AMNESiA: Affinity Measurement Platform for NFV-enabled Networks

Arthur Selle Jacobs, Ricardo Luis do Santos, Muriel Figueredo Franco, Eder John Scheid, Ricardo José Pfitscher, Lisandro Zambenedetti Granville

Institute of Informatics — Federal University of Rio Grande do Sul
{asjacobs, rlsantos, mffranco, ejscheid, rjpfitscher, granville}@inf.ufrgs.br

Abstract—AMNESiA is an affinity measurement platform for NFV-enabled networks, designed to consolidate and interpret existing monitoring data into an affinity metric, aiding operators to identify affinity and anti-affinity relations in the network. AMNESiA uses the latest snapshot of usage data, collected through a generic monitoring solution, from the database to measure affinity between VNFs.

I. INTRODUCTION AND RELATED WORK

In Network Functions Virtualization (NFV)-enabled networks, inadequate placement of Virtualized Network Functions (VNFs) creates bottlenecks, impacting negatively on performance [1]. Network operators should establish affinity and anti-affinity rules between VNFs to avoid network and processing bottlenecks [2]. These rules can be based on several different aspects, such as VNFs minimum resource requirements, latency, or even network operators needs for the service [3]. Affinity has been addressed in the context of Cloud-based environments, in which solutions do not account for the functions being executed by each Virtual Machine (VM), focusing mainly on resource contention. In NFV-enabled networks, VNFs are chained in Forwarding Graphs (FGs) to provide services (i.e., service chaining). Therefore, network operators must consider further than simply resource allocation when identifying affinity among VNFs. Most commonly, current solutions propose affinity relations based on CPU [4] and bandwidth [5]. In addition, most of these solutions do not propose any interaction or platform to aid operators on monitoring the state of the network.

Chen et al. [6] proposed a method to identify affinity relations based on resource demands and dependency among VMs. Franco et al. [7] presented VISION, a visualization platform with interactive and selective techniques for NFV-enabled networks. Network operators may use VISION to identify problems, determining affinity and anti-affinity relations between VNFs through visualizations. Yousaf and T. Taleb [8] proposed a fine-grained resource-aware VM management solution for NFV-enabled networks, based on a reference resource affinity score (RRAS). Their affinity calculation results on a vector quantity representing the impact of one reference Resource Unit (RU) (e.g., memory) on other RUs (e.g., processing, storage, and I/O module). Even though several authors have tackled issues regarding affinity, their solutions focus mainly on computational resources. Consequently, these solutions fall short for NFV-enabled networks, which require further considerations when determining affinity. In addition to computational resources, requirements such as latency, FGs, and service performance, must be taken into account. Furthermore, most of current solutions lack in dynamicity, since they do not consider any interaction with operators, or simply do not provide a specific technique to identify affinity, relying solely on the expertise of the operator to do so.

In [9], we proposed an affinity measurement model for NFV-enabled networks based on an extensible set of criteria, coupled with input weights. The proposed affinity model may be used either by network operators to identify issues in the network, or by an orchestrator to resolve better placement for VNFs. Aiming to provide a Proof of Concept (PoC) for the former scenario, we developed AMNESiA, a platform that implements the proposed affinity measurement, aiding operators on monitoring the state of the network.

II. AMNESiA

AMNESiA was built as a Web application, using Python, the Django Web Framework, and a PostgreSQL Database. AMNESiA is an affinity measurement platform, designed to consolidate and interpret existing monitoring data into an affinity metric, aiding operators to identify affinity and anti-affinity relations in the network. Therefore, we assume the data for VNFs, Physical Machines (PMs), and FGs are collected by any network monitoring solution, storing snapshots of monitored information into AMNESiA's database. AMNESiA then uses the latest snapshot of usage data to measure affinity between VNFs.

AMNESiA consists of three different features: (i) Affinity Measurement; (ii) Affinity Report, and (iii) Criteria Manager. Figure 1 depicts the AMNESiA architecture, as well as shows how AMNESiA integrates with a generic NFV environment. All three features developed in AMNESiA's Web-based interface use the same affinity measurement engine, which was implemented according to the affinity model introduced in [9]. Each AMNESiA feature is described in the next subsections.

A. Affinity Measurement

The Affinity Measurement feature is a three-steps wizard to measure affinity between any two selected VNFs. On step one, the network operator has to select two VNFs from a list. We display on that list information regarding each VNF, such as...
In this feature, the user must first select an FG from a list, in which we provide usage metrics regarding every flow of each FG, such as latency, bandwidth usage, and traffic in every link (either virtual or physical). Afterwards, the user must once again provide weights for each affinity criterion. After determining the weights of the criteria, the user is presented with the affinity results in the third step of the Affinity Report feature. As a result, we display a table containing all the two VNFs combination of the selected FG, alongside the affinity result for that pair. Since in this feature the user already provides an FG to measure affinity with, we only consider connections between VNFs regarding the selected FG.

C. Criteria Manager

The Criteria Manager feature is designed to enable network operators to extend and customize the set of affinity criteria. We present network operators with a list of all the criteria in the application, which they might remove from the system according to their needs.

To add a new criterion, the user must fill a form with the new criterion’s information, including criterion’s name, type, and scope, the default weight, and the criterion’s affinity equation. The criterion’s affinity equation must be a Python function, receiving as input the objects of both VNFs being evaluated, the FG object to consider, and an object containing information from the Network Service Descriptor (NSD); and returning a numerical value between 0.001 and 1. After included, the new criterion can now be selected among existing criteria in other affinity measurement features.

REFERENCES