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Abstract: In a dynamically scalable hosting infrastructure for e-business computing, servers need to
be quickly allocated in order to satisfy a sudden demand for increased computing power
for a hosted site.

Khnum is the applications and data management component of Océano - a dynami-
cally scalable hosting infrastructure for e-business computing utilities. It is responsible for
server reconfiguration and for application deployment. Application deployment involves
all services, configuration directives, executables and data of the application. A hosted site
may include several applications.

Khnum enables Océano to rapidly deploy multiple applications to tens of servers si-
multaneously in just a few minutes. It uses AFS as the infrastructure for secure storage,
automatically mapping files and directories onto the new servers’ local filesystems and
multicasting hot AFS cache content to the new servers. To avoid overloading the AFS
servers during the deployment process, the hot cache content is multicasted to all the new
servers, avoiding the boot storming (or “rushing”) effect. This, in turn, improves the scal-
ability of the deployment process; experimental results attest to Khnum’s scalability in
simultaneously deploying applications to tens of servers.

1. INTRODUCTION
The Océano project aims at providing a dynamically scalable hosting infrastruc-

ture for e-business computing utilities. Current co-location hosting environments use
dedicated computing resources for every hosted site; these resources determine the
capacity of the hosted site’s applications.

In these environments, the process of adding new resources is complex, time-
consuming and labor-intensive. This process normally involves the physical installa-
tion of the machines and supporting infrastructure (space allocation, racks or shelves,
electricity, cooling, routers, etc.), and the deployment of the hosted site’s applications,
data and middleware. This process may also require some downtime while the site is
being reconfigured for the added servers.

In addition, hosted sites increasingly require support for peak workloads that, in
some cases, could be an order of magnitude larger than what they experience in their
normal steady state. During promotions, a successful marketing campaign or a high
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seasonal demand, the number of accesses to an e-commerce site can increase signif-
icantly compared to its normal steady state, requiring much more resources for han-
dling the larger workloads. In this model, enabling peak-load scale on demand would
require large investments in standby, non-shared resources, which would be mostly
under-utilized, occupy large amounts of physical space and require regular mainte-
nance. Furthermore, a site may still go down if faced with a larger than expected
workload and lacks proper access throttling. Clearly, such a model is not well suited
to efficiently mitigate the differences between average and peak workloads. Thus a
faster turnaround time in adjusting the resources (bandwidth, servers, and storage)
assigned to each hosted site to the actual workload is needed.

Océano modifies the prevalent hosting model by increasing the sharing of resources,
and by dynamically adjusting the amount allocated to each hosted customer according
to the current observed demand. The Océano model assumes that all servers are clus-
tered together within the same glass-house or campus, and the hosting environment
is dynamically divided into secure, single hosted site domains. These domains are
dynamic: the resources assigned to them may be augmented when workload increases
and reduced when workload dips. This dynamic allocation of resources is controlled
by flexible Infrastructure Service Level Agreement (ISLA) contracts with hosted cus-
tomers. Océano administers the available resources, so that each hosted customer is
provisioned as specified by its contract.

To do that, Océano maintains a pool of unassigned (free) servers that can be dy-
namically assigned to hosted sites. When a higher than normal workload is expected
for a hosted site, a group of servers can be pre-allocated for the hosted site in advance.
If however, during the live operation of the hosted site, Océano determines that the
workload is going to increase beyond the hosted site’s current capacity, more servers
are then dynamically allocated for the hosted site (in accordance with the ISLA for
the hosted site), while the site is handling the current workload. On the other hand, if
Océano determines that the workload is going to decrease and that servers are going to
be under-utilized, servers are de-allocated from the hosted site and returned to the pool
of unallocated servers. Underlying subsystems provide the mechanisms for determin-
ing expected workloads, throttling access, managing resources and shifting them to
and from a hosted site domain in pseudo real time (minutes) without compromising
security requirements.

Figure1 illustrates this in a simple multi-tier scenario. Servers at Tier-1 and Tier-2
are dynamically reallocated as workload increases, while Tier-3 resources are assigned
to hosted sites for very long periods of time. In Figure 1(a) 6 servers are allocated to
hosted site A and 6 to hosted site B. Figure 1(b) illustrates the server allocation status
following a detection of a significant increase in the workload of hosted site B and the
reallocation of some of the machines. In the absence of “free” machines, to fulfill the
needs of hosted site B, the Océano system took under-utlilized resources away from
hosted site A

�

.
Once a server has been allocated to a hosted site, it should be installed with the

applications and data that will enable it to actively participate in the site’s workload.
In addition, the server’s network configuration should be modified to identify it as
belonging to the hosted site to which it was allocated. Setting up a new server in-
volves time-consuming and labor-intensive operations such as application installation,
configuration and tuning. Many techniques are available to ease these tasks (see Sec-
tion 2).
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In an Océano-hosted environment, the entire hosted site’s data (including applica-
tion binaries

�

) is kept in a shared file system; installation and configuration of applica-
tions is done off-line. Khnum

�

, the applications and data management component of
the Océano architecture, is responsible for the rapid deployment of applications (and
data) on added servers. Application deployment, the process of setting up all the ap-
plications on a new server, is reduced to mapping a remote shared subtree (or several
subtrees) to the local file system of the new server.

In the simplest case, the mapping involves only the creation of a few symbolic
links, but it could also be relatively complex for applications that require system con-
figuration changes where symbolic links are insufficient. In addition, Khnum is also
responsible for configuring the machines to run the applications, and to pre-fetch ap-
plication data and executables in order to bring them faster into the fully functional
state.

Figure 1. Resources assigned are augmented when workload increases and reduced when workload
dips
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In a multi-tier environment, any considerable change in the computing power (that
is, number of servers) of any of the tiers can, if not managed properly, severely impact
the adjacent tiers. For example, in an Océano-like hosting environment, a sudden
increase in incoming requests may cause a quick buildup of computing power at Tier-
1 and Tier-2; however, the number of Tier-3 servers stays the same, hence they may
become a bottleneck when multiple new Tier-1 servers and Tier-2 servers all request
access simultaneously to the same data from the Tier-3 servers. Over-provisioning
Tier-3 for the maximum expected workload, as a way to avoid this problem, would be
expensive and probably impractical. Khnum avoids choking the Tier-3 servers by pre-
fetching “hot” cache data from a running Tier-1 server and a running Tier-2 server into
newly allocated Tier-1 servers and Tier-2 servers, respectively. Furthermore, Khnum
uses multicast to “push” this hot data to all new servers being allocated to a hosted
site simultaneously. The Khnum model proved to be a very efficient mechanism for
rapidly deploying applications on new servers. Using this model, we have successfully
deployed multiple applications, including Apache, Jakarta-Tomcat, Real Media, and
iPlanet.

The Khnum model requires AFS distributed filesystem support and a local filesys-
tem supporting symbolic links. Therefore, although our implementation was based on
RedHat Linux v6.2, other UNIX variants could be used for implementing this model.
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The rest of this paper is organized as follows. Section 2 describes related work
in application installation, distributed file systems, and cache pre-loading schemes.
Section 3 presents Khnum’s data sharing model, its components, its file system map-
ping method, and its cache pre-fetching. Section 4 describes experimental results, and
conclusions and future directions are presented in Section 5.

2. RELATED WORK
2.1 Installing and Cloning

The RPM utility by Red Hat Linux [2] reduces the installation complexity by pack-
ing the applications with installation scripts and a list of dependencies. The rpm
utility performs the dependencies check, unpacks applications and runs the installa-
tion scripts. Disk cloning products, such as Symantec Ghost [3], tackle the installation
problem by copying entire disks from a pre-configured machine into one or more new
machines. All these approaches assume that applications and data are installed on
each machine as independent copies, which makes the task of “content management”
hard since there is a need to maintain many synchronized copies of the same data. On
the other hand, shared file systems have been used to store application binaries in a
common place. However, architectures using this approach (for example, [4]) limit
the use of shared data to a small set of predefined locations to reduce the complexity
of managing mount points or symbolic links, or both.

2.2 Distributed File Systems for clusters

Khnum relies on the Andrew File System (AFS) [5], for sharing the hosted site’s
content between its multiple servers. Contrary to the weak caching semantics of the
popular NFS [6], AFS provides robust caching mechanisms that allow access to large
amounts of cached data with speeds comparable to those of local file system accesses.
As extensions to AFS’s efficient file sharing model, which significantly reduces the
workload on the file servers, Coda [7] and Disconnected AFS [8] also allow access to
the cached data even when the file server is inaccessible, while keeping their respective
file system semantics. In the JetFile [9] multicast-based distributed file system, most
operations, which are usually managed by the server, have been moved to the clients.
JetFile also supports large caches (in the order of gigabytes), and uses dynamic repli-
cation as a means to localize traffic, contrary to AFS’s static read-only replication.

2.3 Cache pre-loading schemes

The Khnum model is based on the assumption of a symmetric relationship between
servers, that is, we assume that all the servers for a certain hosted site, serve more or
less the same content

�

, and hence should have very similar cache contents. Therefore,
when adding new servers to a hosted site, the cache content of an active server is
multicasted to the newly added servers, under the assumption that the new servers will
be asked to serve roughly the same content. This model is different from SEER [10]
and MFS [11], which propose sophisticated hoarding mechanisms for detecting which
files should be stored in the cache, as a preparation for disconnected operation, under
the assumption that different servers need different content.



Khnum - A Scalable Rapid Application Deployment System

Dedicated to caching Web content, LPC [12] employs multicasting for pushing
cache content to cache replicas, and automatic tracking of popular Web pages for de-
termining hot cache items. When popular Web pages are determined, their content
is pushed to the Web servers, effectively minimizing the time it will take a server to
serve that page for the first time. This is rather different from our approach, in which
all servers, other than newly added ones, are quite independent of each other. However,
in our model, we assume all servers are configured with a large enough AFS cache,
so that all popular static Web pages should eventually be stored in the local cache of
every server without imposing any additional complexity on the server [13]. On the
other hand, if the Web pages are continuously generated every few minutes (for ex-
ample weather reports, stock reports, sports results), LPC may be more scalable with
large numbers of servers, significantly reducing the workload on the shared file sys-
tem server. TriggerMonitor [14] uses a different, but related, approach by “sensing”
changes in database entries, which are used to compose the dynamically generated
Web pages. Generated pages are stored and used until a change is detected that re-
quires a page regeneration. The newly generated pages can then be “pushed” to the
participating Web servers that serve them as “static” pages.

3. THE DATA SHARING MODEL
To reduce the time and complexity of the application deployment process on new

servers, all application data (applications executables, configuration files and data
�

)
reside on a shared file system and the local disk is used only for temporary data
(swapping, caching, and so on), machine specific configuration, and the basic op-
erating system. Essentially, the servers on each cluster become almost “data less”
machines. When a server either fails or is removed from a hosted site, all the data
on its local disk gets wiped out (except for the basic operating system and machine
specific configuration)

�

.
Ideally, a single symbolic link into a subdirectory in the AFS tree would be suffi-

cient to fully enable applications on the cluster nodes. However, this is doable only
for a limited set of applications. In many cases applications require files in system
directories such as /etc. Moreover, symbolic links to a shared directory should not be
used for directories and files that are, by definition, local to a particular machine. For
example, the installation of the Apache Web server creates the /var/log/http subdirec-
tory to keep a local log of http activity. To overcome these problems and still keep
the applications on the shared file system, the Khnum model suggests a three-phase
process for deploying applications on an Océano-hosted environment:

1 Standard installation - The application is installed locally using the standard ap-
plication procedure on an off-line machine designated as the installation staging
server.

2 Analysis and relocation - Once an application has been installed, configured
and tested, it is relocated to an area on the shared file system that mirrors the
local disk of the installation staging server. Some applications can be directly
installed on the shared file system, while others need manual classification of
all its files according to their access:

Read-only files which can always be relocated to the shared file system as long
as the actual path to them is kept (through symbolic links). In most cases
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this includes configuration files since these are typically modified once (or
sporadically).

Instance read/write files contain data relevant to a particular instance of the
application, and hence cannot be shared. Log files are a good example
of this type of files. When the application is relocated, these files are
separated from the application subtree into a local subtree (by modifying
the application configuration files accordingly).

Application-wise read/write files contain information relevant to all instances
of an application. To avoid inconsistencies, applications may choose to
lock entire files or only portions of them, and to lock only during the write
operations or during the entire “life” of the application (in which case the
application becomes non-shareable).

Some applications may require an additional effort of creating customized con-
figuration scripts. The purpose of these configuration scripts is to modify con-
figuration files and perform additional tasks that cannot be achieved by simply
replacing the existing files with application-specific ones (for example files con-
taining server-specific configuration information). These configuration scripts
will be invoked at a post-mapping phase (see below).

3 Mapping - The final step of bringing an application up includes: (a) stopping
the processes running on the server undergoing application deployment; (b) cre-
ating the necessary links and directories on the server’s file system; (c) running
configuration scripts (when needed); and (d) restarting the system and applica-
tion processes.

The application analysis process may be difficult at first, but the knowledge acquired
on each application can be re-applied. Although the file hierarchy structure varies
from application to application, the ongoing efforts to standardize the file system struc-
ture [15] will eventually simplify the process. Note that the time-consuming parts of
this process (installation and analysis) are done off-line, and hence they are not part of
the rapid deployment of applications on new servers. In addition, when a new server
is allocated to a hosted site, previously allocated servers continue to work normally
without interruption.

3.1 System Overview
As with most Océano components, Khnum’s functionality is divided between a

management sub-component - the Khnum Manager (KhnumM), which oversees and
coordinates the application deployment process; and an execution sub-component -
the Khnum Daemon (KhnumD), which is present on all servers and is responsible
for file system mapping, cache pre-fetching and configuration. KhnumM waits for
“application deployment instructions” from either eClams, the Océano component re-
sponsible for the management of servers [1], or directly from a user when working in
standalone mode. These application deployment instructions consist of a hosted site
identifier, a list of servers and a “command”: either add the servers to the hosted site,
or remove the servers from the hosted site, that is, restore the servers to the unallo-
cated state. As a response to these instructions, KhnumM initializes the application
deployment process on the new servers by selecting from the servers already allocated
to the desired hosted site (the “old servers”) a cache pre-fetch source

�
and then send-

ing a ���������	��
���
��	����������� message to all new servers. We currently pick an arbitrary old
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server as the cache pre-fetch source. However, it is not clear whether we should pick
older servers whose cache might have reached a level of stability, or newer servers that
may still hold the files required for initialization.

Figure 2. The life cycle of a server
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Figure 2 describes the life cycle of a server from Khnum’s perspective. KhnumD
on new servers is in the Free state where it waits for the ���������	��
���
��	����������� message
from KhnumM. When KhnumD receives a request from KhnumM it responds by
changing the system’s runlevel

�
to a specially tailored runlevel 7

�
. This transition

will cause all the services on the server undergoing applicationed deployment to be
stopped and the initialization program KhnumSetup to run. KhnumSetup will create
symbolic links to the shared file system, initialize the cache, optionally run config-
uration scripts

���
, and initiate another runlevel transition, which will cause the new

services to be started. A ���������	��
���
��	����������� message includes information on new AFS
cell configuration files, a designated cache pre-fetch server identifier and a setup file
(Khnum.setup) containing information on how to setup the required applications.

Upon receiving a ���������	��
���
��	����������� message, KhnumD enters the Application De-
ployment state, and performs the following procedure:

1 Stop all services on the server undergoing deployment (by switching to runlevel
7).

2 Stop AFS daemon
� �

services.
3 Copy new AFS configuration files to a standard location.
4 Restart AFS daemon with the new configuration (to gain access to the new

hosted site).
5 Find and set up all the symbolic links and directories on the hosted site’s AFS

cell required by the server (by running KhnumSetup) and run configuration
scripts according to the definitions in Khnum.setup.

6 Stop AFS daemon (to prepare for cache pre-fetching).
7 If there are other servers undergoing application deployment for this hosted site,

pre-fetch the AFS cache content (from the server designated by KhnumM as
part of the ���������	��
���
��	����������� message).

8 Switch back to runlevel 3, which also restarts the AFS daemon and (system and
application) services (new services are now started because in step 5 symbolic
links were created in /etc/rc.d/init.d and /etc/rc.d/rc3.d).

9 Send a 
���
��	�����������	��������
�������� message back to KhnumM.
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AFS cache pre-fetching (step 7) is only needed as a performance optimization. After
application deployment, the server automatically enters the operational state in which
it listens for ���������	����������������� or 
�����
������ ����� ����� ��������
	��� � � (not shown in Figure 2) mes-
sages. The “cleaning procedure” that KhnumD performs when it enters the cleaning
state is very similar to the application deployment procedure:

1 Switch to runlevel 7, which stops all services.

2 Stop AFS daemon.

3 Clean up AFS cache.

4 Remove all the files that were created locally by applications since the applica-
tions were deployed on the server.

5 Remove all symbolic links and directories created by KhnumD when the server
underwent application deployment.

6 Copy administrative AFS configuration files to standard location.

7 Restart AFS daemon.

8 Find and set up all the files and directories on the administrative AFS cell.

9 Switch back to runlevel 3, which restarts the system services (at this point only
basic services will be started)

10 Send a ���������������	��������
�������� message back to KhnumM.

When servers are in the “free” pool, they can potentially go though hard-drive re-
imaging (that is, operating system re-installation) to produce a totally “clean” filesys-
tem. As mentioned before, the time limitations during the cleaning stage are not as
tight as during the application deployment stage, and therefore more time-consuming
processes such as hard drive re-imaging and machine reboot are possible in the time
allowed.

3.2 File System Mapping

The Khnum mapping process automatically creates: (a) symbolic links for read-
only and application-wise read-write data, and (b) entire subtrees needed for instance
read-write data. This process is driven by a configuration file consisting of mapping
4-tuples (SharedDir, LocalDir, policy, script) where:

SharedDir: specifies the remote root of the mapping, that is, where in the shared file
system the image of additions to the local file system is rooted.

LocalDir: specifies a subdirectory on the local file system where the links/directories
found in SharedDir are to be created (recursively).

Policy: specifies what to create on the local file system: subdirectories only (mktree),
subdirectories and symbolic links to remote files (mkdir), or symbolic links to
remote subdirectories and remote files (mklink).

Script: points to a post-mapping configuration script, that is, after the line in the
configuration file is processed, this script will be called.

The different policies together with the post-mapping script allow for maximum flex-
ibility with minimal changes to the local file system. The essence of the process is to
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create an image of the remote file system structure on the local file system using sym-
bolic links as the preferred mechanism and creating entire subtrees whenever symbolic
links are not appropriate. At the end of the process, the minimal number of new sub-
directories will have been created, while most of the data will be accessible through
symbolic links and the post-mapping script handles the special cases of files that need
to be modified instead of replaced.

3.3 AFS Cache Initialization

The AFS aggressive caching mechanism ensures that in the “steady state” access-
ing frequently used read-mostly

� �

files is almost as fast as if the files were local
to the machine

� �

[16]. However, the penalty for reaching this steady state can be
high in terms of performance (for example, network traffic), in particular when many
machines try to initialize their AFS cache simultaneously. Hence, a method to get
many machines simultaneously to a known steady state, without choking the AFS file
servers, is needed.

When the AFS daemon is started, it validates all the entries in the local cache.
This means that if the cache contents are replaced with a valid content before the
daemon is started, this new content will be used as if it was received by the daemon
itself. Based on this observation and on our desire to achieve a steady state quickly,
the AFS cache on new servers is initialized, before the daemon is started, with the
contents of the AFS cache of a server already in the cluster (the cache source). Fur-
thermore, to reduce network traffic and application deployment time, this pre-fetching
is done by multicasting the cache contents to all the new servers simultaneously, using
a multicast-enabled version of the TFTP protocol [17]. Figure 3 shows the message
flow of the cache pre-fetch protocol, which is divided into the following three phases:

1 KhnumM selects a server as the Cache Source and sends it a ����������������� � ����� �����
request message to initialize the cache service and waits until the cache source
is ready; the Cache Source server takes a snapshot of the cache content, starts
the multicasting daemon, and sends a message back to KhnumM notifying that
it is ready for multicasting the cache content.

2 KhnumM sends a ���������	��
���
��	����������� request (with the IP address of the Cache
Source server) to each joining server. Each server then requests from the Cache
Source the cache content. Once all requests are received (or a time-out ex-
pires), the Cache Source multicasts its cache contents to the new servers. Multi-
cast TFTP multicasts cyclically all nonreceived blocks until the cache has been
transmitted successfully to all the joining servers. Since pre-fetching is done for
performance, we also considered multicasting in a best effort manner, that is,
populating potentially only parts of the caches. KhnumD on the new servers
performs the application deployment procedure, creating the directory struc-
tures and links according to the hosted site’s definition as described in the pre-
vious section.

3 The new servers request the cache snapshot from the cache source and use it to
initialize the AFS cache and resume the application deployment procedure.
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Figure 3. Cache Pre-fetching
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4. EXPERIMENTAL RESULTS
As mentioned previously, the prevailing hosting model at the time of writing is

that of statically allocated servers. Adding additional servers to the initial setup is
both expensive and time-consuming (a matter of days for adding additional machines,
provided that they are physically available). Therefore, there is no value in a direct
experimental comparison of dynamic allocation times and static allocation times.

On the other hand, we mentioned that adding many servers at once in our model
may stress the AFS server (or servers), and we proposed a cache multicast pre-fetch
model as a possible solution to this problem. We also conducted experiments that
show the difference in “total application deployment time” (the time it takes to add a
number of servers to a hosted site) with or without using multicast cache pre-fetching.
The results of our experiment show that multicast cache pre-fetching significantly im-
proves the scalability of our solution (in terms of the number of servers that can be
added “at once” in single-digit number of minutes).

Our experiments were conducted using a set of 20 servers. Each server was a
600 MHz IBM IntelliStation with 512 MB of RAM running Linux RedHat 6.2. The
machines were interconnected with a 100 Mbps fast Ethernet switch. In these experi-
ments the total application deployment time was measured, that is, the time from when
a ���������	��
���
��	����������� message was sent to the first server, to the time the last server has
replied with a 
���
��	�����������	��������
�������� message.

Therefore, as described earlier, all the servers, that undergo application deploy-
ment, stop their current services and clear their “old” AFS caches before the applica-
tion deployment for the newly hosted site begins. There are a number of factors that
may considerably affect the measured results:

Number of servers: Impacts the total amount of data that, under normal circum-
stances, needs to be sent over the network. Every server independently accesses
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the shared file system. Thus, when a file is requested, that is not in the re-
quester’s AFS cache, the file’s content will need to be retrieved from the shared
file system server.

Network bandwidth and load: In many occasions, data from different sources may
traverse the network, and affect the experiment’s results. In our setup we use
a dedicated private network for these experiments, minimizing the possibility
that data other than our experiments’ data will traverse the network (besides the
usual “network noise”).

Data set size: The total size of all the content for a given installation. We assume a
server is already installed with the base operating system services and utilities,
thus an installation refers only to any additional data that may be needed by the
server, in order to serve as an equal member of the set of servers it is joining
(for example Web servers of a specific Web site).

Cache size: The use of a cache depends heavily on the design and implementation of
the shared file system. In our experiment, we use AFS. To simplify our exper-
iment, we define our entire data set as “hot” (that is the most needed data, that
needs to reside in the cache)

� �

. That is, we define the cache size to be equal to
or larger than the data set size, which should give us the effect of having our
entire data set in the cache.

Shared file system server capacity: The more servers that need to be served from a
shared filesystem server the greater the potential workload on the shared server,
more so when new servers undergoing application deployment try to access the
same content simultaneously. The capacity of the shared filesystem server could
easily become a bottleneck when dealing with many servers.

4.1 Description of the experiments

In order to get a clearer picture on the improvement that is provided by multicast
cache pre-fetching, we tested our environment using two different data sets:

The “Mayflower” experiment provides an example of a graphic intensive Web
site. The site consists of 5421 files of small size (3 KB to 10 KB), adding up to
112 MB. The AFS cache size was set to 120 MB.
The “ShowBoat” experiment is an example of a streaming video site, with a
few relatively long movie clips (3 minutes to 4 minutes long). The site consists
of 1855 files adding up to 162 MB. In this case the AFS cache size was set to
180 MB.

The experiments consist of deploying applications and data on up to n servers si-
multaneously (0 � n � 20) and measuring the total application deployment time as
defined above. Our primary interest was to measure the effects of the multicast cache
pre-fetching; hence tests were done with and without pre-fetching. From the hosted
customer’s perspective, the interesting measure is the time it takes for a new server to
serve its first request (that is, the server becomes fully operational). To approximate
this value, we “forced” all new servers to retrieve the entire content from the AFS
server such that the AFS cache fills up. Since in both experiments the cache size was
set to be larger than the data set size, the data set is exhausted before the AFS cache is
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Figure 4. Application deployment experiments
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(a) “Mayflower“
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(b) “Showboat“

completely full, and thus, the entire data resides in the AFS cache (nearly simulating
the effect of having the data set locally installed).

The measured results show that the multicast cache pre-fetching significantly re-
duces the total application deployment time (see Figures5(a) and5(b)). Both figures
show that the application deployment time is a linear function on the number of
servers simultaneously undergoing application deployment, where pre-fetching im-
poses a somewhat costlier setup time (that is preparing the cache content to be sent
and sending it to a large number of nodes). However, the difference in slope (roughly
a 6:1 ratio) shows that we easily overcame the somewhat higher setup penalty. Note
that even though cache data is multicasted, each AFS client still needs to validate the
AFS cache content with the AFS server, which causes a slight delay that increases as
the number of servers undergoing application deployment increases, hence the small
slope. The multicast cache pre-fetching model considerably improves the scalabil-
ity of the application deployment process. This is especially important for “bursty
environments”

� �

, where the system is expected to react fast to sudden peaks in de-
mands, by adding a large number of servers simultaneously. It is also interesting to
note that there is a certain threshold (which varies depending on the data size and
number of files) under which it would be much better to avoid using multicast cache
pre-fetching in order to obtain the best results. However, since the time difference in
these numbers of servers is not large compared to the total time it takes to deploy ap-
plications on the servers, a simpler approach may mandate the use of multicast cache
pre-fetching on any number of servers. The main reason for this approach being the
fact that other than conducting experiments similar to the ones we have conducted, it is
quite hard to estimate the threshold for each and every setup. Thus it may be practical
to always use multicast cache pre-fetching, even for a small number of servers.

5. CONCLUSIONS
Océano manages a single collection of servers to provide hosting for multiple

hosted sites, and dynamically reconfigures these servers to suit the current demand.
Khnum manages the application deployment and server reconfiguration of each hosted
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site. An additional feature is Khnum’s cache management, which supports fast concur-
rent addition of multiple servers for the same hosted site. By using multicast, Khnum
achieves significant performance gains relative to earlier methods. We believe this
model is flexible enough to host large families of applications that can serve requests
independently on separate servers, for example, search engines that access a shared
index from the shared file system.

So far, Khnum has focused on management of file system data. In the future,
we would like to investigate similar pre-fetching techniques for databases as well.
Another interesting direction for future investigation is geographical distribution of
server farms, where the Océano system might dynamically allocate servers in the farm
closer to the end-users (for example, Web sites transparently migrate from the US to
Japan when the level of activity from Japanese users increases).
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Notes
1. The methods by which to shut off a server from incoming requests until it becomes inactive, and the

ways by which to determine whether a server is active or not are beyond the scope of this paper.

2. The discussion on sharing binaries ignores any licensing constraints.

3. All Océano component names allude to the ocean. According to Egyptian mythology, Khnum is the
lord of the cool waters.

4. Our notion is that for many Web sites that serve static (or pseudo-static) data, there is a portion of
the data which is hot (i.e. accessed by most users). With a good enough workload balancing component,
most of the participating servers will need to access that hot data.

5. In the rest of the paper, we use interchangeably “applications” and “data”, since both are stored as
files in the shared file system, and treated in the same manner by Khnum.

6. Contrary to the requirement of rapid application deployment due to increased workload on a working
site, removing a server from a hosted site does not require the same speeds. Therefore, re-imaging the
server’s disks is one option for a thorough “cleaning” of any residues or for installing a different version of
the operating system, or a different operating system.

7. A cache pre-fetch source is an active server in the hosted site, which is instructed by Khnum to
multicast the contents of its AFS cache to new servers being added to the hosted site. For more information
on cache pre-fetching in Khnum, see section 3.3.

8. A UNIX System V term for the set of services and kernel state (single/multi user).

9. Every Khnum controlled server is configured to include the additional runlevel 7, which is essen-
tially similar to runlevel 6 (reboot) with few modifications for running the setup scripts and automatically
switching back to runlevel 3 (multiuser).

10. Some applications may require an additional configuration, which is achieved by customized con-
figuration scripts. This is needed in those cases where there is a need for server-specific configuration.
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11. The afsd daemon is stopped last as services run off AFS and afsd refuses to shutdown when there
are remote files open.

12. We are assuming, for simplicity, that read-mostly � files may be updated by Tier-2 servers (or ser-
vices) such as a daily forecast update, etc. Updating these files by a Tier-1 server can be handled by AFS,
however, it may cause unpredictable results when applied to applications that are ill equipped to deal with
sharing of files by multiple instances.

13. We assume that read-write data is stored on shared databases, which are beyond the scope of this
paper.

14. In practice, data sets for hosted sites are much larger than the cache size.

15. Examples of such “bursty environments” are an on-line stock reports site during a stock rally, or a
news site during a large scale event.
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