these t¡o behaviors in
scanning strategies of the attackers in section IV.

B. Methodology

Our aim is to extract the similarities between port numbers
by observing attacker behaviors, i.e. ports targeted by the
same attacker. More especially, we use a darknet or a network
telescope that silently collects unsolicited traffic including
TCP scans on a non active subnetwork. Indeed, an entire and
never used IPv4 subnetwork acts as a black hole collecting all
incoming packets, including some related to scans. Deriving
a similarity from the distance between two ports targeted in
a sequence does not lead to good results in preliminary ex-
periments. Intuitively, a set of semantically close port numbers
(either by context or by services) may not have been massively
observed integrally (in a single sequence) but rather through
multiple overlapping sequences.

All sequences must be aggregated together in a unique
representation. In addition, even the ports that are supposed to
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be similar are not targeted in the same order each. No global
order should be constructed. We thus transform successively
probed ports (sequences) by attackers into a unique graph.

Figure 1 illustrates the whole process to infer the similarity
between port numbers:

1) Multiple attacker behaviors, e.g. scanned ports, are col-
lected. In order to avoid a bias, it is required to collect
such behaviors in a massive scale. In our case, we use
a darknet or telescope (see section IV).

2) Scan extraction: since collected data can embed some
noise, filtering is necessary and directly dependent on
the collecting process. For example, big vertical scans
running on all ports do not contain a valuable semantic
and should then be discarded.

3) Graph building: the graph of scans is created from the
filtered data. The nodes represent port numbers and the
directed edge between two ports means that they have
been probed sequentially at least once.

4) Similarity: a similarity measure between two port num-
bers is derived as the length of the shortest path between
them.

While this method can be applied for both TCP and UDP,
the remaining of the paper is focused on TCP ports. The main
difference would be the scan extraction.

C. Extraction of network scans

Massive scan can happen on a very wide range of ports
(sometimes all) that are not especially semantically connected
(vertical scans). The same applies for horizontal scan targeting
the same port (or a few of them) on numerous hosts.

Such scans are out of our interest to catch a supposed
strategy in selecting ports by attackers. Our dataset is precisely
described in section IV but Figure 2 represents the cumulative
distribution of IP addresses per number of scanned TCP ports
within a week. Our analysis is restricted to TCP SYN scans
since they can be easily correctly isolated in our dataset. This
figure highlights that most IP addresses (72%) are scanned
with a limited number of port numbers during a week (less
than 30). The long tail of the curve, here limited up to
75 (99.5%), represents so the vertical scan. A very wide
number of IP addresses have less than 3 ports scanned, that is
representative of a probing technique targeting few ports, i.e.
horizontal scans.

Therefore, data is filtered according to these observations by
discarding network traffic related to vertical (same IP address
probed with more than 30 ports) and horizontal scans (an IP
address probed with less than 3 ports) on a daily basis.

D. Graph-based port sequence model

The graph model is built from the method described in
[4], that has highlighted semantic relationships between port
numbers. The built graph represents all observed and filtered
scans thanks to a well defined an summarized structure. A
scan graph is a directed weighted graph G = (N,E, ω) with:

N The set of nodes of the graph. Each of them repre-
sents a unique TCP port.

Fig. 2: Cumulative sum of number of ports scanned per
destination IP address per week (in a 4-weeks period)

E The set of edges of the graph. An edge ei,j from port
pi to pj exists if port pj has been probed following
pi on the same destination IP address and from the
the same source IP address (representing the source
of the scan).

ω is a weight function for edges defined as ω(ei,j), the
number of times pj follows pi in all scan sequences.

E. Shortest path based inter-port similarity

The defined graph contains the desired semantic. If two
ports are connected by an edge with a high weight, they have
been probed a lot of time successively. By generalization,
the graph also contains ports that are near each other by
transitivity. For example, if scans go repeatedly from 80 to 443
and from 443 to 3306 (MySQL), the graph contains a transitive
link between ports 80 and 3306 and reveals thus a semantic
similarity between these ports, but lower than between 80 and
443 (connected by a direct edge).

The intuition of this semantic is to swap (or invert) the
weight of edges in the graph to reduce the shortest path
length between ports which are regularly scanned in a same
sequence (i.e. those connected together with heavy weights).
Then, shortest paths sp(ni, nj) between the pair of nodes ni
and nj (port numbers) are computed. sp(ni, nj) is the smallest
sequence of edges from the source ni to the destination nj
according to the inverted weights. The length l(sp(ni, nj))
of this shortest path is then used as a dissimilarity measure
between the two ports, i and j, represented by the nodes ni
and nj respectively. It is denoted as dsp:

dsp(i, j) = l(s) =
∑
∀ei,j∈s

ω′(ei,j), s = sp(ni, nj) (1)

Finding the shortest paths in a graph is a common problem.
Methods, like the Dijkstra algorithm, are well defined. The
main challenge resides in defining a correct rescaling and
swapping method for the edge weights, i.e. deriving ω′(ei,j)
from ω(ei,j) to make closer nodes linked with heavy weighted
edges. In the original graph, the weight of an edge represents
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Fig. 3: Edges weights boxplot

the number of times a transition occurs between two ports. For
the sake of clarity, we will simplify ω(ei,j) weights notation
to ωi,j .

The distribution of edges weight, θ, in the graph is given in
Figure 3 based on our dataset described in section IV. In this
figure, we can observe an unbalanced distribution with most
of the values concentrated between Q1 = 299 and Q3 = 4082
(θ inter-quartiles range - IQR). Therefore, data needs to be
rescaled. Due to the occurrence of outliers, we have chosen
to use the IQR as a basis for rescaling as follows:

ωiqr
i,j =

ωi,j −Q1(θ)

Q3(θ)−Q1(θ)
, θ = {ωi,j∀i, j}

Actually, the IQR-based rescaling method relies on data
distribution instead of values and spreads the most represented
values on a larger range. Because rescaled values originally
below Q1 become negative, we shift the rescaled data to
positive values by deducing the minimal value, ωiqr

i,j − λ with
λ = mini,j({ωiqr

i,j }).
Finally, weights can be swapped regarding the maximum

value (which is also shifted):

ω′i,j = (max
i,j

({ωiqr
i,j })− λ)− (ωiqr

i,j − λ)

This data-driven scaling and swapping technique avoids to
use arbitrary factor when inverting the edge weights.

IV. DARKNET OVERVIEW

A darknet also known network telescope or Internet black-
hole is an entire reachable subnetwork collecting all incoming
traffic with no active hosts. It has been proved to contain
valuable information to understand major security threats like
DDoS attacks and scanning activities [16].

A. Datasets and pre-processing

Two darknets are used in this paper over 40 weeks of
observations. The first one (FR), in France with a dedicated /20
subnetwork. The second one (JP) is a /20 subnetwork in Japan.
Using both datasets strengthens our evaluation, especially to
assess if there are dependencies between locations.

General statistics are provided in Table I. The Japanese
darknet attracts more traffic than in France one but from less
attackers meaning that people attacking Japanese darknet use
significantly more packets in their scan probes.

In next sections, detailed statistics about the observed port
scans are provided to understand the attacker behaviors. Ex-
cept when mentioned, all statistics given in the next sections
are presented over a joint dataset including both the JP and
FR datasets.

TABLE I: General darknet statistics (attackers are identified
by unique source IP addresses)

France Japan
Begin date 1st January 2015 1st January 2015
End date 30th September 2015 30th September 2015
Total # of attackers 3,771,092 3,712,209
Average # of attack-
ers per day

19,776.66 19,621.43

Total # of packets 399,344,813 415,642,444
Average # of packets
per day

1,426,231.47 1,484,437.3

B. Number of scans

Figure 4 shows no explicit correlation between the day of
the week and the number of scans. However, we can notice
that the number of scans a day is always between around 9
million and 17 million. Moreover, on Saturday, less variations
are observed.

In Figure 5, we evaluate the number of times an attacker
(identified by the source IP address) targets the same port
on the same destination IP address within the same day.
Such a value is actually very high. Once a scan detected, an
efficient pre-emptive blocking technique should always block
the associated port as it will be undoubtedly targeted again
by the attacker. Actually, most of scanning repeats the same
probing packet to increase the validity of the reply.

C. Number of distinct targeted ports in scans

Our datasets reveal that all TCP ports are targeted within
a week. In fact, even a single vertical scans can lead to such
a situation. With a more fine-grained focus, in Figure 6, the
curve entitled distinct destination ports depicts the average
number of targeted ports per destination IP address.

This number is around 350 that is relatively low compared
to the to the 65.536 available TCP ports. More precisely, 90%
of IP addresses are scanned on less than 900 ports a week
(with a mean around 400 ports) as highlighted in the same
figure. Hence, the scans target selected ports and the probing
strategy is not random, that validates our main assumption
for our work (attackers behavior is not random and semantic
can be extracted from probing activities). Moreover, Figure 6
also presents the average number of new ports scanned per
destination IP address each week. Compared to the previous
curve, the dynamic is the same with a very similar shift along
the weeks. There is so a similar number of new port numbers
targeted every week.

Intuitively, the targets of the attacks may be motivated by the
apparition of newly discovered vulnerabilities in devices and
services. Our observation confirms this intuition and quantifies
it. Besides, modeling the attacker behavior has to be done over
long periods and need to be reassessed regularly in order to
update the graph that serves as inferring the similarity metric
between ports. This would avoid to catch ephemeral behaviors.

D. Inter-scan time

Another question regarding the scanning behavior is the
vivacity of a TCP port scan denoted as the inter-scan time. It
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Fig. 4: Average number of rescan Fig. 5: Number of re-scan in a day by
week.

Fig. 6: Average number of ports scanned by
IP address

Fig. 7: IQR distribution for overall inter-scan time

is the average elapsed time between two consecutive probed
ports in the darknet. This gives an insight revealing if attackers
prefer to use long stealthy or short scans. It also helps to fine-
tune our proactive scan blocking technique (in Section VI) in
regards to the period of time an IP address should be filtered.

In Figure 7, we compute the inter-scan time over the FR and
JP dataset on a weekly basis. The median is around 10ms, so
the darknet receives an average of 100 scans probes by seconds
but the frequency tends to increase over the weeks. Proactive
blocking is helpful to reduce the footprint of network scans
and also by nature blocks the attacker in gathering information
for crafting future attacks.

The inter-scan is computed considering both source and
destination IP addresses (pair-wise) before being averaged in
Figure 8. The goal is to isolate the behavior of a single scan.
In this case, the median time is around 100 seconds between
the scans.

In a nutshell, we conclude that the scans are constantly
observed with an increasing frequency over the months as
we expected. Furthermore, in many cases, a single source IP
address targets few ports with some delays in probes in order
to evade detection techniques.

Fig. 8: IQR distribution for pairwise (source and destination
IP address) inter-scan time

V. EVALUATION

In order to assess the veracity of our proposed similarity
and because no ground truth actually exists, we first extract
the smallest dissimilarities, which are thus representative of
the most semantically-linked port numbers.

We only represent the 60 smallest values as annotated edges
between ports in Figure 9. We can distinguish the smallest
dissimilarities (in bold), and so higher similarities, between
HTTP-related ports: 80 (HTTP), 443 (HTTPS) and 8080
(Alternative HTTP). Moreover, these ports are also connected
to email service ports. This is also relevant because an email
server is frequently used by web services for instance (to
send notifications). FTP port is also very close to web ports.
Indeed, FTP was largely used in the past for updating web
pages (especially personal home pages). Other relations like
between ports 22 and 3389 are logic because they are related
to standard services (SSH and remote desktop) to open session
on remote computers. This shows the ability of our semantic
similarity to extract and represent several types of semantics
between network ports.
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Fig. 9: Network ports graph linked with the 60 smallest shortest-path-based similarity

VI. PREVENTIVE PORT BLOCKING

In this section, we present an application of the attacker
behavior-based similarity to demonstrate its validity under a
realistic context. We rely on a single use case serving as an
example of application of our proposed metric. This one have
been selected because we have ground truth to perform the
evaluation.

Assuming that a probed port is detected with a regular
method such as those deployed in intrusion detection system
(e.g. based on the number or the ratio of TCP connection
requests to closed ports), our preventive port blocking aims
to predict port numbers that will be probed next to discard
the traffic accordingly in advance. It may be thus a part of
an Intrusion Prevention System (IPS). It is worth noting that
existing detection methods are able to detect scans after 4 or
5 attempts [20].

A very restrictive technique could fully blacklist an IP
address performing a scan but our approach is more fine-
grained by blacklisting selected ports only. This avoids col-
lateral effects when an IP address is shared by multiple users,
for instance with NAT. Depending where such a system would
be deployed, it can be applied against private or public IP
addresses (egress vs. ingress filtering for instance). Because
probing or scanning is an initial step to discover reachable
hosts and services, defeating it reduces the attacker visibility
and so limits her ability to craft a very tailored attack.

Assuming an IP address is detected as performing a scan
towards a given port number, our method pro-actively blocks
the ingoing traffic from this IP address towards the K nearest
ports for a user-defined period of time. For instance, when a
scan targets port 80 (HTTP) our method filters traffic towards
443 and 8080 assuming K = 2 (as well as the initial port).
The method is voluntary simple (compared to sophisticated

methods with advanced modeling or techniques like machine
learning) in order to focus our evaluation on the veracity of
our new inter-port similarity. The advantage is also to limit the
overhead because the similarities are computed beforehand.

A. Evaluation methodology

The similarity between ports are derived using the overall
dataset (combining both the JP and FR darknet) between
January and June 2015 while the period from 1st to 7th July
2015 is used for testing. We define two performance metrics:

1) Blocking ratio: The percentage of probed ports pro-
actively blocked (%blocked).

2) Usefulness: The percentage of blocked ports which are
effectively probed afterwards (%usefulness).

In fact, quantifying the number of false positives is impos-
sible because the darknet data does not contain mix traffic
including legitimate traffic. Our usefulness metric is thus
more drastic by only considering as valid, only blocked ports
observed then in the next scans. However, in section VI-D, a
real dataset with mix traffic is used in order to evaluate the
number of false positives.

B. Baseline scenarios

In order to assess the benefit of our metric, two baseline
scenarios are considered:
• MySelf consists in solely blocking the current probed port

number since our observations in section IV shows that
an attacker usually targets the same ports multiple times.

• Euclidean: this algorithm blocks naively the K nearest
ports using an euclidean in addition to the initially probed
port. If the scanned port is 80, and K = 2, the set of ports
to block will be 80, 81 and 82 (when equality, the highest
port number is selected in priority, e.g. 81 with K = 1)
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(a) Blocking performance (b) Usefulness performance

Fig. 10: Port blocking - baseline scenarios

We also vary the blocking time in Figures 10(a) and 10(b).
The MySelf strategy leads to block between 5 and 25% of
scans with a usefulness always lower than 18%.

In Figure 10(a), more scans are pro-actively blocked with
the Euclidean distance algorithm though the usefulness, in
Figure 10(b), is lowered and so potential false positives could
increase in a real case of mixed traffic.

Regarding the parameters, increasing K leads to increase
the number of blocked ports including those which are effec-
tively probed afterwards and those which are not aimed by
the attacker. As a result, the blocking ratio logically increases.
However, as highlighted by the decreasing the usefulness, new
ports blocked when increasing K have a higher probability to
not be targeted in the future. Hence, increasing K is not a good
strategy to improve the efficiency of the baseline Euclidean-
based technique.

A higher blocking time also contribute to block more ports.
It tends to enhance the usefulness until an upper-bound around
20000 seconds (5h30). Therefore, the port blocking is efficient
with this time horizon.

C. Results

In this section, we assess the benefit of the proactive
blocking using our defined similarity compared to the baseline
scenarios considering the impact of two main parameters: (1)
the number of ports to be blocked (K) and (2) the time the
ports (for the considered IP address) are blocked. We compare
results assuming JP or FR datasets, in Figure 11(c) and Figure
11(b) respectively, or both together in Figure 11(a) (similarly
to the baseline scenarios).

There is a significant improvement for the blocking per-
centage and the usefulness. Up to 40% and 30% of scans are
blocked for the FR and JP dataset respectively in Figure 10.
Globally, the blocking ratio can reach around 70% in Figure
11(a) (∼ ×3 increase). Besides, the percentage of usefulness
is about 15% for FR and near 12.5% for JP giving a maximum
global usefulness of 30% compared tothe baseline scenarios
with 18%.

Regarding the impact of parameter values, the usefulness
increases when the blocking period of time increases until
around 5h30 with the overall dataset. Unlike baseline scenar-
ios, increasing K may be beneficial for the two performance
metrics. Actually, a good trade-off between blocking ratio and
usefulness is K = 3 in order to block around 50% of all scans
with a usefulness of 25% assuming an optimal blocking time
of 20000 seconds.

D. Test with real traffic

Based on similarities learnt on the darknet data (both JP
and FR) and the best tuning of parameters highlighted in the
previous section, the proactive blocking technique has been
applied to the MAWI Labs dataset [22].

It contains real, and so also benign, traffic captured from an
oceanic backbone between United States and Japan. Therefore,
the false positive rate (FPR) can be calculated in order to check
if the preventive blocking (using our new inter-port dissimilar-
ity metric) does not impact benign traffic by discarding ports
which are used by the latter.

Having a low usefulness (always lower than 30% in our
previous experiments) may not be a problem if predicted
ports, and so blocked ports, are not used by the legitimated
communications either. In that case, the FPR remains low.
However, if the automatically blocked port affects benign
traffic, the FPR increases.

We consider the period from 2 to 9 September 2015
(except the 5th and 7th of September because of dataset
unavailability) with a total of 590,173,645 IP packets with
a mean of 98,362,274 packets a day. Each day is composed
of 15 minutes.

Because only 15 minutes of data per day are labeled, a 5h30
our blocking time is not relevant and is so set to 15 seconds.

As shown in Table II, 99.9% of scans are effectively blocked
in a proactive manner. It is due to lower variety in the
targeted ports compared to what is collected by a dedicated
security sensor such as the darknets. The usefulness presents
also higher values but the most interesting is the low FPR
largely under 0.01% decreasing to near 0%. These results
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(a) Results for both darknets (FR, JP)

(b) Results for french darknet

(c) Results for japanese darknet

Fig. 11: Blocking statistics for the K-Nearest ports with the attacker behavior-based similarity

prove that the proposed semantic port similarity, derived from
the knowledge generated by the observed attacks, can cleverly
block network ports before an attack or a network scan
occur. Furthermore, this experiment has shown that knowledge
inferred from our darknet is not biased by a particular context
or location as we used it in another environment.

VII. CONCLUSION

In this paper, a new attacker behavior-based inter-port
measure is introduced. The metric we introduced extracts
an attackers’ behavioral model, from real scanning activities,
which embeds an underlying semantic about the targeted ports.
The observations done with a darknet over a long time period
motivate the definition of this new measure between port
numbers. In order to assess its viability in an extensive manner,
a proactive blocking technique has been defined and tested.

TPR FPR Usefulness
Minimum 99.94% 0.0000012% 47.79%
Mean 99.98% 0.0015% 66.97%
Maximum 99.99% 0.0091% 83.33%

TABLE II: Preventive port blocking in real network with K=3

Using real world data, we showed that more than 99% of scans
can be blocked in advance with less than 0.1% of legitimate
traffic blocked. The latter proves that the knowledge extracted
from our darknet observations contains rich information to
derive an inter-port similarity measure, which is robust enough
to be applied in another context (in a different network).

Similarities between ports are daily updated and publicly
accessible at http://port2dist.lhs.inria.fr/.

Future work will refine or extend our proposed metric by
including other sources of information (such as RFCs) to
determine inter-port similarities.
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