Cross-layer Management of Distributed Applications on Multi-Clouds

Antonis Papaioannou, Damianos Metallidis and Kostas Magoutis
Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)
Heraklion 70013, Greece
Email: \{papaioan,metal,magoutis\}@ics.forth.gr

Abstract—Existing cloud provisioning and deployment frameworks do not yet provide sufficient support for multi-cloud setups. In this paper we improve on the state of the art by adapting the SmartFrog framework to handle multi-cloud setups during the lifecycle (provisioning, deployment, change management, termination) of distributed applications. An administrator of a private cloud additionally needs to be aware of cross-layer dependencies between application components and the physical infrastructure to efficiently carry out a range of administration tasks. In this paper we propose an information repository and system to discover and store such cross-layer dependencies and use it to answer questions such as "which physical machines are hosting particular application components (through hypervisors)" and vice versa. We demonstrate the use of our system in two cases of service-instance (SI) migration and replication on federated multi-cloud setups using the SPEC jEnterprise2010 application benchmark: a) migration of a SI from a private to a public cloud to support the need for maintaining service availability during downtime of physical hardware at the private cloud; b) replication of a SI from a large cloud provider to a regional (or "near") cloud provider to improve response time of clients that are geographically closer to the latter.

I. INTRODUCTION

The provisioning and deployment of distributed applications in increasingly decentralized global infrastructures is an important challenge today. A typical web-based multi-tier application serving Internet clients operates off of one or more (private or public) cloud computing infrastructures. During the course of its lifetime, a large-scale distributed application can be re-deployed several times to adapt to conditions such as downtime of physical infrastructure or to improve availability and performance (e.g., moving the service closer to the physical location of the user). While several application deployment tools have emerged in recent years [1], [2], [3], the advent of cloud computing has introduced new sources of complexity: the need to take into account cross-layer relationships between infrastructure (physical, virtual) and application components and the need to effectively deploy applications on heterogeneous multiple cloud (or multi-cloud) platforms [4]. Existing deployment tools are limited in their support for both features.

In this paper we advance the state of the art in both directions by extending HP SmartFrog [3], a declarative approach to distributed application deployment, to take into account cross-layer relationships and to handle multi-clouds. Prior to our work, SmartFrog was able to configure and deploy distributed application components on already provisioned resources, typically drawn from a homogeneous resource pool. We extended SmartFrog to dynamically provision virtual machines (VMs) from different types of private or public cloud infrastructures, based on resource specifications listed in the application description. We further extended SmartFrog to be able to discover dependencies between VMs and the underlying infrastructure and use them in performing re-deployments based on conditions involving the physical infrastructure (such as planned downtime). While the focus of our implementation in this paper is on SmartFrog, our proposed framework is more general and can be adapted to use other deployment and orchestration tools such as those based on the TOSCA standard [6]. To ensure that one can provision VMs of comparable grade across cloud providers we incorporate into our system the ability to rate and compare VM types based on a benchmarking methodology [7].

Our contributions are particularly applicable in the case of cloud federations where private and public cloud providers partner up and enable cloud bursting (i.e., the use of additional external resources) across each other. Bursting is especially useful in private cloud providers who may occasionally face resource shortage due to limited in-house infrastructure. In this paper we address the following challenges:

- Lack of support for seamless multi-cloud provisioning and deployment in existing frameworks
- Discovery of application components that are affected (may need to be replicated/migrated) when a private cloud provider faces issues with physical infrastructure
- Dynamic provisioning of resources on another cloud provider (resulting in multi-cloud setups) and re-deployment of affected application components there

The paper addresses research challenges in lifecycle management of multi-cloud deployments combining private and public clouds. While there are existing solutions in the areas of (I) deployment of multi-cloud applications (e.g., using APIs such as jClouds [8]); (II) lifecycle management of distributed applications [5], [6], (III) configuration management of multi-cloud applications [7]; (IV) cross-layer dependencies management [9], [10], currently there is no solution that addresses all four of these challenges together. This paper addresses the research question of how to provide lifecycle management (beyond deployment) of multi-cloud applications achieving user goals on properly characterized public and private clouds. Addressing this research question requires the combination
of state-of-the-art solutions to (I)-(IV) integrated into a novel system architecture. Our architecture addresses an important open problem, offers functionality not currently achievable by any single system, and is supported by an evaluation featuring real-world use-cases combining private and public clouds.

We evaluate our system in two bursting scenarios under the well-known SPEC jEnterprise2010 application benchmark: (1) migration of application components from a private cloud to a public cloud to maintain service capacity when the former is facing infrastructure shortages; (2) replication of application components from a large public cloud provider to a smaller regional cloud provider to improve response time for specific clients whose geographic position is close to the regional cloud provider. In both cases, the distributed application deployed over the two clouds is using virtual private network (VPN) technology to isolate and protect its cross-cloud traffic.

II. Architecture

Figure 1 depicts the architecture of our system. At the core is a deployment and management framework, such as SmartFrog [5] or OpenTOSCA [11], [6], used to deploy and manage multi-cloud application resources. We base our implementation on SmartFrog and contribute a novel use of it to dynamically provision heterogeneous resources over the course of the execution of SmartFrog scripts rather than requiring the provisioning of resources beforehand. A metadata database (or MDDB, Section II-B), an extended form of configuration and management repository, collects information from different sources, including SmartFrog (application components and VMs they are deployed on) and private cloud management systems (VMs and physical machines (PMs) they are deployed on). The MDDB derives cross-layer relationships between application components and PMs (as well as other such relationships) where possible (e.g., in a private cloud environment).

An IT manager can utilize this system to adapt the placement of application components to the evolving status of the physical infrastructure. Such a task requires combining the automation provided by frameworks such as SmartFrog with knowledge of cross-layer relationships. A specific use-case we focus on in this paper is the migration of certain application components away from physical servers slated for maintenance soon (e.g., PMX of the private cloud in Figure 1) and into public-cloud resources (a scenario commonly referred to as bursting). In this case, the MDDB relationships are used to determine which application components should be moved and a specific SmartFrog workflow executed to realize the plan. To maintain service capacity, a public-cloud VM type equivalent or better than the private-cloud VM(s) being decommissioned is needed – this information is also provided by the MDDB. Another use case we focus on in this paper is the migration (or replication) of application components from a public cloud to a private cloud to take advantage of proximity to clients (thus better data locality and lower response time).

In the remainder of this section we provide more details on the SmartFrog framework (II-A), the MDDB (II-B), and the role of the IT manager (II-C) within the scope of our work.

A. SmartFrog

The SmartFrog framework comprises an object-oriented language, runtime, and toolset supporting the deployment of distributed applications and the handling of their lifecycle events. In SmartFrog, each software component is modeled as an object whose state represents a set of configuration parameters and whose lifecycle events correspond to specific actions (expressed in Java methods sfDeployWith, sfDeploy, sfStart, sfTerminate). SmartFrog programs (descriptions of component configuration, deployment, and workflows) are included in .sf files and accompanied by Java implementations of the lifecycle action methods. The latter have access to component configuration attributes via calls to a special sfResolve() method. The location where a specific component is deployed and started is specified in the .sf file as the address of a server in the sfProcessHost attribute of the component.

SmartFrog links the lifecycle of different components by grouping them together in constructs such as compound (start and terminate components together), parallel (start components concurrently but let them evolve independently), sequence (a component starts after its previous component in the sequence terminates), etc. The SmartFrog runtime consists of a collection of daemons (called sfDaemons) present in each managed system and responsible for components deployed there. Application components may cross-reference each other’s attributes. Some attributes may be lazily bound at deployment or execution time.

To date we are only aware of uses of SmartFrog to deploy distributed applications in homogeneous environments where resources (VMs) are provisioned and known in advance. In this paper we extend the applicability of SmartFrog to on-demand provisioning of cloud VMs and dynamic deployment of software components on them. We model VMs as SmartFrog component objects, similar to any other application component. Each of these VM objects has its own lifecycle, state, configuration parameters, and management events.

The execution of SmartFrog descriptions of applica-
Fig. 2: Subset of the MDDB schema relating to modeling of applications and their underlying resources.

The characteristics of the VMs on which an application is deployed along with the cloud providers they are sourced from are depicted in Rectangle 2. Each VM instance is of a particular CD (cloud dependent) VM type as well as a CI (cloud independent) VM type. A CD VM type describes a real-world VM type whereas CI VM types are the result of (periodic) classifications into cloud-agnostic categories with similar VM capabilities [7]. The MDDB additionally models the underlying physical nodes as well as the association between them and the VMs they host shown in Rectangle 4.

The MDDB receives information about application components and the VMs they are deployed on from deployment management systems (e.g., the SmartFrog runtime) or infrastructure discovery probes [9], [10]. It receives information about VMs and the PMs they are hosted on from private cloud managers or other infrastructure management systems. In case of public clouds, the topology can be inferred from measurements or exported to interested parties by the cloud provider via special management APIs [14]. The MDDB builds on this information by producing derivative cross-layer relationships between application components and physical servers. For example, if the MDDB contains the associations $p_i \rightarrow v_j$ and $v_j \rightarrow a_k$, where p_i, v_j, and a_k are a PM, a VM, and an application component respectively, then we infer that $p_i \rightarrow a_k$ (see Section III, Listing 1 for an example query).

C. IT Manager

The IT Manager is concerned with traditional IT management tasks (which are often human driven or supervised) aiming to best align applications with their underlying infrastructure. In this paper we specifically focus on management tasks involving private and public clouds. Since resources in private clouds are typically limited, demand for extra resources may require outsourcing from public providers (a process also known as load bursting). A scheduled maintenance on the physical resources of the private Cloud platform may disturb...
the normal operation of the application. The IT Manager
component can take as input this kind of information (e.g.,
the physical nodes that will stop operating) and query the
MDDB to identify the affected VMs and the corresponding
applications they host. It can then schedule the migration of
the appropriate software components to an alternative public
Cloud provider without any manual effort.

III. IMPLEMENTATION

SmartFrog code and runtime support. In this paper we
have SmartFrog-enabled the software stack of a representative
enterprise application, the SPEC jEnterprise2010 benchmark.
The software stack includes the JBoss application server,
MySQL database server, application logic packaged in an
enterprise archive file (specj.ear), and a load balancer inter-
posed between load-generating clients and application servers
(the inclusion of a load balancer is an enhancement over the
standard version of SPEC jEnterprise, which supports a
single application server instance). The SmartFrog version of
SPEC jEnterprise2010 operates as follows: Each component
(JBoss, MySQL, load balancer) includes a sfStart() method
that triggers the installation and deployment of the respective
component. Components terminate via the sfStop() function.

The SmartFrog management code for SPEC jEnter-
prise2010 comprises the following four main components

- Virtual machine, dynamically provisioned in a public,
 private or hybrid cloud
- Database server
- Application server
- Load balancer, responsible for spreading client load
 over multiple application servers

To respect provisioning and deployment dependencies we
use SmartFrog’s Compound statement to link the lifecycles
of the above components. Within a Compound components
are first deployed in the stated sequence prior to being started
in the same sequence, as shown graphically in Figure 3. The
AS_VM, DB_VM, and LB_VM components are responsible for
allocating and starting the VMs that will host the application
server (AS_Instance), application logic (Application_Instance),
and load balancer (LB_Instance) respectively. Furthermore,
our implementation extends theGameOver and OnEvent com-
ponents (part of SmartFrog’s workflow [12] architecture) to
throw and handle load-balancer adaptation events (add a VM,
remove a VM). Due to space constraints, the full details of
our implementation can be found online [13].

MDDB and queries to discover cross-layer relationships.
The MDDB [7] is used as a central repository to collect
information about the Cloud infrastructure topology (VM-
to-PM relationships) in case of private cloud platforms and
information regarding the deployment of an application (ap-
lication-component-to-VM relationships). The MDDB is also
a provider of information regarding cross-layer dependencies,
such as which application components are hosted on a specific
PM. The MDDB exposes an API through which clients such as
SmartFrog can obtain the necessary relationships. The MDDB
executes queries like the one described in Listing 1 to derive
the cross-layer information on demand. We decided not to
introduce all possible cross-layer relationships explicitly in its
schema by explicit new classes that model this information as
these relationships may change over time and this could
result in unnecessarily high complexity. Instead we support the
modeling and discovery of specific relationships when needed
and let the client decide on when or how frequently to execute
queries against the MDDB to store the results.

Listing 1: Query identifying cross-layer dependencies

```
SELECT sci.*
FROM software_component_instance sci
WHERE sci.id IN
  (SELECT component_instance
   FROM deployment
   WHERE on_vm_instance IN
     (SELECT inst.id
      FROM vm_to_pm_association assoc, vm_instance inst
      WHERE assoc.vm=inst.id AND assoc.physical_node_id IN
        (SELECT id
         FROM physical_node
         WHERE ip='xx.xx.xx.xx')))
)
```

The multi-cloud provisioning logic we embedded in Smart-
to operate across different cloud architectures.

IV. EVALUATION

We evaluate our system using the distributed SPEC jEn-
terprise2010 benchmark [7] as a case study. SPEC jEn-
terprise2010 is a full system benchmark that allows performance
measurement of Java EE servers and supporting infrastructure.
The SPEC jEnterprise2010 application requires a Java EE ap-
plication server and a relational database management system
(RDBMS). The primary metric of the SPECjEnterprise2010
benchmark is throughput measured as jEnterprise operations
per second (EjOPS). A load generator (referred to as a Driver)
produces a mix of browse, manage, and purchase business
transactions at the targeted EjOPS. The Driver measures and
records the response time (RT) of the different types of busi-
ness transactions. At least 90% of the business transactions of
each type must have an RT of less than the constraint threshold
(set to 2 seconds for each transaction type). The Driver checks
and reports whether the response time requirements are being
met during a run.

We model the SPEC jEnterprise2010 application using
three software components corresponding to the business logic
of the application, the application server, and the RDBMS [7].
These components are instantiated as specj.ear and emula-
tor war files, a JBoss 6.0 application server, and a MySQL
5.5. We deploy SPEC jEnterprise2010 in our in-house Cloud
platform running Eucalyptus 3.1.2 (the latest version that
supported Xen and the AMD processors used in our servers).

A. Scenario I

In this scenario we demonstrate our system handling the
migration of a SPEC jEnterprise2010 service instance from
our private in-house cloud platform to a public cloud provider
(Amazon EC2) to guarantee service availability and capac-
ity during scheduled downtime of the underlying physical
infrastructure in the private cloud. In this scenario, the IT Manager wants to move all activities away from a specific physical machine so that it can perform maintenance to it. To achieve this it queries the MDDB (Listing 1) for the cross-layer relationships between the physical machine and software components that depend on it. Normally, a cloud provider will be able to satisfy the needs of migrating the software components away from the targeted physical machine from internal resources. However, in times of resource strain the IT Manager needs to use external resources in order to maintain service capacity. In this scenario, the IT Manager uses SmartFrog to migrate the identified components (application servers) to Amazon EC2. The VM allocated on Amazon should have equivalent or better performance compared to the replaced VM in order to maintain service capacity. We use previous work on cloud-independent classification of VM types [7] (whose results are stored in the MDDB) to achieve this.

The application traffic between Clouds is routed through a VPN in order to federate the two Cloud platforms and isolate and protect the communication. From a deployment procedure viewpoint, Figure 4 shows the sequence of actions when deploying and migrating the SPEC jEnterprise2010 application. Steps 1-3 in Figure 4 show the provisioning of VMs and deployment of the application servers, the database and the load balancer in our private cloud. Steps 4-6 show the migration process. In step 4, SmartFrog creates a m1.small VM instance on the Amazon EC2 (EU) cloud platform and deploys the application server. In step 5 the load balancer is reconfigured to direct the load to the new application server instance. Finally in step 6 an application server VM instance in the private cloud is terminated as the migration procedure is completed and the traffic is directed to the new application server. Our system supports full automation in this scenario.

Figure 5 shows response time (RT) of the application before and after the migration. The load balancer reconfiguration (step 6 in Figure 4) is complete at 340 sec, at which point traffic is directed to the new application server instance. RT is observed to increase as the new application server instance is now hosted at a public cloud provider, which is typically at a significant distance from the load balancer and database and the communication among them is routed over the Internet. The good news however is that the service is still available at acceptable levels (within the RT SLO of 2 sec (avg)). The impact on RT could be further reduced if we can opt for a public cloud provider with a data center closer to the private cloud or if a larger number of application servers were involved (reducing the fraction of accesses using the remote instance).

B. Scenario 2

The second scenario focuses on the case where a service deployed on a public cloud is replicated to a regional (typically private) cloud to achieve better response time by taking advantage of proximity to clients. The application deployed on two cloud operators, initially on an Amazon EC2 data center.
(eu-west-c1) and later replicated to a regional cloud provider (our local cloud) to improve response time. Figure 6 shows the SmartFrog procedure of achieving the initial deployment and replication tasks. The MDDB was used to determine the type of VMs that should be allocated on the private cloud (of equal or better grade compared to those the service is already running on Amazon) to achieve a comparable level of service.

Figure 7 depicts SPEC jEnterprise2010 transaction response time when clients close to our geography are accessing the service instance deployed on the Amazon eu-west-c1 cloud (0-300sec) and the significant drop in response time in the 300-600sec time interval when a service instance (the full stack, including application server and database) are replicated to a cloud provider near the clients (such a regional cloud is often called a near cloud). This is an important scenario in the emerging field of federated clouds that combine major cloud providers and smaller regional players, demonstrating the ease with which our architecture can support such use cases.

V. RELATED WORK

We discuss related work in two major areas: application deployment and cross-layer relationships in distributed systems.

Application deployment systems. Automating the provisioning of VMs and the deployment of distributed applications on them has been a longstanding goal of management systems, such as Tivoli Provisioning Manager (TPM) [13]. Cloudify [2] is a recently introduced open source tool whose main goal is to provision resources from a single cloud and then deployment, monitor and management the lifecycle entity of applications. Cloudify tasks are expressed in recipes that describe in detail the deployment and execution aspects of an application. Chef [3], another open-source framework, language, and toolset has recently become a popular platform for the deployment and management of distributed applications. A growing set of Chef cookbooks and recipes (akin to Cloudify recipes) are available in a publicly accessible repository [19]. SmartFrog [5] is a declarative approach to application deployment and management that is used in this work. In SmartFrog, the configuration and deployment details of components are described using a Java-like domain-specific language and supports the execution of workflows [14]. Section II-A provides a brief introduction to SmartFrog.

Cross-layer relationships. The discovery of cross-layer relationships in distributed systems has been a topic of significant interest in the past. Several systems used online system monitoring and analysis of traces [20], [21], [22] while others used input from discovery sensors to build cross-layer relationships over multiple IT domains [10], [9]. The system described in this paper is closer in principle to the latter approach combining input from sensors from the domain of infrastructure clouds and application deployment systems. Our contributions in this paper focus on the use of cross-layer relationships in managing multi-cloud deployments, including private clouds.

VI. CONCLUSION

In this paper, we highlight the value of cross-layer relationships in the domain of application deployment and adaptation in multi-cloud environments including private clouds. Our aim in this paper is to demonstrate that distributed application deployment engines can extend their scope and applicability by taking into account relationships between software components, virtual infrastructure, and the underlying physical infrastructure. We support our aim by describing an application deployment system with multi-cloud capability and with the ability to handle adaptation events taking into account cross-layer relationships. We evaluate our system in two use-cases of practical interest involving service-instance migration between clouds. We show that (unlike existing systems that have no access to such information) they can support both with efficiency achieving the desired results.

ACKNOWLEDGMENT

We thankfully acknowledge the support of the PaaSage (FP7-317715) EU project.

REFERENCES