Routing Tables Building Methods for Increasing DNS(SEC) Resolving Platforms Efficiency

Emmanuel Herbert, Daniel Migault, Stephane Senecal and Stanislas Francfort
France Telecom R&D/Orange Labs
38-40 rue du Général Leclerc
92130 Issy-les-Moulineaux, France
{firstname.lastname}@orange.com

Maryline Laurent
Institut Mines-TELECOM, TELECOM SudParis,
UMR CNRS 5157 SAMOV AR
9 rue Charles Fourier
91000 Evry, France
maryline.laurent@telecom-sudparis.eu

Abstract—This paper proposes to use optimization and machine learning methods in order to develop innovative techniques for balancing the DNS(SEC) traffic according to Fully Qualified Domain Names (FQDN), rather than according to the IP addresses. With DNS traffic doubling every year and the deployment of its secure extension DNSSEC, DNS resolving platforms require more and more resources. A way to cope with these increasing resources demands is to balance the DNS traffic among the DNS platform servers based on the queried FQDN. Several methods are considered to build a FQDN based routing table: mixed integer linear programming (MILP), a K-means clustering algorithm and a heuristic scheme. These load balancing approaches are run and evaluated on real DNS traffic data extracted from the operational IP network of an Internet Service Provider (ISP) and they result in a difference of less than 2\% CPU between the servers of a platform.

Keywords: DNS, DNSSEC, optimization, machine learning, routing, load balancing.

I. INTRODUCTION

Domain Name System (DNS) is the service which makes possible network communications based on names, by binding an Internet Protocol (IP) address to a Fully Qualified Domain Name (FQDN). As such, end users rely on a DNS resolving platform to determine the IP address of the requested target. The DNS architecture is composed of Authoritative Servers, which are DNS servers hosting the IP addresses of the queried web sites. Because Authoritative Servers would not be able to process all end users’ queries, the DNS architecture introduces Resolving Servers which cache the responses during a given number of seconds called Time To Live (TTL). Internet Service Providers (ISP) manage such servers for their end users. When a Resolving Server receives a DNS query and if the response is already cached, then the Resolving Server returns the cached response. Caching mechanism provides faster responses to the end users and reduces the traffic load on the DNS Authoritative Servers. The whole DNS architecture is described in details in [1].

As DNS traffic doubles every year and as the DNS security extension DNSSEC is deployed, DNS resolving platforms are more and more resource demanding. Today’s load balancers practice xorong operation over the DNS packet’s source and destination IP addresses [2] to balance the DNS traffic on the platform. This load balancing technique, referred to as XOR in this paper, induces that most of the popular FQDN are resolved by each DNS Resolving Server of the platform.

One way to reduce the load on the servers of the platform is thus to decrease the number of resolutions. That is, as presented in [3] and [4], balancing the DNS traffic according to the queried FQDN rather than according to the IP addresses. This implies that more DNS requests are resolved by the caching mechanism, thus leading to fewer signature checking operations for DNSSEC, and a 1.32 more efficient architecture. This load balancing algorithm is referred to as FQDN in the following.

The FQDN load balancing can be implemented by hashing the queried FQDN (e.g. using SHA1 [5] as a hash function) but this is not sufficient as it results in an unbalanced distribution among the servers. Figure 1 depicts the distribution of the FQDN dataset under consideration. The contribution of the paper lies in the development of new methods for building FQDN-based routing tables for load balancing purpose in an ISP operational context.

II. RELATED WORKS

Performing load balancing for the DNS traffic is a crucial task to be implemented on the servers of resolving platforms. General load balancing techniques are introduced in [6]. Previous works concerning load balancing techniques address mainly the problems faced on web servers, like in [7]. Focusing on DNS service, and especially considering problems faced by ISP in the telecommunications industry, it is possible to highlight two complementary references: [4] and [8]. In [4], a FQDN load balancing technique, based on discrete
III. BUILDING ROUTING TABLE

In this section, we focus on the few costly FQDN of the DNS traffic. There are only few costly FQDN, as depicted in figure 1a. As shown on this figure, the distribution of FQDN looks like a Zipf law, cf. [9] and [10]. This is why we decide to split the FQDN encountered into two parts: \(FQDN^+ \), the set of the most requested FQDN for which we can take advantage of caching mechanism and \(FQDN^- \), the rest of FQDN. This section investigates different ways to build a routing table for the FQDN belonging to \(FQDN^+ \), namely how to assign each of the considered FQDN to a unique server. The challenge is to balance the time required to build the routing table with the number of entries of the routing table. FQDN that are not in the routing table are assigned to the servers according to a hash function. A first method is based on Mixed Integer Linear Programming (MILP) and attempts to balance both the queries and the resolutions on every server of the platform.

A. Modelization

Operational teams evaluate the efficiency of different load balancing techniques by comparing the CPU load of each server. The latency is not considered in this work as it is not possible to model it in a simple way. Providing an estimation of CPU load for a server relies on experimental measurements, and [11] mentioned that measured values for the CPU load depend on the hardware, the DNS server implementation and the traffic, among other parameters. Since we do not want to rely on these factors, we evaluate the differences of the CPU load by considering the number of queries and resolutions performed by each server of the platform. Such evaluation requires to define specific notation and formulation introduced in [4]. These notations are used to build a routing table with the methods described hereinafter. For each FQDN, the number of resolutions is computed thanks to the queries number and the mean TTL value observed for the FQDN. Since we consider popular FQDN, we assume that a resolution occurs every TTL seconds.

B. Mixed Integer Linear Programming Method

The Mixed Integer Linear Programming (MILP) method consists in finding a minimum with respect to inequations constraints, cf. [12] for instance. We define a given set \(I \) of FQDN. For a given distribution of these FQDN on the servers of the set \(J \), we compute the number of queries and resolutions supported by each server \((Q_j, R_j)_{j \in J} \). The distribution we are seeking for is the distribution which minimizes the difference between the different servers of the platform, in term of \((Q_j, R_j)_{j \in J} : \Delta Q \) and \(\Delta R \).

Trying all possible combinations for such a distribution is not feasible, so we formulate our problem as a Mixed Integer Linear Program and use a solver (GLPK in this case, cf. [13]) to find a proper distribution. The challenge of the solver is to find a distribution which is close to the optimal distribution, even though we do not know the optimal solution. Reference [4] shows that a set of 200 FQDN in \(FQDN^+ \) is a compromise between the number of FQDN to process and the resources needed for the computation.

The Integer Linear optimization problem with two objectives consists in minimizing \(\Delta Q \) and \(\Delta R \) defined as followed:

\[
\Delta Q = \max_{j_1 \in J} Q_{j_1} - \min_{j_2 \in J} Q_{j_2}
\]

\[
\Delta R = \max_{j_1 \in J} R_{j_1} - \min_{j_2 \in J} R_{j_2}
\]

To ease the resolution by the solver, we reduce the number of objectives by defining a FQDN cost combining the query rate \(q_i \) and the resolution rate \(r_i \) for FQDN \(i \in I \):

\[
c_i = \lambda q_i + (1 - \lambda) r_i \quad \forall i \in I \text{ where } \lambda \in [0, 1]
\]

\(\lambda \) is a weighting parameter which determines the parts of \(q \) and \(r \) in the definition of the cost. In that sense, the important parameter is not \(\lambda \) itself but the ratio \(\frac{q}{r} \) (or \(\frac{r}{q} \)). Note that \(\lambda \) is introduced here only for resolving purpose, and has \textit{a priori} no physical meaning. The objective function associated to this cost ensures the minimization of the cost supported by each server, which leads to the minimization of the difference of costs between the different servers. Costs which are not supported by the most loaded server are transferred to other servers, increasing the cost supported by the less loaded server, which reduce difference of cost supported by servers.

We run a solver for different values of \(\lambda \) and for each value we consider \(\Delta Q \) and \(\Delta R \). Figure 2 represents the solutions for specific values of \(\lambda \). Some values of \(\lambda \) do not provide optimal solution whereas others provide an optimal solution.

In the figure 2, these optimal solutions for \(\lambda \) are pointed by the line called \textit{Pareto front}. Among the values on the front, there are no mathematical way to decide whether one is better than the other. Choosing a solution is based on choosing whether we prefer to minimize \(\Delta Q \) or \(\Delta R \). Thus, the decision should consider other aspects such as operational criteria. Also, we should mention that \(\lambda \) values on the \textit{Pareto front} are difficult to characterize. Namely, if \(\lambda_0 \) correspond to a point located on the \textit{Pareto front}, then \((\lambda_0 + \varepsilon) \) does not necessarily provide a value close to the front. The value can be located anywhere on the \((\Delta Q, \Delta R) \) plane. This reflects the non-convex aspect of our problem since we use a discrete space for the resolution variables. We use the solver GLPK [13] running during 1000 seconds to solve this problem. We recall that the routing table is built in an off-line mode, only once. Running GLPK longer does not give better results for our 200 FQDN set. The number of FQDN chosen is limited by resources used by the solver. We denote this algorithm by \textit{milp-200}, and figure 2 shows that \(\Delta R \) as well as \(\Delta Q \) can be very small.
C. Easy Stacking Heuristic

Because of computation resources and time needed by the method described in subsection III-B, we consider another approach. The goal of this algorithm is similar to milp-200: minimizing jointly ΔQ and ΔR. However, the way we build the routing table provides less accurate results so as milp-200. As a result, we need to consider a much larger set - namely 18 times larger - of FQDN to build a routing table which balances properly the load among the servers. Even though the routing table is roughly 18 times larger, it takes less than 0.5 second to build it. Compared to 1000 seconds with milp-200, this method may present an operational advantage over milp-200.

The algorithm starts with I, the set of the most requested FQDN. From the current set of FQDN, it takes the costliest FQDN, assigns it to the less charged server (i.e. a server j_{\min} verifying $C_{j_{\min}} = \min_{j \in J} C_j$ where C_j denotes the cost supported by server j) and removes it from the FQDN set. This step is performed until the set of FQDN is empty.

To compare this algorithm with the milp-200 approach described above, we compute ΔQ and ΔR for different values of λ. We first choose a set of 200 FQDN to be compared with results from subsection III-B. We choose I, the set of FQDN, such that the last element is associated to a cost which is roughly the difference of costs generated by the stacking procedure described above. This leads to consider 1580 FQDN. We denote these algorithms as stacking-200 and stacking-1580.

Note that 200 FQDN represent 16% of the queries number and 1580 FQDN represent 46% of the queries number. It can be shown that stacking-200 presents a lower Pareto front than stacking-1580. However, ΔQ and ΔR are computed according to the set of FQDN I. This set is definitely not the same in stacking-200 and in stacking-1580. Hence, the comparison between these two algorithms is difficult to perform.

D. K-means Clustering Based Method

This section proposes to use the K-means algorithm as another way to build FQDN based routing tables. The K-means is a clustering algorithm, widely used in the field of machine learning, cf. [14] and [15] for instance. In our case, it groups similar FQDN into clusters such that the differences (or dissimilarities) between FQDN into a cluster are minimal. The K-means is run on all FQDN and groups the FQDN with similar costs. One of the cluster is very large and contains the FQDN with the lowest cost, i.e. the FQDN requested only a few times during the studied period. These FQDN are less popular, and thus we do not consider them in routing tables, they will be assigned to a server according to a hash function. For all other clusters, we spread the FQDN within each cluster uniformly among the servers. We expect to balance properly the traffic among the servers.

In this section, the K-means algorithm is applied with one parameter which results in a collection of 5 clusters. The variable used is a weighted sum of parameters reflecting the cost in term of CPU load due to each FQDN. In other words, we cluster FQDN on the basis of an evaluation of the CPU load computed thanks to the number of query and resolutions. We denote by M the number of servers ($M = \text{card}(J)$).

We thus construct a routing table based on the clusters output by the K-means algorithm. First, we consider the cluster containing the costliest FQDN and denote n_1 its cardinal. FQDN are distributed by a round-robin among the servers. The last FQDN is associated to the server $n_1 \mod M$. This ensures that the FQDN of the cluster containing the costliest FQDN are spread evenly on all servers. Similarly, the first FQDN of the second cluster is assigned to the server $(n_1 + 1) \mod M$ and the last FQDN of this cluster to server $(n_1 + n_2) \mod M$. n_2 being the cardinal of the second cluster. We proceed in this way until the last FQDN of the fourth cluster is assigned to a server. All FQDN of the four clusters represent around 5% of the DNS traffic, thus this algorithm is called K-means-5% in the remaining of the paper.

The advantage of the K-means approach over the MILP based solution is that it can deal easily with large amounts of data. However, stacking is even faster. K-means does not outperform stacking because it does not produce large clusters. In fact, if clusters had a huge amount of data with similar cost, compared to the number of servers, then, the cost would be uniformly distributed among each cluster. In our case, the FQDN with heavy costs are too specific, and are not numerous enough compared to the number of servers. However, this technique avoids the worst case where two very costly FQDN would be assigned to the same server.

IV. Overall Performance of the Methods

Performance comparison evaluates required resources to generate the routing table, as well as the ΔCPU, which is the difference of the CPU load of the servers of the Resolving Platform. Measurement of ΔCPU is performed through ΔQ and ΔR. The performance of the algorithms is evaluated in this section by replaying a DNS traffic capture of 10 minutes during the rush hours. For each query, if the queried FQDN is present in the routing table, then the DNS query is resolved by the server designated by the routing table. If the FQDN is not in the routing table, then a hash of the FQDN is performed. Hash values are then uniformly assigned to the servers. Hash function makes the routing quite short, and does not require the mapping of a FQDN to a server of the platform to be explicit. In our simulation, we choose to use SHA1 [5] as the hash function, because of its good avalanche effect, cf. [16]. The best routing table is the one with the lowest ΔQ and the lowest ΔR. As average queries and responses numbers per server are the same (traffic and servers numbers are identical), the performance indicators considered are ΔQ and ΔR (must
be minimal), the Cache Hit Rate (CHR, must be maximal) and the difference between maximal and minimal CHR (ΔCHR, must be minimal).

For each algorithm, we represent the routing table generating the best CHR. Statistics presented in figure 3 depict the repartition of the CPU load observed. It highlights the maximum load observed (i.e. the CPU load of the most loaded server in the platform), the minimum, the quartiles and the median estimate. This representation allows to compare how balanced is the CPU load in the platform.

Moreover, as in subsection III-D, we decide to evaluate our routing table using only one criterion. We use the cost defined in [11] and consider the repartition of costs on servers for a 10 servers platform. We define different costs representing the average CPU load during the simulation for both BIND9 and UNBOUND implementation and for both DNS and DNSSEC. Our goal is to find a routing table balancing the CPU load. The simulations are run with a number of servers lower than the one used in a real platform and costs are evaluated on a computer which is not representative of production servers.

The important parameter is not the CPU load itself but its repartition among the servers and the comparison of its value for different routing tables. It appears that Stacking-1580 is the best algorithm as it minimizes the differences between resolution servers and results in a maximum of 2% CPU load difference between servers.

All algorithms considered based on the queried FQDN (all but XOR) are better than the algorithm based on IP addresses (XOR) in minimizing the resources needed, by needing between 1.14 (DNS) and 1.32 (DNSSEC) times less servers. DNSSEC increases differences between IP addresses based and FQDN based algorithms.

Routing table length is a parameter influencing the resources repartition but the algorithm used to generate the routing table is also important. For example, K-means-5% uses a bigger routing table than the one used by milp-200 but does not perform better in balancing traffic.

![Diagram of routing table lengths](image)

Fig. 3: Repartition of costs (with BIND9)

V. Conclusion

FQDN-based load balancing is attractive for improving the Cache Hit Rate (CHR) and for reducing the resources needed to process the DNS(SEC) traffic on an Internet resolving platform. We can take advantage of the most popular FQDN distribution to improve this load balancing. The few most requested FQDN can be easily processed according to a routing table, whose size is rather small compared to the volume of traffic considered, while handling the other FQDN is performed dynamically. The main contribution of the paper lies in the new application of optimization and machine learning methods (namely mathematical programming and clustering) in order to build these routing tables for load balancing the traffic among the platform. It appears that the heuristic-based algorithm leads to the best routing table as it minimizes the differences between resolution servers and results in a maximum of 2% CPU load difference between servers. Also, all the load balancing methods considered based on the queried FQDN are better than the one based on IP addresses in minimizing the resources needed. Actually, they need between 1.14 (DNS) and 1.32 (DNSSEC) times less servers. A compromise must be found for the appropriate size of the routing table: the bigger it is, the better is the CHR and the balance between servers, but the slower is its generation.

Further works include the optimized processing of rarely requested FQDN and the study of the robustness for the proposed load balancing techniques.

References